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PAPER

FPGA Implementation of Exclusive Block Matching for Robust
Moving Object Extraction and Tracking

Yoichi TOMIOKA†a), Member, Ryota TAKASU†b), Nonmember, Takashi AOKI††c), Eiichi HOSOYA††d),
and Hitoshi KITAZAWA†e), Members

SUMMARY Hardware acceleration is an essential technique for ex-
tracting and tracking moving objects in real time. It is desirable to design
tracking algorithms such that they are applicable for parallel computations
on hardware. Exclusive block matching methods are designed for hard-
ware implementation, and they can realize detailed motion extraction as
well as robust moving object tracking. In this study, we develop tracking
hardware based on an exclusive block matching method on FPGA. This
tracking hardware is based on a two-dimensional systolic array architec-
ture, and can realize robust moving object extraction and tracking at more
than 100 fps for QVGA images using the high parallelism of an exclusive
block matching method, synchronous shift data transfer, and special cir-
cuits to accelerate searching the exclusive correspondence of blocks.
key words: object tracking, motion extraction, FPGA, synchronous shift
data transfer, linear assignment

1. Introduction

Moving object extraction and tracking are essential tech-
niques for image sequence analyses, such as motion recog-
nition and key frame extraction. Since a large amount of
computation is required by tracking algorithms robust to
illumination change and appearance change due to move-
ment, parallel computations using special purpose hardware
are necessary for real-time tracking. However, the cate-
gory of algorithms accelerated by hardware implementation
is constrained; the algorithm should be suitable for paral-
lel processing, the size of computing units should be small,
memory contention should be avoided, and so on. In this pa-
per, we present an implementation of exclusive block match-
ing that realizes robust moving object extraction and track-
ing, which is essentially an algorithm designed for hardware
implementation.

Various hardware implementations for extracting fea-
tures such as SIFT and HOG have been proposed [1]–[3].
In order to realize robust moving object tracking, it is im-
portant to obtain the appropriate correspondence of the ex-
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tracted features. However, these hardware implementations
do not handle feature matching. In recent years, due to the
growing importance of tracking hardware, various tracking
hardware implementations have been proposed. Tracking
algorithms can be classified into the following three cate-
gories according to the resolution of the extracted motions:
(a) pixel-level tracking methods, such as optical flow [4]–
[7]; (b) tracking methods for obtaining the correspondence
between small areas, such as block matching [8]; and (c)
object-level tracking methods, such as mean-shift [9] and
particle filter [10], [11]. In previous studies [12], [13], the
authors developed optical flow hardware that belongs to cat-
egory (a); this hardware can extract detailed motion but can-
not handle large displacements of moving objects. More-
over, this hardware can realize only existing and basic func-
tions, and does not show the experimental results of bench-
mark data in a real environment. In Ref. [14], hardware im-
plementation of a mean shift-based object tracking method
that belongs to category (c) was presented. This method can
handle large displacements of moving objects, but cannot
obtain the motion of each part of the objects. For analyz-
ing human action and industrial robot behavior, the tracking
methods in category (b) are effective since they can realize
detailed motion extraction as well as moving object tracking
with large displacements.

The authors proposed the exclusive block matching
method (EBM) [8], which realizes the function of category
(b). The EBM method [8] is based on the exclusive cor-
respondence between blocks of identical size, and has the
following characteristics. (1) The correspondence between
each part of a moving object can be obtained, as well as
the optical flow, as shown in Fig. 1. (2) Even moving ob-

Fig. 1 Example of human motions extracted by exclusive block match-
ing method [8].

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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jects with large displacements can be tracked, as in a par-
ticle filter. (3) Robust moving object extraction and track-
ing can be achieved using the exclusive correspondence be-
tween blocks and considering the relative block positions in
an identical object. (4) Most processing, such as similar-
ity calculation, can be performed in parallel, and thus this
method can be effectively accelerated by hardware imple-
mentation. Although the extracted flows are quantized at
the block level in the EBM method, in our experiments, we
show that the extracted flow can be applicable for human
motion analysis. Furthermore, if necessary, the resolution of
the extracted flow can be increased using overlapped blocks.

