
Article Information 
Title Sunshine-Change-Tolerant Moving Object 

Masking for Realizing both Privacy Protection and 
Video Surveillance 

Authors Yoichi TOMIOKA, Hikaru MURAKAMI, and Hitoshi 
KITAZAWA 

Citation IEICE TRANSACTIONS on Information and 
Systems, Vol.E97-D, No.9, pp.2483-2492 

Copyright copyright@2014 IEICE 
IEICE Transactions 
Online URL 

https://search.ieice.org/ 

 



IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014
2483

PAPER

Sunshine-Change-Tolerant Moving Object Masking for Realizing
both Privacy Protection and Video Surveillance

Yoichi TOMIOKA†a), Member, Hikaru MURAKAMI†b), Nonmember, and Hitoshi KITAZAWA†c), Fellow

SUMMARY Recently, video surveillance systems have been widely in-
troduced in various places, and protecting the privacy of objects in the scene
has been as important as ensuring security. Masking each moving object
with a background subtraction method is an effective technique to protect
its privacy. However, the background subtraction method is heavily af-
fected by sunshine change, and a redundant masking by over-extraction is
inevitable. Such superfluous masking disturbs the quality of video surveil-
lance. In this paper, we propose a moving object masking method combin-
ing background subtraction and machine learning based on Real AdaBoost.
This method can reduce the superfluous masking while maintaining the re-
liability of privacy protection. In the experiments, we demonstrate that the
proposed method achieves about 78–94% accuracy for classifying super-
fluous masking regions and moving objects.
key words: privacy protection, video surveillance, background subtrac-
tion, Real AdaBoost, sunshine change

1. Introduction

As video surveillance systems and video streaming have
come into wide use in recent decades, the following
privacy protection methods for video have been receiv-
ing increasing attention: privacy-conscious video surveil-
lance systems [1]–[4], privacy protection systems for social
videos [5], a method for hiding superfluous details in the
background [6], and others. In this paper, we focus on the
privacy-conscious video surveillance system based on the
work [4] for realizing privacy protection and real-time mon-
itoring for video surveillance simultaneously. This system
masks each object by deteriorating the pixel values of the
object, and they cannot be identified by normal JPEG view-
ers. In order to restore the deteriorated objects by a special-
ized viewer, the original pixel values are encrypted and wa-
termarked in the masked images. Thus, a specialized viewer
can restore the information of a specified moving object if
the password for the moving object is given.

For such a surveillance system, moving object extrac-
tion is an essential technique to mask moving objects. Al-
though there are many moving object extraction and track-
ing methods, such as background subtraction, frame sub-
traction, and feature point tracking using mean-shift [7],
background subtraction is the most suitable method for
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moving object masking because it can extract the detailed
shape of a static object on the pixel level as well as that of a
moving object. For example, if a rectangular region includ-
ing a moving object is deteriorated, as shown in Fig. 1 (a),
the privacy of the moving object can be protected. How-
ever, such deterioration prevents us from recognizing what
happens in the surveillance video. On the other hand, if we
can observe the shape of each moving object in the masked
image, as shown in Fig. 1 (b), that helps us to recognize what
is happening in the scene without identifying the people in
it [4]. The background subtraction approach is, however,
heavily affected by sunshine change; for an outdoor scene,
the sun often disappears behind a cloud and then reappears.
This causes a change in the RGB values in many local re-
gions of each frame, and it results in superfluous masking
shown in Fig. 2. Masking should be kept at the minimum
needed for protecting the privacy of moving persons.

There have been various proposed background sub-
traction techniques for solving the problems arising from
sunshine/illumination changes: the (a) radial reach corre-
lation [8], (b) statistical reach feature [9], (c) statistical lo-
cal difference pattern [10], and (d) intrinsic background [11]
methods. Methods (a), (b), and (c) are robust to gradual
sunshine change, but these methods cannot handle sudden
sunshine change ranging from 4 klx to 60 klx. Although (d)
addresses a sudden and uniform change in the intensity of an
entire image, this method has a low tolerance for change in
local regions. It is difficult to solve over-extraction problems
arising from sunshine changes with the background subtrac-

(a) Over-masking using rectangles (b) Appropriate masking

Fig. 1 Examples of superfluous masking and appropriate masking. The
masking in (a) ensure the privacy protection of moving objects, but it dis-
turbs video surveillance. The black regions represent appropriately masked
regions for moving objects, and the green regions represent superfluous
masking.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Superfluous masking due to sunshine change. The black regions
represent appropriate masking, and the green regions represent superfluous
masking.

tion technique alone. Such over-extraction leads to superflu-
ous masking, as shown in Fig. 2. In order to recognize the
scene correctly, superfluous masking should be reduced to
the greatest extent possible, as shown in Fig. 1 (b).

