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SUMMARY Since wild animals are causing more accidents and dam-
ages, it is important to safely detect them as early as possible. In this pa-
per, we propose two battery-powered wild animal detection nodes based on
deep learning that can automatically detect wild animals; the detection in-
formation is notified to the people concerned immediately. To use the pro-
posed nodes outdoors where power is not available, we devise power saving
techniques for the proposed nodes. For example, deep learning is used to
save power by avoiding operations when wild animals are not detected. We
evaluate the operation time and the power consumption of the proposed
nodes. Then, we evaluate the energy consumption of the proposed nodes.
Also, we evaluate the detection range of the proposed nodes, the accuracy
of deep learning, and the success rate of communication through field tests
to demonstrate that the proposed nodes can be used to detect wild animals
outdoors.
key words: wild animal detection, deep learning, camera-trap, micro-
computer boards, and power saving

1. Introduction

Problems caused by wild animals such as crop damages and
accidents to people have happened in areas inhabited by
people and wild animals. Especially, sudden encounters be-
tween people and wild animals result in significant damages
to people. To reduce these problems, it is important to safely
detect wild animals as early as possible.

Various measures have been taken to detect and report
wild animals. The most general measure is the use of eye-
witness information which is typically provided to local mu-
nicipal authorities and polices. Then, the information is dis-
tributed to citizens using e-mail and the Internet. However,
this measure tends to be ineffective owing to delays in the
distribution and reception of the information.

Other traditional measures are traps and electric fences.
In order to set traps, cages are usually located where wild
animals are likely to pass. When seeking food inside a cage,
the door is closed to trap wild animals. However, traps are
ineffective if wild animals do not enter the case. Using elec-
tric fences, crop and livestock can be protected from wild
animals. However, the electric fences are expensive and can
be dangerous to people also.

Drones have been used to detect wild animals [1], [2].
Using drones with attached sensors and cameras, wild ani-
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mals can be detected from the sky. However, the effective-
ness of drones depends on weather conditions, geographic
conditions, fuel efficiency, and pilot ability.

Recently, camera-traps which can automatically detect
wild animals using sensors and cameras are widely used.
Trail cameras [3] are one such example. This is because
the automatic detection of wild animals is safe and the cost
of devices is reasonable. However, commercially available
trail cameras do not classify which wild animals are de-
tected. Also, excessive manpower is required to analyze the
captured images. To save manpower, [4], [5], [6], [7], [8],
and [9] proposed automatic wild animal identification meth-
ods based on convolutional neural network (CNN). Using
these methods, captured images are automatically classified
into species with high accuracy and high speed. [7] and [8]
can also perform automatic counting of wild animals in cap-
tured images. CNN is also used for other purposes. [10] pro-
posed a method to recognize individual Japanese macaques
on location trajectories using the personal traits. [11] pro-
posed a method to track and identify individual Japanese
macaques using CNN and particle filter.

Reference [12] proposed an Internet-of-Things (IoT)
system called Where’s The Bear. This system consists of
three system components, motion-triggered camera-traps,
resource-constrained edge systems located near the camera-
traps, and cloud systems. The camera-traps capture images
and send the images to the edge systems. The cloud systems
construct a trained model based on CNN using a synthetic
training set for wild animals. The edge systems implement
the trained model and classify wild animals.

The above methods which use camera-traps and deep
learning [4], [5], [6], [7], [8], [9], [10], [11], and [12], on the
other hand, did not notify the people concerned when wild
animals were detected. To reduce accidents and damages,
a system which can automatically detect wild animals and
notify the detection information to the people concerned as
soon as possible is required. Although there are many crit-
ical requirements for such a system, energy consumption is
one of the significant problems because usually such a sys-
tem must be used outdoors where power is not available.

In this paper, we propose two battery-powered wild an-
imal detection nodes based on deep learning. The first node
is based on a single micro-computer board, while the second
node is based on two micro-computer boards. In addition to
automatic detection, deep learning based on CNN is useful
to reduce the energy consumption of the nodes. If a tar-
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get wild animal is not detected by CNN, operations such as
communication with a server to notify the detection of the
wild animals are skipped to save energy consumption.

The proposed node with two micro-computer boards
contributes to the power reduction during idle time. Usu-
ally, deep learning consumes more energy because of heavy
computation. Therefore, a low power micro-computer board
is used for sensing and image capturing. Only when
something is detected, power is supplied to another micro-
computer board for deep learning and the remaining opera-
tions. This results in the drastic power reduction during idle
time.

