
Article Information
Title An FPGA Implementation of the Two-Dimensional

FDTD Method and Its Performance Comparison
with GPGPU

Authors Ryota Takasu, Yoichi Tomioka, Yutaro Ishigaki,
Ning Li, Tsugumichi Shibata, Mamoru Nakanishi,
Hitoshi Kitazawa

Citation FDTD method and its performance comparison
with GPGPU." IEICE Transactions on Electronics
97.7 (2014): 697-706.

Copyright copyright@2014 IEICE
IEICE Transactions
Online URL

https://search.ieice.org/

IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014
697

PAPER Special Section on Recent Advances in Simulation Techniques and Their Applications for Electronics

An FPGA Implementation of the Two-Dimensional FDTD Method
and Its Performance Comparison with GPGPU

Ryota TAKASU†a), Nonmember, Yoichi TOMIOKA†b), Member, Yutaro ISHIGAKI†c), Ning LI†d), Nonmembers,
Tsugimichi SHIBATA††e), Senior Member, Mamoru NAKANISHI††f), Member, and Hitoshi KITAZAWA†g), Fellow

SUMMARY Electromagnetic field analysis is a time-consuming pro-
cess, and a method involving the use of an FPGA accelerator is one of the
attractive ways to accelerate the analysis; the other method involve the use
of CPU and GPU. In this paper, we propose an FPGA accelerator dedicated
for a two-dimensional finite-difference time-domain (FDTD) method. This
accelerator is based on a two-dimensional single instruction multiple data
(SIMD) array architecture. Each processing element (PE) is composed of
a six-stage pipeline that is optimized for the FDTD method. Moreover,
driving signal generation and impedance termination are also implemented
in the hardware. We demonstrate that our accelerator is 11 times faster
than existing FPGA accelerators and 9 times faster than parallel computing
on the NVIDIA Tesla C2075. As an application of the high-speed FDTD
accelerator, the design optimization of a waveguide is shown.
key words: FDTD method, FPGA, parallel processing, SIMD array

1. Introduction

The finite-difference time-domain (FDTD) method is widely
used for electromagnetic field analysis of waveguides, an-
tennas, and so on. However, analysis using the FDTD
method is a time-consuming process. For example, in [1],
the authors mention that it takes from a few hours to sev-
eral days for simulation using the FDTD method. To reduce
the simulation time significantly, a hardware accelerator is
essential. Owing to the rapid advancements in field pro-
grammable gate arrays (FPGAs), FPGAs play an important
role in the speeding up of numerical analysis, as do multi-
core CPUs and general-purpose computing on graphics pro-
cessing units (GPGPU) [2]. However, a computing circuit
should be designed to match the calculation objective and
to fit the target FPGA device in order to achieve a high-
performance FPGA accelerator.

Several FPGA accelerators for the FDTD method have
been proposed in [1], [3]–[9]. An accelerator for the FDTD
method was earlier proposed in [1]. This accelerator mainly

Manuscript received September 27, 2013.
Manuscript revised January 28, 2014.
†The authors are with the Tokyo University of Agriculture and

Technology, 2-24-16 Naka-cho, Koganei, Tokyo.
††The authors are with the NTT Microsystem Integration Labo-

ratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa.
a) E-mail: 50013645214@st.tuat.ac.jp
b) E-mail: ytomioka@cc.tuat.ac.jp
c) E-mail: 50012257502@st.tuat.ac.jp
d) E-mail: 50010257096@st.tuat.ac.jp
e) E-mail: shibata.tsugumichi@lab.ntt.co.jp
f) E-mail: nakanishi.mamoru@lab.ntt.co.jp
g) E-mail: kitazawa@cc.tuat.ac.jp

DOI: 10.1587/transele.E97.C.697

focuses on the one-dimensional FDTD method, and it is
composed of pipelined bit-serial circuits. However, this ar-
chitecture is not suitable for recent FPGAs because many
digital signal pocessor (DSP) [10] modules are available for
highly parallel computation. The accelerator proposed in [3]
is for the three-dimensional FDTD method. In this acceler-
ator, computing units are not pipelined to update the elec-
tric and magnetic fields, and the performance of this method
is not sufficient. On the other hand, an accelerator using
a pipelined adder/subtracter and multiplier for updating the
electric and magnetic fields has been proposed in [4]. This
accelerator is 24 times faster than a 3.0 GHz CPU. How-
ever, it is difficult to expand the number of pipelines because
of memory access contention. Thus, this accelerator is not
suitable for highly parallel computing using recent high-end
FPGAs.

An FPGA accelerator based on a two-dimensional sin-
gle instruction multiple data (SIMD) [10] array architec-
ture has been proposed in [6]–[8]. This accelerator is de-
signed to accelerate general numerical integration methods
such as the FDTD method, Red-Black-SOR, and fractional-
step method. However, this architecture is not optimized for
FDTD computation. Since an FPGA is reconfigurable, the
architecture of the accelerator should be optimized for a spe-
cific purpose to obtain the highest performance. Recently,
the scalable computation method has been proposed [9]. It
can be applied to large scale problems by applying a spatio-
temporal pipeline technique. However, structure data, driv-
ing signal generation, and impedance termination were not
considered.