In this paper, in order to decrease superfluous masking,
we propose a moving object masking method combining
background subtraction and machine learning based on Real
AdaBoost. After extracting moving object regions including
noise due to sunshine change, we classify the extracted re-
gions into moving objects and noise. If a moving object is
falsely regarded as noise by this classifier, the moving object
is not masked, and its privacy cannot be protected. Thus,
such an error must be kept sufficiently small. Our method
can adjust the threshold to ensure that the error rate is less
than a specified value experimentally. Thus, while keeping
the reliability of privacy protection, the security of a privacy-
conscious video surveillance system can be improved. The
background subtraction technique has been used as the pre-
processing of object classifications using SVM or AdaBoost
in existing methods [12]–[14]. However, these methods aim
to detect specific objects such as pedestrians and vehicles.
On the other hand, our method aims to distinguish noise due
to sunshine change from all moving objects.

In the next section, we evaluate the robustness
of previous background subtraction methods with sun-
shine/illumination changes. In Sect. 3, we explain the pro-
posed moving object masking method. In Sect. 4, we show
the experimental results to demonstrate the performance of
the proposed methods. Finally, we present our conclusions
in Sect. 5.

2. Evaluations of Background Subtraction Methods
Deemed to Be Robust to Illumination Changes

2.1 Brief Descriptions of Six Background Subtraction
Methods

We evaluated the sunshine/illumination change robustness
for the following six methods; in addition to a single
Gaussian model and a Gaussian mixture model [15], which
are standard and practical, we selected four methods, which
are regarded as robust methods over illumination change:

the radial reach correlation [8], statistical reach feature [9],
statistical local difference patterns [10], and intrinsic back-
ground [11] methods.

A single-Gaussian-model-based background subtrac-
tion method (SG) represents the background intensity with
a single adaptive Gaussian distribution and is tolerant to
the fluctuation of the intensity of each background pixel.
A Gaussian-mixture-model-based background subtraction
method (GMM) is an enhancement of SG and employs an
adaptive Gaussian mixture model to represent the variations
arising from multiple factors, such as noise and swaying
branches.

The radial-reach-correlation-based background sub-
traction method (RRC) uses a binary representation of
the intensity difference between each pixel and its eight
neighboring pixels, called reach points. The reach point
for each direction is the nearest pixel in that direction
such that the intensity difference is greater than a thresh-
old Tp. Because the magnitude relation of intensities is
used, it is relatively robust over a certain level of illumina-
tion change. The statistical-reach-feature-based background
subtraction method (SRF) and statistical-local-difference-
patterns-based background subtraction method (SLDP) are
enhancements of RRC, based on statistical stability. SRF
collects a variety of possible background models (ideally
all possible background models), such as those under differ-
ent illumination conditions. Then, for each pixel, it extracts
a stable binary code that is relatively common with those
background images by a similar method to RRC. SLDP
represents the intensity difference between each pixel and
its reach point with a Gaussian mixture model. The reach
points of each pixel are concyclic points with a certain ra-
dius called a reach length.

The intrinsic-background-based background subtrac-
tion method (IB) represents each frame as being decom-
posed into a multiplication of a static part (intrinsic back-
ground) and a dynamic part (intrinsic foreground) based on
the idea of intrinsic image estimation [16].

2.2 Results of Evaluations

In order to evaluate the robustness under sunshine and illu-
mination changes, we applied the above six methods to the
following three scenes:

scene1 browse1 data of PETS2004 [17] in which the inten-
sities of all pixels are artificially suppressed to 40%
in the 577th frame and later,

scene2 indoor scene with exposure change,
scene3 parking lot scene with interference of clouds.