In the experiment, we evaluate the operation time and
the power consumption for the proposed nodes to clarify the
energy consumption of the proposed nodes. We also clarify
when the node with two micro-computer boards is useful for
energy consumption. Then, we evaluate the sensing range of
the proposed nodes, the accuracy of deep learning, and the
success rate of communication through field tests.

The rest of this paper is organized as follows. In Sect. 2,
we first describe the functional requirements for the pro-
posed nodes. Then, we describe the structure and the op-
erational flow of the proposed nodes. In Sect. 3, we evaluate
the proposed nodes in terms of energy consumption. Also,
we evaluate the proposed nodes through field tests. Finally,
in Sect. 4, we describe the conclusion and future work.

2. Proposed Wild Animal Detection Nodes

The proposed wild animal detection nodes are powered by a
battery to be used outdoors where power is not available. In
this section, we initially define the functional requirements
for the proposed nodes. Then, we describe the structure and
the operational flow of the proposed nodes. We also describe
how power consumption is reduced by the proposed nodes.

2.1 Functional Requirements

To detect wild animals and notify the people concerned as
early as possible, the proposed nodes have the following
functions.

• Detection of the target wild animal by applying deep
learning to static images captured by a camera

• Connection to the Internet to notify the detection to the
people concerned

• Driving away the detected wild animal from the pro-
posed nodes and the notification of the detection to
people near the proposed nodes using sound and light

CNN is used to detect the target wild animal in images
captured by a camera. The use of CNN allows us to use the
proposed nodes for any type of wild animal just by changing
the trained models of CNN.

A video recording could be more accurate. However,
applying deep learning to multiple frames obtained in a
video consumes more power at the proposed nodes. There-
fore, the proposed nodes capture static images and infer wild

Fig. 1 Application example of the proposed nodes.

animals from the static images.
Early notification of the detection of a target wild ani-

mal is necessary to reduce damages and accidents. The pro-
posed nodes connect to the Internet when the target wild
animal is detected by deep learning. The detection informa-
tion is sent to a server to notify the people concerned using
a web page and e-mail.

Also, the proposed nodes generate loud sound and
flashing light to notify people near the proposed nodes. The
light and sound may drive away the detected wild animal
from the proposed nodes.

Figure 1 represents an application example of the pro-
posed nodes. When the proposed nodes are placed in or
near a vegetable field, livestock hut, or tourist site, and a
target wild animal is detected the proposed nodes generate
sound and light to drive away the detected wild animal from
the proposed nodes and to notify people near the proposed
nodes. Also, the proposed nodes connect to the Internet to
send the detection information to a server. The server up-
dates a web page and distributes an e-mail to notify the de-
tection information to the people concerned. Thus, e-mail
recipients are made aware immediately.

2.2 Proposed Node Based on a Single Micro-Computer
Board

Figure 2 represents the operational flow of the proposed
node with a single micro-computer board. First, the oper-
ation starts when an auxiliary sensor such as a motion sen-
sor detects something moving. Then, to capture a static im-
age during night, the relay module which supplies power to
an infrared projector is turned on when the value of a light
sensor is smaller than a threshold value. After capturing a
static image by a camera, the inference of the target wild an-
imal for the image is performed using a trained CNN model.
When the target wild animal is detected in the image, sound
and light are generated to drive away the detected wild an-
imal from the proposed node and to notify people near the
proposed node. Also, the proposed node turns on a wireless
module to send the detection information to a server through
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Fig. 2 Operational flow of the proposed sensor node with a single micro-
computer board.

Fig. 3 Structure of the proposed node with a single micro-computer
board.

the Internet. After the transmission, the proposed node waits
for the next sensing by turning off the wireless module.

To save the power consumption of the proposed node,
the operation flow performs the required operations only
when the assigned conditions are satisfied. First, the pro-
posed node does not perform anything without detecting
something with an auxiliary sensor. Second, the proposed
node does not supply power to the infrared projector when
the value of the light sensor is over the threshold value. This
is very useful because the power consumption of the infrared
projector is very large. Furthermore, the proposed node does
not generate light and sound and connect to the Internet if a
target wild animal is not detected by deep learning.