In this paper, we propose a SIMD based two-
dimensional array architecture that is optimized for highly
parallel computations of the FDTD method, for the follow-
ing three reasons. First, in the FDTD algorithm, most cal-
culations are performed between two adjacent nodes. Such
calculations can be efficiently executed in parallel on a two-
dimensional array architecture in which four adjacent pro-
cessing elements (PEs) are always directly connected. Sec-
ond, since there is a wealth of hardware resources such as
lookup tables (LUTs) [11], registers, and DSPs for recent
FPGAs, highly parallel computations using many PEs can
be realized on a single FPGA. Third, driving (excitation)
signal generation and impedance termination are also im-
plemented in the proposed hardware. Many existing accel-
erators do not pay special attention to driving signal gener-
ation and impedance termination. However, these processes

Copyright c⃝ 2014 The Institute of Electronics, Information and Communication Engineers

698
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

190

95 101 114 114 101 95

10

88 56 52 56 88

670

=0.1mm grid size: 670 190 =127300
x

y

H

W

Δ Δ Δ Δ Δ Δ

ΔΔΔΔΔ

Δ
Δ

Δ

Δ

Fig. 1 Canonical problem of waveguide analysis given in [20].

are difficult to execute parallely, and they reduce the overall
performance heavily. We show that our accelerator provides
superior performance compared to existing FPGA accelera-
tors [4], [6]–[9].

Recently, GPGPU has attracted attention for accel-
erating numerical analysis, and GPGPU accelerators have
been proposed in [12]–[19]. We also compare our accel-
erator with GPGPU. In [18] and [19], it is reported that
two-dimensional FDTD computation on the Tesla C1060
is about 20 times faster than that on a 2.26 GHz CPU.
We implemented a two-dimensional FDTD accelerator with
Tesla C2075, and we demonstrate that our accelerator im-
plemented with Altera Stratix V (5SGSMD5K2F40C2N) is
nearly 9 times faster than parallel computing on the Tesla
C2075.

This paper is organized as follows. In Section 2,
Maxwell’s differential equations and impedance termination
equations are explained, and they are rearranged for appli-
cability to parallel processing. In Section 3, the hardware
structure and the control method are explained. In Sec-
tion 4, we compare the accuracy of fixed-point and floating-
point calculations to decide the specification of the comput-
ing units. In Section 5, we explain our implementation and
compare the performance with those of existing methods.
In Section 6, we apply our accelerator to the optimization
and sensitivity analyses of a waveguide filter structure. The
paper is concluded in Section 7.

2. Equations to be calculated in the FDTD method

In this paper, we focus on analysis for metal rectangular
waveguides. In this section, we explain Maxwell’s differ-
ential equations and impedance termination for waveguides.
An example of a bandpass filter realized by iris-coupled
waveguide cavities [20] is shown in Fig. 1.

2.1 Maxwell’s differential equations for waveguides

An analytical region is discretized on a uniform grid, called
Yee’s cell, as shown in Fig. 2. For each Yee’s cell, one elec-
tric node is located at the center, and four magnetic nodes
surround it.

Based on Yee’s cell, the FDTD equations of the H-
plane (TEn0 modes) field are as follows:

Hn+1/2
x (i, j + 1/2) = Hn−1/2

x (i, j + 1/2)

Yee’s cell

Fig. 2 Two dimensional Yee’s cell.

− ∆t
µxµ0∆y

{
En

z (i, j + 1) − En
z (i, j)

}
, (1)

Hn+1/2
y (i + 1/2, j) = Hn−1/2

y (i + 1/2, j)

+
∆t

µyµ0∆x

{
En

z (i + 1, j) − En
z (i, j)

}
, (2)

En
z (i, j) = En−1

z (i, j)

+
∆t
ϵzϵ0∆x

{
Hn−1/2
y (i + 1/2, j) − Hn−1/2

y (i − 1/2, j)
}

− ∆t
ϵzϵ0∆y

{
Hn−1/2

x (i, j + 1/2) − Hn−1/2
x (i, j − 1/2)

}
, (3)

where Hx is the x-component of the magnetic field, Hy is the
y-component of the magnetic field, Ez is the z-component of
the electric field, µx and µy are the relative permeabilities, µ0

is the vacuum permeability, ϵz is the relative permittivity, ϵ0
is the vacuum permittivity, ∆x and ∆y are the sizes of the
Yee’s cell, and ∆t is the time interval. The superscripts of
the E and H components denote discrete points in time. The
electric and magnetic fields are alternately updated by using
these equations. For ease of explanation of the hardware
implementation, we represent one electric and two mag-
netic field components by the three one-dimensional arrays
Ez[p], Hx[p], and Hy[p]. Let w be the number of columns in
the two-dimensional array of Yee’s cells. Formally, Ez(i, j),
Hx(i, j + 1/2), and Hy(i + 1/2, j) in Yee’s cell Y(i, j) are
denoted by Ez[i + jw], Hx[i + jw], and Hy[i + jw], respec-
tively. By representing the coefficient of each term by kl

(l = 1, · · · , 4), the above three equations can be replaced by
the following four pseudo codes (4)–(7):

Hx : Hx[p] ← Hx[p] + k1 × {Ez[p] − Ez[p + w]}, (4)

Hy : Hy[p] ← Hy[p] − k2 × {Ez[p] − Ez[p + 1]}, (5)

Ez1 : Ez[p] ← Ez[p] − k3 × {Hx[p] − Hx[p − w]}, (6)

Ez2 : Ez[p] ← Ez[p] + k4 × {Hy[p] − Hy[p − 1]}, (7)

k1 =
∆t

µxµ0∆y
, (8)

k2 =
∆t

µyµ0∆x
, (9)

k3 =
∆t
ϵzϵ0∆y

, (10)

TAKASU et al.: AN FPGA IMPLEMENTATION OF THE TWO-DIMENSIONAL FDTD METHOD AND ITS PERFORMANCE COMPARISON WITH GPGPU
699

k4 =
∆t
ϵzϵ0∆x

, (11)

where p is an array index calculated by p = i + jw,
and “←” denotes the update of an array variable. Note
that Eq. (3) is decomposed into pseudo codes (6) and (7).
Pseudo codes (4)–(7) can be calculated by the same opera-
tion pipeline represented as d = c ± k × (a ± b).