Figures 3 (a)–(c) show the ground truth of three consec-
utive frames of browse1 data of PETS2004 [17], in which
the foreground regions are painted red. Similarly, those for
the indoor scene and parking lot scene are shown in Figs. 4
and 5, respectively. We show the foreground extraction re-
sults for Fig. 3 (b), Fig. 4 (b), and Fig. 5 (b) in Fig. 6, Fig. 7,
and Fig. 8, respectively. The parameters of each method
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(a) (b) (c)

Fig. 3 Three consecutive ground truth images of foreground extraction for browse1 of
PETS2004 [17]. In order to observe robustness to sudden illumination changes, the intensities of all
pixels were uniformly suppressed to 40% in the 577th frame shown in (b).

(a) (b) (c)

Fig. 4 Three consecutive ground truth images of foreground extraction in an indoor scene.

(a) (b) (c)

Fig. 5 Three consecutive ground truth images of foreground extraction in a parking lot scene.

(a) SG (b) GMM (c) RRC (d) SRF (e) SLDP (f) IB

Fig. 6 Examples of foreground extraction results for Fig. 3 (b) of browse1 of PETS2004 [17]. The
results from the following methods for this frame are shown: (a) single Gaussian model, (b) Gaussian
mixture model, (c) radial reach correlation, (d) statistical reach feature, (e) statistical local difference
patterns, and (f) intrinsic background.

(a) SG (b) GMM (c) RRC (d) SRF (e) SLDP (f) IB

Fig. 7 Examples of foreground extraction results for Fig. 4 (b). Methods (a)–(f) are the same as those
in Fig. 6.

(a) SG (b) GMM (c) RRC (d) SRF (e) SLDP (f) IB

Fig. 8 Examples of foreground extraction results for Fig. 5 (b). Methods (a)–(f) are the same as those
in Fig. 6.
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Table 1 Parameters of each background subtraction method.

method parameter value
GMM number of Gaussian distribution 4
RRC, SRF Tp 7

number of reach point 6
SLDP reach length 10

number of Gaussian distribution 4

(a) r = 10 (b) r = 60

Fig. 9 The effects of reach length r for statistical local difference patterns
(SLDP).

are set as shown in Table 1. SG and GMM cannot address
sudden intensity suppression. Many background pixels are
falsely extracted because of exposure changes and sunshine
change. However, it is relatively easy to estimate the shape
of a moving object from its extracted pixels as shown in
Figs. 7 (a) and (b).

RRC and SRF are relatively robust to illumina-
tion/sunshine change. However, when some reach points
of a background pixel are on a moving object or its shadow,
the pixel tends to be falsely extracted as an object pixel, as
shown in Fig. 7 (c). This may create difficulty in recogniz-
ing the shapes of moving objects. Moreover, SRF is not
effective in the case that it is difficult to sufficiently collect
the background models, for example, a variety of vehicles
parks in a public parking lot scene. SRF cannot address the
ghost problem, i.e., the ghost of each parked vehicle remains
in the scene after the vehicle leaves.

SLDP is the most robust to short-term sunshine fluctu-
ation, such as the interference of clouds. However, SLDP
is considerably affected by sudden sunshine/illumination
changes and falsely extracts the edges of background ob-
jects as foreground pixels. Moreover, if the reach length is
small compared to the size of a moving object, and some
reach points of a pixel are located on itself, the pixel cannot
be extracted, as shown in Fig. 9 (a). This under-extraction
is improved by increasing the reach length, but the over-
extraction due to exposure change increases in our experi-
ment, as shown in Fig. 9 (b).

IB is the most robust method covered in this study to
sudden intensity suppression, and the precise shape of a
moving object can be extracted. However, it is significantly
affected by short-term sunshine fluctuation.

Even these methods, which are regarded as robust
methods to illumination change, are affected by sudden
intensity suppression, exposure change, and/or short-term
sunshine fluctuation. Although a sufficient number of pix-
els in each moving object can be extracted if we adjust the
threshold of background subtraction, superfluous regions

Fig. 10 Generation of masked image with two-stage moving object
extraction.

arising from sunshine change are also extracted. Mask-
ing these regions may degenerate the reliability of video
surveillance. In the next section, we will explain the pro-
posed method reducing superfluous masking by using a
Real-AdaBoost-based classifier.