When the EBM method is executed on 3.14 GHz CPU,
the frame rate is about 3 fps for QVGA images. For real-
time tracking, a hardware acceleration of the EBM method
is indispensable. In order to realize high-speed process-
ing of the EBM method on hardware, we develop a two-
dimensional SIMD array processor based on a systolic ar-
ray architecture that has the following functions: (1) Syn-
chronous shift data transfer for inter-block data transfer; (2)
savings-regret approximation [15] and winner-take-all cir-
cuit [16] for linear assignment; and (3) parallel connected
component detection for object ID estimation. We im-
plemented on FPGA this hardware, which achieved robust
moving object extraction and tracking at more than 100 fps
for QVGA images by utilizing the above functions. If we
implement this hardware on ASIC, we may get a better per-
formance. However, ASIC is much more expensive than
FPGA unless producing in extremely large volume. Thus,
in this paper, we selected FPGA implementation.

In the next section, we describe the outline of exclusive
block matching. In Sect. 3, we explain the implementation
of the proposed tracking hardware. In Sect. 4, we show the
results of the hardware implementation, and demonstrate the
performance of the tracking hardware. Finally, we present
our conclusions in Sect. 5.

2. Exclusive Block Matching

2.1 Outline of Exclusive Block Matching

The exclusive block matching method proposed in Ref. [8]
divides each frame into blocks of 8 × 8 pixels, and the de-
tailed motion of moving objects is estimated at the block
level. We calculate the similarities between the blocks in
the current frame and those in the background and previous
frame. This problem is formulated as the following linear
assignment problem with the cost matrix shown in Fig. 2.

minimize∑

i, j

C(i, j)xi j, (1)

subject to∑

j

xi j = 1 ∀i, (2)

∑

i

xi j ≤ 1 ∀ j, (3)

Fig. 2 Example of cost matrix in the exclusive block matching method.
The check marks indicate that xi, j = 1 in Eqs. (1)–(4).

xi j ∈ {0, 1} ∀i, j, (4)

where xi j denotes whether the i-th block in the current frame
is assigned to the j-th block in the previous frame, back-
ground, or newly created block, and C(i, j) denotes the sim-
ilarity between them.

The cost matrix shown in Fig. 2 can be divided into
three parts. The first part includes the similarities between
the blocks of the current and previous frame. The second
part includes the similarities between the blocks of the cur-
rent frame and background. The third part includes thresh-
old values for regarding a block as part of a new object. The
blocks in each frame are sorted in the raster scan order in
the cost matrix. In the second and third parts, only diagonal
elements can be selected.

2.2 Exclusive Block Correspondence

Under the assumption that the shape of an object does
not change abruptly and an object does not scale up/down
abruptly, the blocks in the current frame almost correspond
one-to-one with the blocks in the previous frame. In the
exclusive block matching method, each block of the cur-
rent frame is exclusively assigned to a block of the previous
frame, background, or created block. Even if the features of
multiple blocks are similar, exclusive block matching allows
them to avoid matching with a single block and getting too
close.

2.3 Block Features for Similarity Calculations

Many features exist: HSV, HOG, SIFT, SURF, and so on.
Though the hardware for generating HSV and HOG features
is smaller than that for generating dense SIFT features, the
EBM method with HSV and HOG features can achieve as
high performance as that with dense SIFT features. It will
be demonstrated in Sect. 4.2. In order to save hardware re-
source, we select HSV and HOG for our hardware imple-
mentation.

HSV and HOG are combined for measuring the simi-
larity between blocks. In the original EBM method [8], the
Bhattacharyya distance is employed; however, the sum of
the absolute difference was employed in this study since the
Bhattacharyya distance requires square root calculation and
it wastes hardware resource. We will evaluate the effects
of this simplification in Sect. 4.2. The combined cost CBlock
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Fig. 3 Cost modification by adding the similarities of eight neighbor
blocks.

was calculated as

CBlock = αCHSV + (1 − α)CHOG (5)

where CHS V and CHOG are the similarities of HSV and HOG
features, respectively, and α is a parameter to balance them
which was set as 0.5 in our implementation.