2.2 Impedance termination

For the boundary conditions of waveguide ports, we em-
ploy the impedance boundary condition proposed in [21].
For example, the impedance boundary condition for the left
boundary of a waveguide is represented by

En
z (0, j) =

1 − Z0G/2
1 + Z0G/2

En−1
z (0, j)

+
Z0

1 + Z0G/2

{
2Hn−1/2
y (1/2, j)

−Hn−1/2
x (0, j + 1/2) + Hn−1/2

x (0, j − 1/2)

− 2GVn−1/2
s (t)e(0, j)

}
, (12)

where Z0 is the characteristic impedance of free space calcu-
lated by

√
µ0/ϵ0, G is an arbitrary terminating impedance of

a waveguide, Vn−1/2
s is an applied voltage, and e is an eigen

function of a mode. We also simplified Eq. (12) using one-
dimensional arrays for the hardware implementation. In or-
der to use the same operation pipeline as pseudo codes (4)–
(7), we decomposed Eq. (12) into the following four pseudo
codes (13)–(16):

X1 : X[p] ← 0 + k6 ×{Hy[p] + Hy[p] }, (13)

X2 : X[p] ← X[p] − k6 ×{Hx[p] − Hx[p − w]}, (14)

X3 : X[p] ← X[p] + S [j]×{ 0 + V ′k[t] }, (15)

X4 : Ez[p]← X[p] + k5 ×{ 0 + Ez[p] }, (16)

k5 =
1 − Z0G/2
1 + Z0G/2

, (17)

k6 =
Z0

1 + Z0G/2
, (18)

where p = 0 + jw, X[p] is a temporary array variable, Vk[t]
is a one-dimensional array representing 2GVn−1/2

s (t), V ′k[t]
is −k6 × Vk[t] and S [j] is a one-dimensional array repre-
senting e(0, j). In our accelerator, for each PE, we employ
a pipelined module with two additions/subtractions and one
multiplication. In the next section, we explain the proposed
FDTD accelerator for analyzing waveguides.

3. Hardware architecture

3.1 Parallel and pipeline processing

Parallel processing on two-dimensional arrays is suitable for
the FDTD method, because most operations of the FDTD

R

(1, 1)

(R, 1)

(1, C)

(R, C)

C

Fig. 3 Two-dimensional array processor.

(From the Left PE)

(From the top PE)

(From PE adjacent to the bottom)

outData (From the Right PE)

(3)

(4)

h

w

outData

outData

outData

Fig. 4 The node map in a PE. w × h nodes is processed by the PE, −→
denotes the processing direction for the designated equations.

method are performed between adjacent nodes. The pro-
posed hardware consists of a two-dimensional array proces-
sor with R ×C processing elements (PEs), a control proces-
sor, and data transfer modules, as shown in Fig. 3. Each of
the PEs calculates the electric fields and magnetic fields for
h × w nodes, as shown in Fig. 4. Therefore, the number of
processable nodes is Rh ×Cw.

Each PE has a pipelined computing unit, two dual-port
memories, and two single-port memories as shown in Fig. 5.
The computing unit is a six-stage pipeline that is composed
of read address set, read, addition/subtraction, multiplica-
tion, addition/subtraction, and write-back. It can calculate
pseudo codes (4)–(7) and (13)–(16) with one clock through-
put. Data Ez are stored in one dual-port memory. Both data
Hx and Hy are stored in another dual-port memory. Con-
stant, kl (l = 1, · · · , 6) and S [j] are stored in the single-port
memory called constMem. The structure data of the waveg-
uide, such as metal position, driving signal, and termination
are stored in another single-port memory called indexMem.

The equations for updating the electric and magnetic
fields are parallely calculated by the R × C PEs. On the
other hand, the boundary condition equations are calculated
by only the leftmost nodes and the rightmost nodes.

In the first step, in each PE, the Hx of the w × h nodes
are calculated as shown in Fig. 4. Then, Hy, Ez1, and Ez2 are
calculated in order, and finally, the driving signal generation

700
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

single-port memory dual-port memory

k1 4,k5,k6

add/

sub

mult

add/

sub

Write (4)

Hx,Hy,Ez,X

S[j]

Host

0

Mem

Ez

Work

Hx

Hy

Index

Mem

ConstMem

Hx,Hy,Ez,X

Hx,Hy,Ez,X

Hx,Hy,Ez,X
Read (3)

Read (2)

Read (1)

address

set

memory

read
add/sub 1 add/sub 2mult

write

back

Fig. 5 Structure of a processing element (PE).

: buffer for one

transfer data

Fig. 6 Synchronous shift data transfer.

and impedance termination are calculated.

3.2 Data transfer between PEs

Each of the PEs needs to receive data from adjacent PEs
when operating the nodes of the top, bottom, left, and right
edges in the PE. Each PE is connected to the four adjacent
PEs for data transfer between the PEs, as shown in Fig. 6.
All of the PEs receive data from the same direction simul-
taneously. With this data transfer method, memory access
contention and bus contention can be avoided. Moreover,
each PE has a buffer storing one transfer data, and it can
also receive data from a distant PE, which is not connected
directly, by repeating transfers between adjacent PEs a cer-
tain number of times. For example, as shown in Fig. 6, each
PE can receive data from two PEs to the right with. With
the first left transfer, PE1 receives data from PE2. At the
same time, PE2 receives data from PE3. With the second
left transfer, PE1 receives data from PE2 that was received
from PE3 with the first left transfer. We call this transfer
technique synchronous shift data transfer [22]. This tech-
nique can be useful when a higher order FDTD method [23]
is employed.