3. Robust Moving Object Extraction over Sunshine
Change

3.1 Two-Stage Moving Object Extraction

Although there are many methods for background subtrac-
tion, they all have advantages and disadvantages, as men-
tioned in the previous section. It is difficult to solve the
superfluous masking problem mainly arising from sunshine
change by a background subtraction technique alone. Thus,
we employ a two-stage moving object extraction method, as
shown in Fig. 10. In the first stage, we extract foreground
regions by a background subtraction method, and then in
the second stage, we determine if each region is a mov-
ing object. In this case, the background subtraction method
should have the following functions. First, for reliable pri-
vacy protection, a sufficient ratio of pixels should be ex-
tracted for each object. Thus, it is desirable to easily adjust
the threshold to determine if a pixel is an object pixel. Sec-
ond, in order to recognize the action of each moving object,
the shape of the moving object should be recognizable by
the extracted region. Third, in order to remove ghosts, the
background model should be updated appropriately in real
time. In this paper, we selected the single Gaussian method,
which is one of the simplest methods for practical back-
ground subtraction; this method does not require any pre-
learning, its processing time is short, and its memory usage
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is low. Although it is known that a Gaussian mixture model
can reduce the effects of repeating events, such as swaying
branches, many noise are still extracted. A single Gaussian
model is sufficient for the initial moving object extraction,
because such noise can be reduced in the next stage with
machine learning. Moreover, ghost removal for the single
Gaussian model is simpler than that for the Gaussian mix-
ture model. If we do not update the background model of
the pixels regarded as moving objects, once a noise or ghost
is extracted, it cannot be erased. Thus, in order to remove
such noise and ghosts, we apply IIR filtering, expressed by
I(t + 1) = (1− α)I(t)+ αX(t), to not only background pixels
but also the pixels regarded as moving objects. Here, X(t)
is the intensity for a pixel in the t-th frame, and I(t) is the
mean of the Gaussian model in the t-th frame. The dura-
tion time of such a noise or ghost can be reduced if we in-
troduce a layered method [18] in which various background
layers can be stored. However, this method is not effective
in a real surveillance scene with the interference of clouds
because the sunshine condition often changes until stored
background layers are recalled.

We can reduce the shadowed/lighted region due to sun-
shine changes by using a normalized distance [19], [20].
However, a plain object region, such as plain shirts, is re-
moved too if the texture of the corresponding region of the
background is also plain because the normalized distance
represents the texture for a local region.

In the second stage, we divide the extracted pixels into
connected components and determine if the region of each
connected component is a moving object by using a Real-
AdaBoost [21]-based classifier. In the next subsection, we
will explain the details of this stage.

3.2 Machine-Learning-Based Relaxation Method of the
Effects of Sunshine Change

We use a Real-AdaBoost-based classifier for classifying re-
gions into moving objects and noise mainly arising from
sunshine change. We select a Real-AdaBoost-based clas-
sifier for the following two reasons (a) and (b). (a) For a
privacy-conscious video surveillance, it is important to pro-
tect the privacy of moving objects, and the unmasked object
rate should be guaranteed to be sufficiently low. Thus, we
should employ a classifier which is suitable for adjusting the
unmasked moving object rate. The unmasked moving object
rate of Real AdaBoost can be adjusted by shifting its thresh-
old. (b) The prediction speed of Real-AdaBoost-based clas-
sifier is fast and suitable for real-time applications. For ex-
ample, Real-AdaBoost-based classifier with 200 weak clas-
sifiers is about three times faster than SVM-based classifier.

We introduce seven features to represent each region r:
the width of r, the height of r, the area of r, the area of the
sub-region of r that is regarded as the shadow by the nor-
malized distance, and the averages of the R, G, and B values
in r. Moreover, we also introduce three features for frame
f in which region r is extracted: the number of extracted
regions in f , the total area of the extracted regions in f , and

Table 2 List of basic 10 features for each region r extracted in frame f .

notation description
w the width of region r
h the height of region r
a the area of region r
s the area of shadow sub-region of region r
R the average of R value in region r
G the average of G value in region r
B the average of B value in region r
n the number of extracted regions in frame f
A the total area of extracted regions in frame f
S the total area of shadow sub-regions in frame f

Table 3 List of 48 features generated by combining basic features.

operation combinational features
addition w + h, a + s, R +G, G + B, B + R, A + S

subtraction
w − h, h − w, a − s, s − a, R −G, G − R,
G − B, B −G, B − R, R − B, A − S , S − A

multiplication
w ∗ h, a ∗ s, R ∗G, G ∗ B, B ∗ R, A ∗ S ,
n ∗ A, n ∗ S , a ∗ A, s ∗ S

division

w/h, h/w, a/s, s/a, R/G, G/R,
G/B, B/G, B/R, R/B, A/S , S/A,
n/A, A/n, n/S , S/n, a/A, A/a,
s/S , S/s

Fig. 11 The threshold determination based on the distribution of the
output values of the classifier.

the total area of the shadow sub-regions in f . All features
that we used are listed in Table 2.