2.4 Consideration of the Similarities of Eight Neighboring
Blocks

After the combined cost CBlock is calculated for each can-
didate of block correspondence, it is modified as follows.
In Fig. 3, when block a in the current frame corresponds to
block a′ in the previous frame, block b is also similar to
block b′. Therefore, we consider the similarities between
the eight neighboring blocks of a if they belong to the same
object as a. The matching cost, C8, of a and a′ is calculated
as

C8(a, a′) = (1−λ)CBlock(a, a′)+λ
1
|Na|
∑

b∈Na

CBlock(b, b′). (6)

Here, Na is the set of blocks which are the eight neighboring
blocks of a and are in the same object as a. The relative
position of b′ from a′ is the same as the relative position of
b from a. λ is the weighting factor and was set as 0.5 in our
implementation.

3. Hardware Implementation

3.1 Outline of Exclusive Block Matching Hardware

As explained in Sect. 2.1, for moving object tracking, each
frame is divided into blocks of 8×8 pixels, and the HSV and
HOG histograms are calculated for each block. The similar-
ities between each current frame’s block and its neighboring
previous frame’s blocks are calculated as shown in Fig. 4.
Each previous frame’s block is deemed to move to the po-
sition of a similar current frame’s block by solving linear
assignment problem.

The similarity calculation for each current frame’s
block can be performed in parallel. The processing of two-
dimensional PE array is suitable for such parallel compu-
tation; the processing for a block of i-th row and j-th col-
umn in the images is assigned to the PE of i-th row and j-th

Fig. 4 Similarity calculation for moving object extraction and tracking
through consecutive frames.

Fig. 5 Processing flow of exclusive block matching hardware.

column. Three HSV and HOG histograms of a block are
stored in a memory of the corresponding PE for the current
frame, the previous frame, and the background. For simi-
larity calculations, it is required for each PE to receive the
HSV and HOG histograms from its neighboring PE. That
is bottleneck to realize highly parallel computations on the
two dimensional PE array. In order to solve this bottleneck,
we propose synchronous shift data transfer technique on the
two dimensional PE array, which is a kind of systolic array
processor, with a torus network. Because of a torus network,
the histograms of all PEs can simultaneously be transferred
to their adjacent PEs without losing any histograms even on
the boundary of the PE array. By iterating simultaneous and
identical transfer, all PEs can receive the histogram of one
of their neighboring PEs from their adjacent PE at the same
time. The details of synchronous shift data transfer tech-
nique will be explained in Sect. 3.2.

The processing flow of exclusive block matching is
shown in Fig. 5, and the block diagram of our system is
shown in Fig. 6. YCbCr data received from a camera mod-
ule are converted to RGB data, and stored in a line buffer
of the Histogram Controller. The RGB data and intensities
are sent to HSVGen and HOGGen, respectively. The level
of H, S, and V are set to 12, 8, and 12, respectively, and
the HSV histogram of a block consists of 32 (12 + 8 + 12)
bins. The HOG histogram of a block also consists of 32 bins
from four sub-areas consisting of 8 bins. The bit width of
each bin is 8. The system has multiple pairs of HSVGen and
HOGGen, each of which simultaneously calculates the HSV
and HOG histograms of blocks in the assigned columns.
The two-dimensional PE array, which is a kind of systolic
array processor, is based on SIMD architecture, and has ad-
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Fig. 6 Block diagram of exclusive block matching hardware.

Fig. 7 Block diagram of Block Module.

jacent PE-PE connections based on a torus network. Each
PE corresponds to a block of 8 × 8 pixels in the images, and
it is called a Block Module. The calculated histograms of a
block are stored in the internal memory of the correspond-
ing Block Module. The Block Modules are controlled by a
Control Processor. Block modules can transfer data to an
external SSRAM via TransferModules in parallel, and the
results of tracking are sent to a host PC via the external SS-
RAM, as shown in Fig. 6; the extracted motion is displayed
on the host PC in real time.