Figure 3 represents the structure of the proposed node.
A battery, infrared projector, and micro-computer board
are connected through a battery controller. On the other
hand, an auxiliary sensor, camera, light sensor, relay mod-
ule, wireless module, speaker, and light emission device are
connected to the micro-computer board directly to control
them from the processor in the micro-computer board. The

Fig. 4 Operational flow of the proposed node with two micro-computer
boards.

relay module is used as a switch to supply power to the in-
frared projector. The wireless module uses a public line
(e.g., 3G/LTE) to connect to the Internet from rural areas
and the foot of mountains. The battery is a mobile battery
or storage battery with a solar panel.

2.3 Proposed Node Based on Two Micro-Computer
Boards

The battery life is the most important when the proposed
node is used outdoors where power is not available. It may
be possible to use a larger solar panel and a storage battery.
However, this increases cost. Moreover, this becomes dif-
ficult to place the proposed node because of the increase in
weight. To reduce power consumption, we propose a wild
animal detection node with two micro-computer boards.

The proposed node with two micro-computer boards
separates the required functions. A low power micro-
computer board controls an auxiliary sensor, camera, light
sensor, and relay modules. The relay modules are used to
supply power for the infrared projector and the other micro-
computer board. Basically, to control those components, we
do not require high performance. On the other hand, a high
performance micro-computer board performs deep learning
and connection to the Internet. The separation of the func-
tions saves power consumption during idle time. Although
the low power micro-computer board must be turned on per-
manently, the high performance micro-computer board does
not consume any power during the time if nothing is de-
tected by the auxiliary sensor.

Figure 4 represents the operational flow of the pro-
posed node with two micro-computer boards. First, the
low power micro-computer board controls the relay module
for the high performance micro-computer board to supply
power when something is detected by an auxiliary sensor.
Then, the low power micro-computer board controls the re-
lay module for the infrared projector when the value of the
light sensor is smaller than a threshold value. The low power
micro-computer board also captures a static image using a
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Fig. 5 Structure of the proposed node with two micro-computer board.

camera. After the high performance micro-computer board
is turned on, the low power micro-computer board sends the
image to the high performance micro-computer board and
waits a fixed time or a completion message to complete its
operations at the high performance micro-computer board.
The high performance micro-computer board performs the
inference of the target wild animal by deep learning when
the static image is received. Then, the high performance
micro-computer board generates light and sound to drive
away the detected wild animal from the proposed node and
to notify people near the proposed node. The high perfor-
mance micro-computer board also connects to the Internet
to send the detection information to a server. Finally, the
high performance micro-computer board sends a completion
message to the low power micro-computer board if required.
After all operations for detection complete, if the low power
micro-computer does not detect, from the auxiliary sensor
outputs, anything within some period, it controls the relay
module to stop the supply of power to the high performance
micro-computer board.

Figure 5 represents the structure of the proposed node
with two micro-computer boards. The main difference
from the proposed node with a single micro-computer board
(Fig. 3) is that an additional relay module is used to man-
age power for the high performance micro-computer board.
Note for the image data transfer between the two micro-
computer boards, we use serial communication through the
general purpose I/Os (GPIOs) of the boards.

3. Evaluation

To demonstrate that the proposed nodes can be used out-
doors, we evaluate the proposed nodes in terms of energy
consumption through the evaluation of the operation time
and the power consumption. Then, we evaluate the detection
range of the proposed nodes, the accuracy of deep learning,
and the success rate of communication through field tests.
The target wild animal in these evaluations is the Japanese
black bear (Ursus thibetanus japonicus).

Table 1 represents the specification of three devel-
oped prototypes (oneboard v0, oneboard v1, twoboard).

Fig. 6 Developed prototype (twoboard).

oneboard v0 is a simplified version of the proposed node
with a single micro-computer board powered by a mobile
battery. oneboard v1 is a full version of the proposed node
with a single micro-computer board powered by a lead stor-
age battery. twoboard is the proposed node with two micro-
computer boards. The used micro-computer boards are
Raspberry Pi [13]. The low power micro-computer board
in twoboard is Lazurite developed by LAPIS semiconductor
[14]. The CNN model is a trained model of Inception-v3
provided by Google [15]. Note that we did not implement
a speaker and a light emission device in the evaluation to
avoid stress to the bears in a bear zoo where we visited to
test the developed prototypes. Also, we did not use a so-
lar panel in this evaluation. Figure 6 represents twoboard.
The upper middle component is the infrared projector, the
component under the projector is the camera, and the com-
ponents under the camera are the motion sensor and the light
sensor.