Real AdaBoost does not consider combinational fea-
tures, i.e., those features combining two or more features,
such as the multiplication of two features, in constructing
a classifier. Thus, we introduced 48 features generated by
combining two of ten basic features, as shown in Table 3.
The combinations without physical sense are not used.

We constructed a classifier for determining if each re-
gion is a moving object based on Real AdaBoost with a
training set of moving object regions (positive samples) and
noise regions (negative samples). The threshold of a Real
AdaBoost classifier H(x) =

∑
i hi(x) can be adjusted and

should be appropriately determined to achieve a sufficiently
low false negative rate and maintain the masking of mov-
ing objects. The distribution of the output value of the con-
structed classifier for positive samples and that for negative
samples are shown in Fig. 11. The moving objects with
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lower output than the threshold are regarded as noise and
are unmasked. Thus, we performed n-fold cross validation
using only training data sets, and we determined the thresh-
old that will be used for prediction so that the average of
the false negative rate is approximately a specified value. In
the experiments, we set the value to be 5%. Although it
is desirable to mask all moving objects, over-masking pre-
vents a reliable surveillance which is one of main targets.
The threshold adjustment is a technique to balance surveil-
lance and privacy protection. Some moving objects could be
identified, but the proposed method makes it hard to identify
most of moving objects. This method can offer more reas-
surance than conventional monitoring without masking.

4. Experimental Results

For the evaluation of moving object extraction, we used
three types of data sets, shown in Table 4, with sunshine
changes arising from the interference from clouds. Each
data set consists of training data and prediction data. The
features of all samples were normalized to the range of
[−1, 1].

4.1 Comparison of Real AdaBoost Classifier and SVM
Classifier

First, we will compare the results of a Real AdaBoost classi-
fier with those of an SVM classifier. We used LIBSVM [22]
with RBF kernel. We employ 64-fold cross-validation with
Park-T shown in Table 4, and the results are compared in
terms of the average accuracy. The accuracy is defined by

accuracy =
TP + TN

TP + FP + TN + FN

where TP, FP, TN, and FN are the number of regions of true
positive, false positive, true negative, and false negative, re-
spectively.

Figure 12 (a) shows the accuracy of Real AdaBoost
with different numbers of weak classifiers for a parking lot
data set. Figure 12 (b) shows the corresponding false nega-
tive rate which is the unmasked object rate and is calculated
by

false negative rate =
FN

TP + FN
.

In this experiment, we set the threshold for Real Ada-
Boost to zero. The result with 58 features is better than

Table 4 Data set for training and prediction.

scene category abbr. #regions
total objects noises

parking lot
training Park-T 17301 4914 12387
prediction Park-P 3019 535 2484

outdoor1
training Od1-T 18025 1083 16942
prediction Od1-P 3638 383 3255

outdoor2
training Od2-T 6671 4978 1693
prediction Od2-P 1091 761 330
abbr. : abbreviation of data set name

that with 10 basic features, and the accuracy ranges between
88.28% and 89.45%. Although the false negative rate ranges
between 11.86% and 14.27%, it can be reduced by adjusting
the threshold.

On the other hand, for an SVM classifier with 10 basic
features, Fig. 13 (a) shows the accuracy for SVM classifiers
with different costs and γ [22]. Figure 13 (b) shows the cor-
responding false negative rate. Similarly, the results for an
SVM classifier with 58 features are shown in Fig. 14. As
same as the results of the Real AdaBoost classifier show,
an SVM classifier with 58 features is better than that with
10 basic features, and the accuracy ranges between 76.80%
and 93.46%.

(a) Accuracy vs. the number of selected weak classifiers

(b) False negative rate vs. the number of selected weak classifiers

Fig. 12 The results of 64-fold cross-validation for Real AdaBoost for
Park-T data set.

(a) Accuracy

(b) False negative rate

Fig. 13 The results of 64-fold cross-validation for SVM with 10 features
for Park-T data set.
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(a) Accuracy

(b) False negative rate

Fig. 14 The results of 64-fold cross-validation for SVM with 58 features
for Park-T data set.