The Block Module is shown in Fig. 7. It is a 16-bit pro-
cessor with 12-bit instruction code consisting of load/store
operations, memory read/write operations, logical opera-
tions, addition, subtraction, and transfer operations between
adjacent Block Modules. Although all Block Modules exe-
cute the same instruction, they have a function for executing
different processing depending on their data. In order to re-
alize this function, a z-flag and x-flag are attached to each in-
struction. Moreover, a one-bit z-register Z is introduced into
the Block Module. If the result of the previous calculation is

Fig. 8 Block diagram of Control Processor.

zero, the z-register Z is set. When the z-flag of an instruction
is set, the instruction is executed only if Z = 1. By using the
Halt instruction, Block Modules enter the Halt state, where
all instructions are ignored. Block modules in the Halt state
can be restarted by the Restart instruction. Even when some
Block Modules are in the halt state, data transfer must be ex-
ecuted in all Block Modules. If the x-flag of an instruction
is set, the Block Module in the Halt state executes the in-
struction. We determined that the width of buses connecting
adjacent Block Module was 2 bits according to the relation
between the processing and the data transfer speed.

The Control Processor is shown in Fig. 8. It is a 16-bit
processor with 16-bit instruction code, and it has an instruc-
tion, stack, and data memory. The instruction code can be
classified into code for the Control Processor and code for
the Block Modules. All operations are executed within one
clock cycle. In addition to the same operations as the Block
Module, the Control Processor has push/pop and branch op-
erations. None of our processors has a multiplier or divider.
Real-time tracking of a moving object is realized by com-
bining simple operations, such as addition and subtraction.

3.2 Synchronous Shift Data Transfer

In this subsection, we describe a synchronous shift data
transfer (SSDT) technique that allows each Block Module
to communicate with its neighboring Block Modules. Let r
be the reference range of neighboring Block Modules; each
Block Module receives data from its (2r + 1)2 − 1 neighbor-
ing Block Modules. The value of r differs from processing
to processing. For the similarity calculation, r is set as the
maximum moving range of object. For the object ID esti-
mation, r is set as 1 to receive data of its eight neighbor-
ing Block Modules. SSDT is based on the following con-
cept. First, if each Block Module communicates with a Block
Module located at the identical relative position, memory
contention can be avoided. Second, we can save hardware
resources by limiting the network to the interconnections be-
tween adjacent Block Modules. Third, even under this limi-
tation, each Block Module can communicate with any Block
Module by iteratively transferring data in four directions.

Each Block Module has a data transfer module, which
is connected to only four neighboring modules to its left,



TOMIOKA et al.: FPGA IMPLEMENTATION OF EXCLUSIVE BLOCK MATCHING FOR ROBUST MOVING OBJECT EXTRACTION AND TRACKING
577

Table 1 Comparison of direct connections and synchoronous shift data transfer.

Direct connections Synchronous shift data transfer
Equation 300 modules, 8 bit, r = 3 Equation 300 modules, 8 bit, r = 3

No. of bus sets/module (2r + 1)2 − 1 48 4 4
No. of total bus sets ((2r + 1)2 − 1)N 14400 4N 1200
No. of total wires ((2r + 1)2 − 1)Nb 115200 4Nb 9600

Wire length/module L
r∑

i=−r

r∑

j=−r

(|i| + | j|)b 1344L 4Lb 32L

Latency S S S ((2r + 1)2 − 1) 48S
Execution time T (2r + 1)2 49T max{S , T }(2r + 1)2 49T (if S ≤ T )

r: reference range L: length of wire between adjacent PEs
N: number of PEs b: bit width of bus line
S : data transfer time for a unit of data T : unit data execution time

(a) (b)

Fig. 9 Data transfer order of synchronous shift data transfer. (a) Data
transfer order for communicating with 24 neighboring Block Modules. (b)
Data Transfer routes of eight neighboring Block Modules.

right, top, and bottom, as shown in Fig. 6. The data trans-
fer module transfers unit data for processing. Moreover, a
module has a buffer for unit data, in which the received data
is stored. In SSDT, all Block Modules transfer data in an
identical direction simultaneously. By applying SSDT iter-
atively, each Block Module can receive data from its neigh-
boring Block Module in a certain order.