Each PE must transfer the topmost Ez data to its adja-
cent PE on the upper side to update the lowermost Hx data
as shown in Fig. 4. In order to ensure accurate data trans-
fer even between multiple FPGAs where considerable clock
skew is unavoidable, we apply a double buffer structure
where two clocks are required for one data transfer. There-
fore, some waiting operations may be required for trans-
fer between the PEs. The proposed hardware avoids wait

Table 1 The number of required clock cycles for one time step in each
PE and transfer directions.

Clock
cycles Wait

Transfer
direction

Transfer
cycles

Hx hw l − 2 U w

Hy hw l − 2 R h

Ez1 hw l − 2 D w

Ez2 hw l − 2 L h

X1p h l − 2 — 0

X2p h l − 2 D 1

X3p h l − 2 — 0

X4p h l − 2 — 0

X1t h l − 2 L 1

X2t h l − 2 D 1

X4t h l − 2 — 0

other1 3h 3l − 6 — 0
1 Ez integration at the driving and terminal nodes and

data copy to avoid memory contention.

operations by changing the processing direction in each of
the pseudo codes (4)–(7), as shown in Fig. 4. For exam-
ple, when the Hx of the top node is updated, Ez data read
from memory are also stored in an output buffer (outData
in Fig. 5). Until calculation of the bottom node Hx is be-
gun, the Ez data in outData of the lower PE are transferred
to the input buffer (inData in Fig. 5). The bottom node op-
eration uses the Ez data in inData. Thus, no wait operation
is necessary. Similarly, the Hy, Ez1 and Ez2 operations are
performed.

3.3 Control method of PEs

The pipeline in each PE is controlled by very long instruc-
tion word (VLIW) [10] type operation codes issued by the
FDTD controller in Fig. 3. The width of the instruction
codes is 80 bits of which 40 bits are assigned for the mem-
ory addresses of 4 ports, and the other 40 bits are assigned
for selection signal of pseudo codes (4)–(7) and (13)–(16),
transfer directions, write enables, and selectors. The instruc-
tions are determined by the array size, the number of nodes,
and the structure data of an analysis target. Similarly, the
initial memory data of the indexMem are decided by the
structure data. The control code and the initial memory data
are generated by software in the host PC and transferred to a
memory in the control processor and the indexMem in each
PE.

By using synchronous shift data transfer and the
pipeline shown in Fig. 5, the throughput of pseudo codes
(4)–(7) and (13)–(16) is 1 node per clock. When the pipeline
proceeds to calculate the next equation, e.g., when it pro-
ceeds from Hy to Ez1, it must wait until calculations for the
previous equation have finished. This is attributed to con-
tention in the dual-port memory and computing units. In the
structure of Fig. 5, the latency l of the pipeline is 6 clocks
including memory-read and write-back stages. The pipeline
must wait 4 clocks. The number of required clock cycles for
one time step in each PE is shown in Table 1.

TAKASU et al.: AN FPGA IMPLEMENTATION OF THE TWO-DIMENSIONAL FDTD METHOD AND ITS PERFORMANCE COMPARISON WITH GPGPU
701

Initialize CP

Start FDTD control loop

Read instruction code

from memory.

Transfer instruction to PE.

Transfer CP instruction code.

Generate FDTD control code.

Generate structure data.

Transfer FDTD control to CP.

Start CP.

Transfer structure data to PE.

Wait data.

Host PC

Receive data.

Store data in indexMems.

Computes by instruction

from CP.

Transfer result to Host

via reg trans

Control Processor (CP) Processing Element (PE)

Notify end.

Receive data.

Receive end.

Frequency analysis.

Show result.

Fig. 7 Flow of control program.

3.4 Control flow of the total system

The program of the control processor is described in an as-
sembler language. The control codes are transferred from
the host PC to the FPGA board using the Joint Test Ac-
tion Group (JTAG) interface which provides data transfer
between the FPGA and the host PC for debugging. More-
over, the simulation result is transferred in the opposite di-
rection. In order to control this transfer, we used Altera’s
system console and tool command language (Tcl) scripts
consisting of commands for the system console. The overall
processing flow of the system is shown in Fig. 7.

4. Accuracy comparisons of fixed-point and floating-
point calculation

In order to implement the FDTD method for the FPGA,
we first choose the fixed-point or floating-point calculation
method and decide the bit width of the calculation. For this
purpose, we compare the accuracy of the fixed-point and
floating-point operations.

4.1 Expressions for the fixed-point calculations

Electromagnetic field values need to be quantized for the
fixed-point expression with the selected bit-width. In order
to decide the position of a decimal point for the fixed-point
expression, we investigate the range of variables. The max-
imum value of |S [j] × Vk[t]| is 1. It is multiplied by a value
of approximately 4, and the range of the electric field Ez is
decided by this value. For example, for a 32-bit fixed-point
operator, the value of Ez is shifted by 28 bits with a 3-bit
margin. The values of Hx and Hy are nearly equal to 1/377
of Ez, and so these are shifted by 36 bits. Each of Vk[t] and
S [j] is similarly shifted according to these shift amounts.