Table 5 The accuracy of prediction when different data sets are used for
training.

prediction data training data accuracy

Park-P

Park-T 78.24%
Od1-T 42.63%
Od2-T 18.48%

Park-T+Od1-T 64.46%
Park-T+Od2-T 81.45%
Od1-T+Od2-T 40.34%

Park-T+Od1-T+Od2-T 66.61%

Od1-P

Park-T 36.09%
Od1-T 87.03%
Od2-T 11.96%

Park-T+Od1-T 76.91%
Park-T+Od2-T 42.30%
Od1-T+Od2-T 89.99%

Park-T+Od1-T+Od2-T 84.44%

Od2-P

Park-T 46.10%
Od1-T 39.05%
Od2-T 93.68%

Park-T+Od1-T 50.96%
Park-T+Od2-T 86.89%
Od1-T+Od2-T 86.62%

Park-T+Od1-T+Od2-T 80.93%

Although we employ all 48 combined features with
physical means, all features do not necessarily contribute to
improve the accuracy of the classifier. Certain data also sug-
gest that the accuracy of an SVM classifier can be improved
by removing redundant features appropriately [23]. The ac-
curacy may be improved by selecting from 48 features, and
this is in our future plans.

4.2 Scene Dependency of Real-AdaBoost-Based Classi-
fier

In this subsection, we discuss the scene dependency of the
Real AdaBoost classifier using the three scenes shown in
Table 4. We selected a Real Adaboost classifier with 58
features, and we fixed the number of weak classifiers at 50.
The threshold of the classifier was set to zero.

Table 5 shows the accuracy for each predicted data set
when the classifier was trained for seven types of training
data: Park-T, Od1-T, Od2-T, Park-T+Od1-T, Park-T+Od2-
T, Od1-T+Od2-T, and Park-T+Od1-T+Od2-T. The high ac-
curacy tends to be achieved when the scene of the training

(a) Sum of 64 trials of cross-validation for Park-T data set.

(b) Park-P

Fig. 15 The distribution of the output value H(x) =
∑

i hi(x) of a Real
AdaBoost classifier for a parking lot scene.

data is the same as that of prediction data. Note that the ac-
curacy occasionally increases a little when the training data
of another scene is used with that of the same scene as pre-
diction data. On the other hand, when training only the sam-
ples of different scenes, the accuracy of a classifier is signif-
icantly degenerated. Because the classifier strongly depends
on the scene, the classifier should be trained with samples
extracted in the same scene, and we can achieve about 78–
94% accuracy for classifying superfluous masking regions
and moving objects by training such samples.

The accuracy of classifier which learns using all train-
ing samples may not be the best, but it is still effective. From
this characteristic, we can obtain a temporary training data
for a new scene by a classifier which learns using the train-
ing data of similar scenes. Then, a training data for the new
scene can be obtained easily by modifying the temporary
training data with an interactive modification tool of instruc-
tion signals.

4.3 Threshold Adjustment for Reducing the Unmasked
Objects

As explained in Sect. 3.2, in order to keep the false negative
rate small, we determined the threshold by 64-fold cross-
validation of the training data set for each scene. Then, we
evaluated the accuracy for the prediction data set with the
threshold.

We show the distribution of the output values of a Real
AdaBoost classifier for a parking lot scene. Figure 15 (a)
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Table 6 The results of superfluous mask reduction for evaluation data set.

training data predict data threshold unmasked object rate removed superfluous mask rate
Park-T Park-P −1.2 4.86% 58.25%
Od1-T Od1-P −3.8 4.96% 51.55%
Od2-T Od2-P 0.1 4.96% 81.21%

(a) Ground truth (b) Background subtraction (c) Proposed method

Fig. 16 Example of superfluous mask removal by the proposed method for outdoor1. (a) is ground
truth image in which a moving object is painted red. In (b), there are many superfluous masking based
on background subtraction. The superfluous masking in (b) is reduced by the proposed method as shown
in (c). The characters in each black rectangle represent the object ID, and they are used for unmasking
the corresponding object [4].