In Fig. 9 (a), we show the order of data received from
24 neighboring Block Modules. Each square represents a
Block Module, a red arrow represents the data transfer di-
rection, and the number assigned to each Block Module rep-
resents the order in which Block Module A receives data
from the neighboring Block Module. For examples, first,
SSDT is executed in the left direction. Block Module A
receives data from the right Block Module B. At the same
time, Block Module C receives data from the right Block
Module D. Next, SSDT is executed in the bottom direction.
Block Module A receives data from the upper Block Module
C, which is initially located at Block Module D. Thus, each
Block Module can receive data from its neighbor Block Mod-
ules. Figure 9 (b) shows the transfer routes by which data of
the eight neighboring blocks arrive at Block Module A. Pro-
cessing with neighboring Block Modules is performed not
only for Block Module A but also for the other Block Mod-
ules. Since each data is used by the Block Module on its
transfer route through iterative SSDTs, no redundant trans-
fers occur.

In Table 1, we show a comparison of a two-dimensional
array processor based on SSDT with an ideal two-
dimensional array processor equipped with

1. Connections between each PE and its (2r+1)2−1 neigh-
bor PEs,

2. Memory with infinite bandwidth.

This ideal system cannot be implemented in reality since
it wastes too many hardware resources, and memory ac-
cess is limited. By controlling data transfer in the two-
dimensional array processor in the manner of SSDT, even
a systolic array-based architecture can achieve a sufficient
performance level which is comparable to the ideal system
if S ≤ T , where S is the time taken for unit data transfer
between PEs, and T is the unit data execution time.

In the similarity calculation, the data transferred over
the boundary of a two-dimensional array should not be used.
In order to handle this calculation, Horizontal-out flag (H-
out flag) and Vertical-out flag (V-out flag) are attached to
each data.

3.3 Savings-Regret Approximation for Linear Assignment
Problem

In order to determine the correspondence between blocks,
we solve the linear assignment problem shown in Fig. 2. It
is known that the time taken to obtain the optimal solution of
a linear assignment problem is O(n3) [17]. However, this is
not suitable for parallel computing. In this paper, we adopt
savings-regret approximation [15] as an approximate solver
of a linear assignment problem.

We briefly explain the savings-regret approximation.
Let mink(i) be the k-th smallest element in the i-th row. If
all min1(i) can be selected for each i-th row from differ-
ent columns, apparently, the optimal solution is obtained.
When the minimum values in different rows are in the same
columns, we cannot select both of them. For each row
i, we estimate the regret of selecting mink(i) instead of
min1(i), which is denoted by Diffk−1; that is, Diffk−1(i) =
mink(i) − min1(i) (k ≥ 2).

A solution is obtained through the following steps.

Step 1. Calculate Diff1 for all uncovered rows in which no
element is selected.

Step 2. From the uncovered rows, find the (s, t)-element
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(a) Diff1 for all rows are cal-
culated. Since the 1st row has
the maximum Diff1, the (1,3)-
element with the minimum value
in the 1st row is selected. The 1st
row and 3rd column are covered.

(b) Since the 3rd row has the max-
imum Diff1, the (3,1)-element
with the minimum value in the 3rd
row is selected. The 3rd row and
1st column are covered.

(c) Although the 2nd row has
the maximum Diff1, the (2,1)-
element with the minimum value
in the 2nd row cannot be selected.
Diff1 for the uncovered rows and
columns are recalculated.

(d) Since the 2nd row has the max-
imum Diff1, the (2,2)-element
with the minimum value in the 2nd
row is selected. the (4,4)-element
is accordingly selected.

Fig. 10 Example of flow of savings-regret approximation.

such that s = arg max
i
{Diff1(i)} and t is the column

number of min1(i).

Step 3. If the t-th column is uncovered, select the (s, t)-
element and cover the s-th row and t-th column;
otherwise, go to step 1.