4.2 Comparisons of accuracy

When comparing the accuracy of the fixed-point result with
that of the floating-point result, we employed the S matrix
of the waveguide. We computed each S matrix of 24, 32,

Fig. 8 S 11 parameters obtained by fixed-point calculations.

Fig. 9 S 21 parameters obtained by fixed-point calculations. The green
line under −30 dB indicates the accuracy of 24-bit fixed-point calculations.
The blue line under −70 dB indicates the accuracy of 32-bit fixed-point
calculations.

64-bit floating-point and 24, 32 fixed-point. These results
are shown in Figs. 8–10 and Table 2.

As shown in Fig. 8, the deviation between 64-bit
floating-point and 24, 32-bit fixed-point on S 11 parameter
is very small. However, in Fig. 9, S 21 parameter of 24-bit
fixed-point coincides with that of 64-bit floating-point un-
til −30 dB. This result suggests that the accuracy of 24-bit
fixed-point calculations is 30 dB. 32-bit fixed-point coin-
cides with 64-bit floating-point until −70 dB, and the ac-
curacy is 70 dB. On the other hand, as shown in Fig. 10, S 21

parameter of 32-bit floating-point coincides with that of 64-
bit floating-point until the minimum S 21 value in the graph.

4.3 Selection of the proposed hardware

Obviously, these results show that floating-point calculation
is better than fixed-point calculation. However, if we do not
need higher than 70 dB accuracy, the result of fixed-point
calculation is sufficient. For FPGA accelerators, we must

702
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

Table 2 Accuracy comparison of fixed-point and floating-point calculations.

Fxed-point Floating-point
24-bit 32-bit 24-bit 32-bit 64-bit

Attenuation accuracy 30 dB 70 dB 60 dB > 90 dB > 90 dB

Fig. 10 S 21 parameters obtained by floating-point calculations. The
green line under −60 dB indicates the accuracy of 24-bit floating-point cal-
culations.

consider the resource difference. A floating-point accelera-
tor requires several times more resources than a fixed-point
accelerator, and the number of PEs that can be implemented
is decreased. We selected 32-bit fixed point, and our pro-
posed hardware is applicable for analysis with 70 dB accu-
racy. If higher accuracy is required, we need to select 32-bit
floating point.

5. Implementation and performance comparisons

5.1 Implementation

The proposed system has been implemented using an Al-
tera Stratix V 5SGSMD5K2F40C2N FPGA. This FPGA has
1,590 DSP blocks, 2,014 block RAMs, and 172 K ALMs.

The analysis target size is 670 × 190, and the number
of time steps is 65536 as in [18] and [19]. Thus, R,C, h, and
w were set as 24, 20, 8, and 34, respectively, and the number
of processable nodes is 680 × 192 = 130, 560.

Each PE in the proposed accelerator needs 2 DSP
blocks, 4 block RAMs, and about 300 ALMs. So, the max-
imum number of PEs is limited by the number of the block
RAMs. Considering that the block RAMs are also used in
the control processor and the data transfer buffer, we set the
number of PEs as 20 × 24 = 480. The resources and the
maximum frequency of the hardware are summarized in Ta-
ble 3. We run the accelerator with a clock frequency of 100
MHz.

The number of clock cycles for a 1 time step simulation
can be calculated by

N = hw × 4 + h × 10 + (l − 2) × 14

= 272 × 4 + 8 × 10 + 4 × 14 = 1224. (19)

Table 3 Resource utilization for the proposed accelerator.

Memory usage (bit) 32,912,512/41,246,720 (80%)

Dedicated logic registers 120,460/690,400 (17%)

DSP blocks 960/1,590 (60%)

Combinational ALUTs 160,651/172,600 (93%)

Maximum frequency (MHz) 109.9

The processing time T required for 65,536 time steps is

T = (1224 × 65536)/100M = 0.765s. (20)

This value includes the driving signal generation and
impedance termination calculation time.

5.2 Comparisons with existing FPGA accelerators

We compare the performance of the proposed accelerator
with that of existing FPGA accelerators. We use fields up-
date per second (FUPS) for performance evaluation. It is
defined as the number of updating fields per second. The
comparison result is shown in Table 4.

The accelerator proposed in [4] does not adopt a two-
dimensional array, and we think that the degree of paral-
lelism is not sufficiently utilized. The accelerator in [6]–
[8] adopts a two-dimensional array. It aims to analyze
not only the FDTD method but also Red-Black-SOR and
the fractional-step method. This architecture is not opti-
mized for FDTD computation. The calculation pipeline con-
sists of mult-add/sub and must be applied multiple times
to process the FDTD equations. In contrast, the struc-
ture of our accelerator is the add/sub-mult-add/sub calcu-
lator which processes the basic FDTD formula in 1 clock
throughput. In addition, our accelerator supports signal gen-
eration and impedance termination. Although the accelera-
tors in [6]–[8] employ 32-bit floating-point calculation and
the proposed accelerator employ 32-bit fixed-point calcula-
tion, the accuracy is comparable when the required accuracy
is within 70 dB.

5.3 Comparisons with GPGPU

We implemented the two-dimensional FDTD calculation
explained in Section 2 on Tesla C2075, and we applied it
to waveguide analysis shown in Fig. 1. The number of time
steps is 65536. In this implementation, we employed 32-bit
floating calculation. We used techniques enhancing GPGPU
performance, and in Table 5, we summarized the execution
time for three implementations.

For the first implementation, we used padding tech-
nique, and the analyzed region was expanded to 256 × 768.
Note that the actual size of analysis region is 190×670. The
processing consists of two stages: (a) Hx, Hy, and Ez fields
update denoted by pseudo codes (4)–(7) and (b) driving and

TAKASU et al.: AN FPGA IMPLEMENTATION OF THE TWO-DIMENSIONAL FDTD METHOD AND ITS PERFORMANCE COMPARISON WITH GPGPU
703

Table 4 Performance comparisons with existing accelerators.