Table 7 Comparison of overall performance for the scene of Od1-P.

proposed method (SG+Real AdaBoost)
SG+SVM SG SLDPthreshold = −3.8 threshold = 0

unmasked object rate 7.37% 15.21% 14.98% 3.00% 7.60%
pose unrecognition rate 1.15% 1.15% 0.92% 1.61% 1.61%

masking area [pixels] 592925 316552 324404 1431307 774831
(ratio to proposed method) (100.0%) (53.4%) (54.7%) (241.4%) (130.7%)

shows the distribution for sum of 64 trials of the 64-fold
cross-validation using 17301 samples from the Park-T data
set; Park-T is divided into 64 sets: 63 sets are used for train-
ing, and another set is used for prediction. Similarly, Fig-
ure 15 (b) shows the distribution of the output values for all
samples of the Park-P data set when training on all the sam-
ples of the Park-T data set. The unmasked object rate is con-
trollable by adjusting the threshold of the classifier although
there is a trade-off relationship between unmasked objects
and remained redundant masking. We can see that the distri-
butions in Fig. 15 (b) are similar to those in Fig. 15 (a). Thus,
an appropriate threshold for prediction data can be estimated
by the cross validation of training data.

In this experiment, the threshold was determined so
that the average of the unmasked object rate was approxi-
mately 5% for 64-fold cross-validation of the training data
set. For each data set, we show the determined threshold,
the unmasked object rate, and the removed superfluous mask
rate in Table 6. We can see that the unmasked object rate is
approximately 5%. On the other hand, the removed super-
fluous mask rate was reduced by this threshold adjustment.
Under the thresholds, the number of superfluous masking
was reduced by 58.25%–81.21%.

4.4 Results of Two-Stage Moving Object Extraction

We show an example of a superfluous mask removal us-

ing the proposed method in Fig 16. Figure 16 (a) shows
a ground truth image. Figures 16 (b) and (c) show mask-
ing results in the first and second stages of our proposed
method. There exist superfluous masking in Fig. 16 (b). On
the other hand, by applying the proposed method, the super-
fluous masking was significantly removed while keeping the
masking for the walking man as shown in Fig. 16 (c).

Since GMM, RRC, SRF, SLDP, and IB are designed
so that they are tolerant to fluctuation, they can reduce the
superfluous masking area compared to SG. However, the
masking for moving objects was also reduced compared to
SG. Since SLDP is the most robust to short-term sunshine
fluctuation among these methods, we compared the pro-
posed method with SLDP. In Table 7, for the scene of Od1-
P, we show comparisons of overall performance between
five methods: (a) the proposed method with threshold ad-
justment, (b) the proposed method without threshold adjust-
ment, (c) SG which is the first stage of the proposed method,
(d) a combination of SG and SVM with γ = 1 and C = 100,
and (e) SLDP. We calculated the following three evaluation
values which were visually determined. Unmasked object
rate is the rate of moving objects whose privacy was not
protected. Pose unrecognition rate is the rate of moving ob-
jects whose pose cannot be recognized due to over masking.
Masking area is the total number of masked pixels.

For all methods, the poses of most moving objects
could be recognized, and the pose unrecognition rate dif-
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fered only slightly. The masking area of SLDP was less
than that of SG, but the unmasked object rate of SLDP was
7.67% which was greater than that of SG. By applying the
SVM-based classifier to the regions extracted by SG, the
masking area was significantly reduced. However, the un-
masked object rate was uncontrollable, and it was degen-
erated to 14.98%. Similarly, the proposed method without
the threshold adjustment degenerated the unmasked object
rate to 15.21%. By using the threshold adjustment, the pro-
posed method kept the unmasked object rate small while the
masking area was reduced to less than that of SLDP. When
the threshold was set as −3.8, the second stage of the pro-
posed method falsely removed 4.96% regions of moving ob-
jects. Note that the 4.96% regions include a part of 3.00%
unmasked objects which were not sufficiently masked by
SG. Therefore, the unmasked object rate increased to 7.37%.
The proposed method could achieve the smallest unmasked
rate and masking area of these five methods.

5. Conclusions

In this paper, we propose a two-stage moving object mask-
ing method to realize privacy-conscious video surveillance.
By combining a background subtraction method and a Real-
AdaBoost-based classifier, superfluous masking can be re-
duced. Moreover, the unmasked object rate can be kept
small by adjusting the threshold of the classifier. This
method helps us to recognize the scene in the surveillance
video while protecting the privacy of moving objects. In
our future work, we will search for a method to select the
effective features from all combined features.
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