Step 4. If there exists an uncovered row, go to step 2; other-
wise, terminate.

An example of the flow of the savings-regret approximation
is shown in Fig. 10, where col represents the column num-
ber of the minimum cost for each row. In our hardware, if
multiple rows are tied in terms of Diff1(·), we also compare
Diff2(·). When both Diff1(·) and Diff2(·) have the same
value, we use their column numbers for tie breaking.

In order to accelerate the savings-regret approximation,
we introduce two special modules into each Block Module.
The first special unit is MinPos, which calculates Diff1,
Diff2, and col. The MinPos circuit is shown in Fig. 11.
The inputs of this circuit are two values: (a) the 16-bit
cost between the own current frame’s block and a received
previous frame’s block; and (b) the column number corre-
sponding to the module ID of the previous frame’s block.
min1, min2, and min3 are updated while their current val-
ues are compared with the input cost. After all costs in a
row of the cost matrix have been compared, Diff1, Diff2,
and col are calculated. We employed bit-serial compara-
tors to reduce the size of the circuit. Step 1 is performed for
each row in parallel by using MinPos of the corresponding
Block Module. Let Rob j be the maximum move range of ob-
ject. It was set as 3 in our implementation. Each row has
(2Rob j +1)2 +2 elements: the cost for (2Rob j +1)2 neighbor-
ing previous frame’s blocks, background, and create. This

Fig. 11 MinPos module.

Fig. 12 SelMax module.

step takes O(R2
ob j).

The second special unit for step 2 of savings-regret
approximation is SelMax, shown in Fig. 12. The unit is
based on a Winner-Take-All (WTA) circuit [16], and the in-
put Diff12c is the 48-bit concatenated data of Diff1, Diff2,
and col. SelMax compares Diff12c of all the Block Mod-
ules, and set the output flag of the Block Module that has
the maximum concatenated data. Step 2 can be executed in
O(1) by using SelMax module.

According to step 3 and step 4, step 1 and step 2 are
iterated at most n times where n is the number of rows (Block
Modules). Therefore, our hardware can obtain an exclusive
block matching in O(R2

ob jn). Since Rob j can be regarded as
a small constant number, we can obtain an exclusive block
matching approximately in O(n).

3.4 Object ID Estimation

Each block has two kinds of values: objBg, and objID. ob-
jBg indicates whether or not the block is background. objID
is the identification code of each object.

After solving the linear assignment problem shown in
Fig. 2, the current frame’s block is regarded as the object
block if it is matched with a previous frame’s block or a
created block. Each object block is assigned to an object ID
in the following way.

If a current frame’s block is matched with a previous
frame’s block, the current frame’s block inherits the objID
from the previous frame’s block. The remaining blocks are
undefined or created blocks. Their objIDs are determined
by their eight neighboring Block Modules as follows. (a) If
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(a) (b)

Fig. 13 Object ID estimation.

there is only one objID in the neighboring blocks, the objID
is assigned. (b) If there are more than one objID, the objID is
undefined. The above operation for each block is iteratively
performed in parallel while there is an updated objID. An
example of this processing is shown in Fig. 13 (a).

The remaining blocks are composed of only newly cre-
ated blocks; they have a label of zero. Their labels are up-
dated according to the connected component labeling. First,
the blocks labeled as zero are set as the module ID of their
Block Module. Then, each Block Module receives the labels
of the eight neighboring blocks, and updates its own label
with the minimum label among them. This processing is it-
eratively executed for each block in parallel while there ex-
ists an updated label. As a result, the blocks of an identical
object are assigned to the same label, and those of different
objects are assigned to different labels. An example of ob-
ject ID estimation based on connected-component labeling
is shown in Fig. 13 (b).

3.5 Background Update

The background is calculated using IIR filtering. Since the
Block Modules have only histograms of image data, the
background is calculated by IIR filtering of histograms. The
results of IIR filtering of histograms are almost same as
those of IIR filtering of the original image data.