Number of nodes Fields update per second (FUPS)
& calculation type Hx, Hy, Ez fields update Driving and termination are included1

Chen[4] 100 × 100
0.0138G fields/s —

30-bit fixed-point

Sano[6] 72 × 72
0.970G fields/s —

32-bit floating-point

Proposed
670 × 190

— (670 × 190) × 65536/0.765 = 10.9G fields/s
32-bit fixed-point

Tesla C2075
670 × 190

1.56G fields/s 1.19G fields/s
32-bit floating-point

GTX 480[14] 3072 × 3072
3.68G fields/s —

32-bit floating-point

GTX 680[16] 4096 × 4096
4.27G fields/s —

32-bit floating-point

(C2075 2D array)2 670 × 190
— 10.9 × 1.15G/100M = 125G fields/s

32-bit floating-point

1 Driving and termination calculations denoted by pseudo codes (13)–(16) and Ez integration are included.
2 The predicted performance of the proposed array structure by using the calculator of the C2075.

termination calculations denoted by pseudo codes (13)–(16)
and Ez integration. In the Hx, Hy, and Ez fields update, each
thread updates these fields for one node; the grid dimension
was set as 1 × 168 × 1, and the block dimension was set as
192 × 4 × 1. In driving and termination calculations, each
thread updates the Ez field for one node; the grid dimension
was set as 6 × 1 × 1, and the block dimension was set as
32 × 1 × 1. Moreover, Ez integration is calculated by one
thread for driving and termination of the waveguide.

For the second implementation, we used shared memo-
ries to reduce the number of global memory accesses. In the
Hx, Hy, and Ez fields update, these fields of 194×6 nodes are
stored in the shared memory for each block. In driving and
termination calculations, the Hy fields of driving and termi-
nation nodes are stored in the shared memory. Furthermore,
the Ez fields of driving and termination nodes are stored in
the shared memory, and we calculate Ez integration by using
the reduction techniques with 128 × 1 × 1 threads. We used
“#pragma unroll” for all “for” sentences.

For the third implementation, we changed the Hx and
Hy fields updates from the second implementation. Each
thread updates the Hx and Hy fields of eight nodes on the
consecutive rows, and the Hy fields of one row are stored
in the shared memory. Moreover, each thread stores the Hx

field of the node of the previous row in a register. The grid
dimension was set as 1 × 21 × 1, and the block dimension
was 192 × 4 × 1.

It takes 6.65 s to update the Ez, Hx, Hy fields with
pseudo codes (4)–(7) for the first implementation. The time
is improved to 5.61 s. Moreover, the execution time is im-
proved to 5.35 s, which is 1.56G fields/s for the third im-
plementation. However, when driving, termination, and Ez

integration are included, the total time is 7.00 s, which is
1.19G fields/s. We list the best result in Table 4.

Our proposed accelerator is about 9 times faster than
the accelerator using C2075 when driving, termination, and
Ez integration are included. Moreover, Kawada et al. [14]

have reported that NVIDIA GTX480 achieved 3.68G fields/
s. From the report of Ito [16], NVIDIA GTX680 achieves
4.27G fields/s. Note that they also employed 32-bit floating
calculations, and that they do not handle pseudo codes (13)–
(16) and Ez integration. These results are also listed in Ta-
ble 4. Our proposed accelerator is about 2.5 times faster
than the accelerator reported in [16] using GTX680.

The Tesla C2075 contains 448 calculators of 32-bit
floating-point and operates at 1.15 GHz, and the number of
calculators × operation clocks is over 500G. On the other
hand, the proposed accelerator contains 480 PEs and op-
erates at 100 MHz when it is implemented on Stratix V
5SGSMD5K2F40C2N, and the number of calculators × op-
eration clocks is 43G, which is about 1/12 compared to the
Tesla C2075. However, the execution speed is about 9 times
faster than the Tesla C2075. This result is due to the dif-
ference in the memory architecture. In GPGPU, as shown
in Fig. 11, multilevel memory is shared by many PEs. It
can realize high speed transfer between arbitrary PEs when
the transferred data is small. However, when all the PEs
transfer data to adjacent PEs, memory access contention and
bus contention occur and the data transfer speed is reduced.
Moreover, data transfer between multilevel caches spend
much resources. This memory bottleneck is inevitable for
this architecture. On the other hand, in our accelerator,
memory access contention and bus contention are avoided
because each PE accesses an adjacent PE in the same direc-
tion at the same time as shown in Fig. 6. By using this trans-
fer technique and the proposed six-stage pipeline shown in
Fig. 5, we can achieve high performance in the proportion
of the number of calculators × operation clocks. If we con-
struct the proposed array structure by using the calculator
of the C2075 the predicted performance is improved nearly
105 times as shown in the bottom column of Table 4. As
GPGPU is being improved rapidly, state-of-the-art GPGPU
is more than 3 times faster than C2075 in peek speed. Even
if it takes this into consideration, our proposed accelerator is

704
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

Table 5 Execution time for analyzing the waveguide shown in Fig. 1 on Nvidia Tesla C2075

Implementation
Use of techniques Execution time [s]

P1 S2 M3 R4 U5 Hx, Hy, Ez fields update Driving, termination, and Ez integration Total

1st YES NO NO NO NO 6.65 3.55 10.20

2nd YES YES NO YES YES 5.61 1.65 7.26

3rd YES YES YES YES YES 5.35 1.65 7.00
1 P: Padding technique
2 S: Shared memory
3 M: Calculating multiple nodes by one thread

4 R: Reduction techniques
5 U: #pragma unroll

Fig. 11 The memory structure and data transfer in GPGPU.

nearly 3 times faster than GPGPU. Precise comparison with
NVIDIA Tesla K20 is a future work.