There are differences in the used Raspberry Pi. We
used Raspberry Pi Zero for oneboard v0 to reduce power
consumption. However, because the performance of the
ARM processor in Raspberry Pi Zero was low and the size
of the main memory was small (single-core CPU, 1GHz
clock frequency, and 512MB memory), it took about five
minutes for the load of the trained model and the inference
of the target wild animal. We evaluated that it is difficult
to detect wild animals in real time when we use Raspberry
Pi Zero. Therefore, in oneboard v1 and twoboard, we used
Raspberry Pi 3 (quad-core CPU, 1.2GHz clock frequency,
and 1GB memory).

There are differences in the used components between
oneboard v1 and twoboard too. The components repre-
sented by brackets are components used in twoboard. The
differences come from the difference which Raspberry Pi or
Lazurite is used for the control of the components. Rasp-
berry Pi supports only digital components while Lazurite
supports both digital and analog components.

3.1 Operation Time, Power Consumption, and Energy
Consumption

Table 2 represents the operation time when we held a pic-
ture of the Japanese black bear in front of oneboard v1 and
twoboard. The time is an average value of the ten time
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Table 1 Specification of the developed prototypes.

Name oneboard v0 oneboard v1
twoboard

Micro-computer Raspberry Pi Zero Raspberry Pi 3 Model B
Low power micro-computer - Lapis Lazurite

deep learning model Google inception-v3 Google inception-v3
Auxiliary sensor Seeedstudio PIR Motion Sensor Seedstudio PIR Motion Sensor

Camera Kuman Raspberry Pi Camera SC15 Kuman Raspberry Pi Camera SC15
(ArduCam OV5642)

Infrared projector Broadwatch SEC-IRLED-2B Broadwatch SEC-IRLED-2B
Light sensor TSL2561 TSL2561

(cds cell 5mm GL5537-2)
Wireless module NTT DoCoMo L-02C NTT DoCoMo L-05A
Battery controller - Indoor Corgi Elec. E32-SolarCharger

Battery REV...POWER Mobile Battery 30,000 mAh Long 12 V 7.2 Ah

Table 2 Operation time of oneboard v1 and twoboard [s].

Name oneboard v1 twoboard
Sensing to detection 26.5 116.1

(communication between boards) - 70.3
(inference) 19.6 19.8

Detection to completion 48.6 46.5
(communication) 14.6 11.5

Sensing to completion 75.1 162.6

executions. “sensing to detection” is the time from sens-
ing to the completion of the inference through communi-
cation between boards and capturing a static image by the
camera. “communication between boards” in “sensing to
detection” is the time by serial communication of the im-
age between Raspberry Pi and Lazurite in twoboard. “in-
ference” in “sensing to detection” is the inference time by
Inception-v3. “detection to completion” is the time from
the completion of the inference to the turn off of the wire-
less module through turning on of the wireless module and
the transmission of the detection information to our server.
“communication” in “detection to completion” is the actual
communication time by the wireless module. “sensing to
completion” is the sum of “sensing to detection” and “detec-
tion to completion”. In other words, this time corresponds
to the required time for the next sensing. Note that we im-
plemented the control programs using the Python language.
For the measurement of the times, we inserted time() func-
tions to the programs. The average image size was 159 KB
in oneboard v1 and 28 KB in twoboard. This difference
was the difference of the cameras used for Raspberry Pi and
Lazurite. The used picture was a color image with dimen-
sions 640 × 480.

oneboard v1 detected the Japanese black bear about
26.5 s after sensing. It implies that oneboard v1 can drive
away the detected bear from oneboard v1 and notify the de-
tection to people near oneboard v1 after 26.5 s using light
and sound. On the other hand, oneboard v1 required 75.1 s
to complete all operations after sensing. Within 75.1 s, the
inference time was 19.6 s and the communication time was
14.6 s. The longest time except for the inference time and
the communication time was the time to turn on the wireless
module (about 23 s). The reason for this result was the set-
ting of a long wait time to ensure a stable connection to the

Internet.
In applying the proposed nodes, the duration of “sens-

ing to detection” must be shortened as much as possible. If
we can reduce this time, the proposed nodes can immedi-
ately generate sound and light to drive away the detected
wild animals and to notify the detection information to peo-
ple near the proposed nodes. As a result, damages and acci-
dents by the detected wild animals will be reduced. Since
currently the inference time dominates the time “sensing
to detection” (19.6 s), we are going to reduce this time in
our future work considering the re-generation of the trained
model.

twoboard required more than twice of oneboard v1.
In particular, twoboard required 116.1 s from sensing to
the completion of detection. The reasons for this result
are that twoboard required 70.3 s for the serial communi-
cation between Lazurite and Raspberry Pi and 25 s for the
launching time of Raspberry Pi after power is supplied by
the relay module. Because there is no large difference for
the inference time and the communication time between
oneboard v1 and twoboard, we are going to reduce the
launching time of Raspberry Pi and the serial communica-
tion time between Lazurite and Raspberry Pi in our future
work. Also, we will consider to generate sound and light by
Lazurite regardless of the inference result when something
is detected by the motion sensor.