4. Experimental Results

4.1 Evaluation of Exclusive Block Matching and Consid-
eration of the Eight Neighboring Blocks

Figure 14 (a) and (b) shows the results when the match-
ing with the minimum cost is selected from each row;
the matching is not exclusive. Thus, there exist multiple
flows incident from an identical block. On the other hand,
Fig. 14 (c) and (d) shows the results when the exclusive cor-
respondences of blocks are obtained by saving-regrets ap-
proximation. Moreover, in Fig. 14 (b) and (d), the costs of
the eight neighboring blocks are reflected, as described in
Sect. 2.4. By considering the cost of eight neighbor blocks,
the flow disturbance is reduced considerably. Similarly, the
results for PETS2006 benchmark data [18] and an indoor
scene are shown in Fig. 15 and Fig. 16, respectively. In
Fig. 16, the walls are plain and almost monochrome, and
the flow seen in Fig. 16 (a) is disturbed. It can be seen in

(a) EBM: off, 8N: off (b) EBM: off, 8N: on

(c) EBM: on, 8N: off (d) EBM: on, 8N: on

Fig. 14 Effects of exclusive block matching (EBM) and consideration of
eight neighboring blocks (8N) for CG data.

(a) EBM: off, 8N: off (b) EBM: off, 8N: on

(c) EBM: on, 8N: off (d) EBM: on, 8N: on

Fig. 15 Effects of exclusive block matching (EBM) and consideration of
eight neighboring blocks (8N) for PETS2006 benchmark data.

Fig. 16 (d) that the flow is improved by the effects of both
exclusive correspondences and considering eight neighbor-
ing blocks.

4.2 Comparison with Dense SIFT and Software Imple-
mentation

First, we show the comparison between the results of the
EBM method with dense SIFT features and those with HSV
and HOG features. We calculated dense SIFT features for
each block in the following manner. A sampling point was
generated at the center of each sub-block of 4×4 pixels. For
each sampling point, we considered three different scales:
σ = 8, 10, or 13 pixels. Thus, we calculated 12 SIFT fea-
tures for each block. The cost between blocks a and b is
calculated by min fa∈Fa, fb∈Fb C8( fa, fb) where Fa and Fb are
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Table 2 Comparison of the ratio of the inaccuracy motions.

Feature Assignment Distance average
Indoor scene PETS2006 Shopping Center

in Fig. 16 [18] [19]

Dense SIFT optimal Bhattacharyya 4.19% 5.41% 3.52% 3.64%
software implementation HSV+HOG optimal Bhattacharyya 4.43% 4.72% 5.97% 2.59%

HSV+HOG optimal absolute difference 5.50% 5.54% 7.50% 3.47%
hardware implementation HSV+HOG savings-regret absolute difference 6.81% 8.00% 8.46% 3.98%

(a) EBM: off, 8N: off (b) EBM: off, 8N: on

(c) EBM: on, 8N: off (d) EBM: on, 8N: on

Fig. 16 Effects of exclusive block matching (EBM) and consideration of
eight neighboring blocks (8N) for real data.

the sets of 12 SIFT features of block a and b, respectively.
For these experiments, we used three data sets: in-

door scene shown in Fig. 16, PETS2006 benchmark data,
and shopping mall scene [19]. We calculated the ratio of
the inaccurate motions which was visually determined with
considering unnatural crossing [20]. The first row and the
second row of Table 2 show the results of the EBM method
with dense SIFT features and those with HSV and HOG fea-
tures. We can see that the accuracy of extracted motion in
employing HSV and HOG features is comparable with that
in employing dense SIFT features even though the calcula-
tion of HSV and HOG feature is simpler than dense SIFT
features.

Next, we show that the comparison between the results
of software implementation and that with hardware imple-
mentation. In order to save hardware resources and realize
highly parallel computations, our hardware employs the sum
of absolute difference and savings-regret approximation in-
stead of Bhattacharyya distance and the method to obtain the
optimal assignment. We evaluated the effects of these sim-
plifications. The third row of Table 2 shows the results in
replacing Bhattacharyya distance with the sum of absolute
difference. The fourth row shows the results of hardware im-
plementation which employs the sum of absolute difference
and savings-regret approximation. The degradation arising
from the simplifications for hardware implementation was
only 2.38% on an average.