6. Applications of the proposed hardware

6.1 Application to the optimization of the canonical
waveguide problem

As an application of the proposed FDTD accelerator, we
consider the problem of optimizing the position and length
of waveguide irises. We change the length and the position
of irises denoted by a ∼ e in Fig. 1 in the range of a ±1
grid. The length and position of other irises are determined
so as to maintain left-and-right symmetry and up-and-down
symmetry. The number of all the structure combinations is
35 = 243. For each structure, the electromagnetic fields and
frequency characteristic are analyzed through 65536 time
steps. The structure data are generated by the host PC and
transferred to a memory in the FPGA board. The result an-
alyzed in the FPGA board is returned to the host PC, and
frequency analysis is performed. These processes are exe-
cuted for each structure.

The result is evaluated by the passband width, the max-
imum ripple in the passband, and the 30 dB attenuation
bandwidth. The best result is shown in Fig. 12, which is
obtained when ∆a = ∆b = ∆d = 0 and ∆c = ∆e = +1. The
low-frequency side of the passband is steeper than that of
the canonical waveguide. We evaluate the execution time,
excluding the data transfer time between the host and the
FPGA board because the implemented JTAG interface is
very slow. It is possible to simultaneously execute data
transfer and FDTD calculations in the FPGA board if the
high-speed PCI Express interface is applied. So, the execu-
tion time can be calculated by

Fig. 12 Comparison of S parameters between the obtained structure and
the original structure.

Fig. 13 The passband and stopband sensitivity for variations of each pa-
rameter.

T = (Ninit + Nanalysis × 65536) × 243/100M

= (392496 + 1224 × 65536) × 243/100M

= 186.8s. (21)

6.2 Application to the sensitivity verification of waveguide

The proposed accelerator is also useful for evaluating a char-
acteristic variation arising from the structure variation of
waveguides. When each of the parameters of the waveguide
shown in Fig. 1 is changed in the range of ±5 grid, the pass-
band and stopband width variations are shown in Fig. 13.
We can see that parameters d and e are especially sensitive.

TAKASU et al.: AN FPGA IMPLEMENTATION OF THE TWO-DIMENSIONAL FDTD METHOD AND ITS PERFORMANCE COMPARISON WITH GPGPU
705

7. Conclusions

An FPGA accelerator dedicated for the two-dimensional
FDTD method is presented. The proposed accelerator im-
plemented with Altera Stratix V (5SGSMD5K2F40C2N)
is 11 times faster than existing FPGA accelerators and 9
times faster than Tesla C2075. It has an accuracy of about
70 dB on S 21 parameters and driving signal generation
and impedance termination are also implemented. The ap-
plications to the optimization of the canonical waveguide
problem and the sensitivity verification of waveguide were
shown. Although the applicable size is not large at present,
with the rapid progress of the FPGA technology, a 1M
node can be processed by a next generation FPGA. If we
use multiple FPGAs, the allowable size can be further ex-
tended. This method is a good candidate for use as a high-
performance computing (HPC) method in the near future.

References

[1] R. N. Schneider, L. E. Turner, and M. M. Okoniewski, “Application
of FPGA technology to accelerate the finite-difference time-domain
(FDTD) method,” Proceedings of the 2002 ACM/SIGDA tenth inter-
national symposium on field-programmable gate arrays, FPGA ’02,
New York, NY, USA, pp. 97–105, ACM, Feb. 2002.

[2] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable par-
allel programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53,
Mar./Apr. 2008.

[3] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, M. S. Mirotznik, and
D. W. Prather, “Hardware implementation of a three-dimensional
finite-difference time-domain algorithm,” Antennas and Wireless
Propagation Letters, IEEE, vol. 2, no. 1, pp. 54–57, 2003.

[4] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, “An FPGA im-
plementation of the two-dimensional finite-difference time-domain
(FDTD) algorithm,” Proceedings of the 2004 ACM/SIGDA 12th in-
ternational symposium on field programmable gate arrays, FPGA
’04, New York, NY, USA, pp. 213–222, ACM, 2004.

[5] S. Endo, J. Sonoda, and M. Sato, “Acceleration of FDTD method
with time and space pipeline in FPGA implementation,” The Trans-
actions of the Institute of Electronics, Information and Communi-
cation Engineers. B, vol. 92, no. 1, pp. 243–249, Jan. 2009. (in
Japanese).

[6] K. Sano, L. Wang, and S. Yamamoto, “Prototype implementation of
array-processor extensible over multiple FPGAs for scalable sten-
cil computation,” SIGARCH Computer Architecture News, vol. 38,
no. 4, pp. 80–86, Jan. 2011.

[7] K. Sano, W. Luzhou, Y. Hatsuda, T. Iizuka, and S. Yamamoto,
“FPGA-array with bandwidth-reduction mechanism for scalable and
power-efficient numerical simulations based on finite difference
methods,” ACM Trans. Reconfigurable Technol. Syst., vol. 3, no. 4,
pp. 21:1–21:35, Nov. 2010.

[8] K. Sano, S. Yamamoto, and Y. Hatsuda, “Domain-specific pro-
grammable design of scalable streaming-array for power-efficient
stencil computation,” SIGARCH Comput. Archit. News, vol. 39,
no. 4, pp. 44–49, Dec. 2011.