Table 3 represents the average voltage, the current in
both operation time and idle time, and the power consump-
tion in both operation time and idle time in oneboard v1 and
twoboard. Similar to the evaluation of the operation time,
we evaluated them when we held a picture of the Japanese
black bear in front of oneboard v1 and twoboard ten times.
For the evaluation, we used Indoor Corgi Elec. E32-
SolarCharger [16]. E32-SolarCharger can control charg-
ing power from a solar panel to a lead storage battery and
supplying power from the lead storage battery to a micro-
computer board. Also, E32-SolarCharger can store the av-
erage voltage, current, and power consumption once every
minute to a log file.

The difference between the current in the operation
time and the current in the idle time in oneboard v1 was
0.08A. The reasons why the difference was small are that 1)
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Table 3 Average voltage, current, and power consumption in oneboard v1 and twoboard.

Name oneboard v1 twoboard
Voltage [V] 12.50 12.50

Current in the operation time [A] 0.28 0.33
Power consumption in the operation time [W] 3.50 4.13

Current in the idle time [A] 0.20 0.05
Power consumption in the idle time [W] 2.50 0.63

Fig. 7 Energy consumption of oneboard v1 and twoboard when the
number of detections per hour is changed.

the power was always supplied to Raspberry Pi and 2) only
the power supply to the wireless module could be turned on
or off.

In twoboard, current in the operation time was in-
creased 18% while current in the idle time was decreased
75% compared to oneboard v1. Because power was sup-
plied to both Lazurite and Raspberry Pi in the operation
time, the current in the operation time was increased. On the
other hand, power was not supplied to Raspberry Pi during
the idle time, hence the current in the idle time was largely
decreased.

Figure 7 represents the energy consumption of
oneboard v1 and twoboard when the number of detections
per hour is changed. Note that this evaluation does not in-
clude sensing except Japanese black bears during one hour.
In other words, this evaluation is based on the condition that
a Japanese black bear is always detected whenever the mo-
tion sensor senses. The energy consumption is obtained by
the sum of (the power consumption in the operation time *
the operation time) and (the power consumption in the idle
time * (3600 - the operation time)). If the number of de-
tections per hour is less than 14 times, twoboard is better.
Since the detection of the Japanese black bear in fields will
be irregular, twoboard is better in the energy consumption
than oneboard v1. Especially, if the number of detections
per hour by twoboard is less or equal to four times, the en-
ergy consumption is less than half of oneboard v1. In such
a case, we can use a smaller solar panel and a smaller lead
storage battery.

In the evaluation of the operation time and the power
consumption, capturing a static image by the camera with
the infrared projector was not included. The operation time
in both oneboard v1 and twoboard will be increased 3s

Fig. 8 Detection range of the developed prototypes.

when the infrared projector is turned on. This is the time re-
quired for the projection of the infrared projector to become
stable after power is supplied. The current in the operation
time in both oneboard v1 and twoboard will be increased
0.32A. Therefore, the energy consumption will be increased
by 0.96J (3*0.32). Note that the power consumption and the
energy consumption in both oneboard v1 and twoboard in
idle time are not changed because power is not supplied to
the infrared projector.

3.2 Detection Range, Accuracy of Deep Learning, and
Success Rate of Communication through Field Tests

In addition to energy consumption, the detection range, the
accuracy of deep learning, and the success rate of commu-
nication are important to use the proposed nodes outdoors.
We evaluated them through field tests.

Figure 8 represents the detection range by the devel-
oped prototypes. Since the same sensor was used, there
is no difference among oneboard v0, oneboard v1, and
twoboard. In the athletic field of the University of Aizu,
we placed oneboard v0 to 1.5 m higher position than the
ground. A man who is 1.7 m in height stood 5 m in front
of oneboard v0 and then parallel to the baseline, 5 m to the
left and right. This was done every 5 m up to the distance of
20 m. We evaluated whether the motion sensor detected the
man. In Fig. 8, black circles represent the detected places
while white circles represent the places not detected. In the
case of the front, the motion sensor detected until 20 m away
from oneboard v0.