Table 3 The logic utilization of EBM hardware for each number of
Block Modules.

No. of Block Modules No. of ALUTs No. of registers

108 65983 53614
300 172982 145528
768 393678 367136

(a) (b)

Fig. 17 Examples of the outputs of object tracking hardware when the
array size is 12 × 9.

4.3 Implementation Results of Tracking Hardware

We implemented the proposed tracking hardware in an Al-
tera stratix III (EP3SL150F780C4) device, and validated the
object tracking. For object tracking, we could implement
108 (12 × 9) Block Modules on the device. The maximum
operating frequency was 48.01 MHz. We wrote the program
in C-like code and used assembler code for the array proces-
sor. The results of object tracking for real data are shown in
Fig. 17.

The logic utilization for object tracking is shown in Ta-
ble 3. In Table 3, we also present the results of compila-
tion on a high-end Altera stratix V (5SEEBH40C2L) device
to show the logic utilization for a larger number of Block
Modules. We can easily increase the number of Block Mod-
ules until the resources of the device are exhausted while
maintaining the performance of each Block Module. The
amount of logic utilization increases almost proportionally
to the number of Block Modules. The ALUT utilization is
approximated by 492NBM+18076, where NBM is the number
of Block Modules.

4.4 Performance Estimation of Tracking Hardware

We developed an emulator of our hardware, and we eval-
uated the performance of hardware equipped with a larger
number of Block Modules. Table 4 lists the number of clock
cycles required for each operation in object tracking. Since
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Table 4 Clock cycles for each operation in object tracking.

No. of Block Modules 108 300 768 1200
Image size 96×72 160×120 256×196 320×240

Similarity calculation 159053 159053 159053 159053
Assignment 13248 34440 84540 133747
Object ID estimation 1549 1549 1598 1722
Background update 1446 1446 1446 1446
Result send 350 926 2330 3626
Etc. 12683 12683 12683 12683

No. of total steps 188329 210121 261650 312277
fps at 48 MHz clock 267 240 192 161

(a) (b)

(c) (d)

Fig. 18 Example of the outputs of emulator of object tracking hardware
when the array size is 32 × 24.

they vary according to the scene of the assignment and ob-
ject separation, we calculate the average for fifteen frames
from PETS2006 benchmark data. Even if the image size in-
creases, the number of clock cycles required for similarity
calculation and background update remains constant. This
is because the effective number of PEs for similarity calcu-
lations increases in proportion to the image size. Although
the number of clock cycles for savings-regret approximation
depends on the scene, in practice, the number of clock cy-
cles for an assignment is almost proportional to the image
size. The object ID estimation, background update, and re-
sult send constitute a small fraction of the total clock cycles.
The remaining operations are control operations executed
by the Control Processor, and the number of clock cycles is
constant.

By exploiting the high parallelism of the object track-
ing algorithm, our array processor can treat each process-
ing effectively. The data transfer from HSVGen/HOGGen
to Block Modules, shown in Fig. 6, is performed simultane-
ously with tracking by using two-port memory. Therefore,
the transfer time for each frame data does not affect the per-
formance of the hardware provided that the data transfer is
finished within the processing time for a frame. When we
implement 1200 Block Modules, we can handle a QVGA

image by dividing it into blocks of 8 × 8 pixels. When the
system clock frequency is 48 MHz, this circuit realizes ob-
ject tracking at 161 fps for QVGA image sequences. It is
about 53 times faster than that for executing EBM method
on 3.14 GHz CPU. Figure 18 shows examples of motion ex-
traction of a a moving object; the extracted motions could
be useful for human motion analysis.

5. Conclusions

In this paper, we presented an implementation of an exclu-
sive block matching method that realizes detailed motion
extraction and robust tracking. Our tracking hardware can
realize robust moving object extraction and tracking at more
than 100 fps for QVGA images. The current hardware is de-
signed for processing scenes captured with a fixed camera.
Enhancement of scenes captured with a motion camera will
be addressed in our future studies.
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