Japanese black bears walk fields on all fours. In such
a case, the height from the ground will be tens of centime-
ters. Since the difference of the height between man and
oneboard v0 in this evaluation was 0.2 m (1.7 m–1.5 m), we
may obtain the same result when we place the developed
prototypes 0.2 m lower height than the height of walking
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Table 4 Inference result by deep learning. The number in the table rep-
resents the number of captured images.

Bears in images / Detection Yes No
Yes 40 (53.3%) 1© 22 (29.3%) 3©

No 0 (0%) 2© 13 (17.3%) 4©

Fig. 9 Example of images where bears were not detected.

Japanese black bears.
We tested the operations of oneboard v0 and twoboard

in a bear zoo located at Kita-Akita City. In the rest of the
section, we show the accuracy of deep learning, the success
rate of communication between Lazurite and Raspberry Pi,
and the success rate of communication between twoboard
and our server.

Table 4 represents the confusion matrix which results
in the inference result by Inception-v3. This result was
obtained by placing oneboard v0 about one day at the
zoo (Sept. 24–25, 2018). We used the trained model of
Inception-v3 to check how general CNN models can detect
Japanese black bears. Since Inception-v3 has a class cate-
gory for black bear and American black bear, we regarded
that Japanese black bears were detected when the class cat-
egory was included in the Top-5 result by image classifica-
tion. 1©, 2©, 3©, and 4© represent “true-positive (TP)”, “false-
positive (FP)”, “false-negative (FN)”, and “true-negative
(TN)”. The accuracy, precision, recall, and f1-score of
Inception-v3 in Table 4 were 70.6%, 100%, 64.5%, and
78.4%. Note that as we used the same trained model there
is no difference in deep learning among the developed three
prototypes.

The reason for lowering accuracy and f1-score came
from that 22 times bears were not detected although bears
were in the images (i.e., the item 3© in Table 4). Figure 9
displays such an image where bears slept in the background
and the image was a gray color due to operation at night. It
was difficult for the trained Inception-v3 to detect Japanese
bears in such images.

To improve accuracy and f1-score, it is required to re-
develop a trained model using such images. In addition, in
real cases, the proposed nodes will be used not at the zoo but
instead in vegetable fields, livestock huts, and tourist sites.
Therefore, we are going to re-develop a trained model by
using images captured under various environments in our
future work.

We evaluated the communication at the zoo on a differ-
ent day using twoboard (Sept. 25–26, 2019). In twoboard,
captured images by the camera attached to Lazurite were
sent to Raspberry Pi using serial communication. Raspberry
Pi in twoboard received 105 images for 117 images sent by
Lazurite. Therefore, the success rate of communication was
about 90%. We consider that 10% failures were caused by
the connection between the GPIOs of Lazurite and Rasp-
berry Pi using jumper wires. Data loss might occur if a loose
wiring connection existed. To solve this problem, we are
going to consider a solid connection between Lazurite and
Raspberry Pi.

For the evaluation of the communication between
Raspberry Pi and our server using the wireless module, we
sent not only the detection information by text, but also
static images. Our server received 77 images for 105 im-
ages sent by Raspberry Pi. Therefore, the success rate of
communication was 73.3%. In addition to the location of
the zoo which is located in the mountain area of Kita-Akita
City, the used wireless module was located inside the case
of twoboard due to being non-waterproof. As a result, the
sensitivity of the wireless module was low. We are going
to solve this problem by using a wireless module with an
external antenna.

4. Conclusion

In this paper, we proposed two battery-powered wild ani-
mal detection nodes with deep learning. To avoid damages
and accidents by wild animals, the proposed nodes auto-
matically detect wild animals using deep learning and no-
tify the detection information to the people concerned. We
evaluated the operation time and the power consumption of
the proposed nodes to clarify the energy consumption of the
proposed nodes. Also, we evaluated the detection range of
the proposed nodes, the accuracy of deep learning, and the
success rate of communication through field tests to demon-
strate that the proposed nodes can be used to detect wild
animals outdoors.

As future work, we are going to shorten the operation
time from sensing to detection including the inference time
by deep learning. Also, we are going to reconstruct a trained
model to improve the accuracy of deep learning. Moreover,
we will evaluate the effect of light and sound generation to
drive away detected wild animals from the proposed nodes
and to notify people near the proposed nodes.
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