[9] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-FPGA accelerator
for scalable stencil computation with constant memory-bandwidth,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 3, pp. 695–705, Mar. 2014.

[10] J. Eyre, “The digital signal processor derby,” Spectrum, IEEE,
vol. 38, no. 6, pp. 62–68, June 2001.

[11] K. Compton, S. Hauck, and K. Compton, “An introduction to recon-
figurable computing,” IEEE Computer, 2000.

[12] N. Takada, T. Shimobaba, N. Masuda, and T. Ito, “High-speed
FDTD simulation algorithm for GPU with compute unified device
architecture,” Antennas and Propagation Society International Sym-
posium, 2009. APSURSI ’09, Charleston SC, USA, pp. 1–4, IEEE,
June 2009.

[13] P. Sypek, A. Dziekonski, and M. Mrozowski, “How to render FDTD
computations more effective using a graphics accelerator,” IEEE
Transactions on Magnetics, vol. 45, no. 3, pp. 1324–1327, Mar.
2009.

[14] N. Kawada, K. Okubo, and T. Tsuchiya, “A performance compar-
ison of numerical analysis of electromagnetic field in time domain
using graphics processing unit (GPU) parallel computing,” IEICE,
vol. J94-B, no. 3, pp. 480–483, Mar. 2011. (in Japanese).

[15] N. Kawada, K. Okubo, N. Tagawa, and T. Tsuchiya, “Multi-
GPU numerical simulation of electromagnetic field with high-speed
visualization using CUDA and OpenGL,” B-Abstracts of IEICE
TRANSACTIONS on Communications, vol. J95-B, no. 2, pp. 375–
380, Feb. 2012. (in Japanese).

[16] T. Ito, Introduction to GPU programming, Kodansya, Tokyo, 2013.
(in Japanese).

[17] N. Morita, “Acceleration of an FDTD solver for analyzing MMIC
passive element circuit characteristics by using GPGPU,” IEICE,
vol. J96-C, no. 6, pp. 94–102, June 2013. (in Japanese).

[18] S. Hattori, A. Onozawa, and T. Shibata, “C-15-12 FDTD simulation
of a waveguide canonical problem using GPGPU,” Proceedings of
the IEICE General Conference, vol. 2012, no. 1, p. 319, Mar. 2012.
(in Japanese).

[19] http://www.brl.ntt.co.jp/event/scienceplaza/poster/no_40.pdf
[20] http://www.ieice.org/es/est/activities/kihan_mst/01/main.html
[21] T. Shibata and T. Itoh, “Generalized-scattering-matrix modeling of

waveguide circuits using FDTD field simulations,” IEEE Trans-
actions on Microwave Theory and Techniques, vol. 46, no. 11,
pp. 1742–1751, Nov. 1998.

[22] Y. Tomioka, R. Takasu, T. Aoki, E. Hosoya, and H. Kitazawa,
“FPGA implementation of exclusive block matching for robust mov-
ing object extraction and tracking,” IEICE Transaction on Informa-
tion and Systems, vol. E97-D, no. 3, pp. 573–582, Mar. 2014.

[23] C. M. Jr., S. L. Broschat, and J. B. Schneider, “Higher-order FDTD
methods for large problems,” J. Applied Computational Electromag-
netics Society, vol. 10, pp. 17–29, 1995.

Ryota Takasu received his B.S. degree
in Electrical and Electronic Engineering from
Tokyo University of Agriculture and Technol-
ogy, Tokyo, Japan, in 2013. He is currently pur-
suing a master’s course at the university. His
research interests include image processing.

Yoichi Tomioka received his B.E., M.E.,
and D.E. degrees from Tokyo Institute of Tech-
nology, Tokyo, Japan, in 2005, 2006, and 2009,
respectively. He was a research associate at
Tokyo Institute of Technology up to 2009. Since
2009, he has been an assistant professor in the
Division of Advanced Electrical and Electronics
Engineering at Tokyo University of Agriculture
and Technology. His research interests include
image processing, security systems with mobile
robots, VLSI package design automation, and

combinational algorithms. He is a member of IEEE and IPSJ.

http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1109/LAWP.2003.812245
http://dx.doi.org/10.1109/LAWP.2003.812245
http://dx.doi.org/10.1109/LAWP.2003.812245
http://dx.doi.org/10.1109/LAWP.2003.812245
http://dx.doi.org/10.1145/1926367.1926381
http://dx.doi.org/10.1145/1926367.1926381
http://dx.doi.org/10.1145/1926367.1926381
http://dx.doi.org/10.1145/1926367.1926381
http://dx.doi.org/10.1145/1862648.1862651
http://dx.doi.org/10.1145/1862648.1862651
http://dx.doi.org/10.1145/1862648.1862651
http://dx.doi.org/10.1145/1862648.1862651
http://dx.doi.org/10.1145/1862648.1862651
http://dx.doi.org/10.1145/2082156.2082168
http://dx.doi.org/10.1145/2082156.2082168
http://dx.doi.org/10.1145/2082156.2082168
http://dx.doi.org/10.1145/2082156.2082168
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TPDS.2013.51
http://dx.doi.org/10.1109/TMAG.2009.2012614
http://dx.doi.org/10.1109/TMAG.2009.2012614
http://dx.doi.org/10.1109/TMAG.2009.2012614
http://dx.doi.org/10.1109/TMAG.2009.2012614
http://www.brl.ntt.co.jp/event/scienceplaza/poster/no_40.pdf
http://www.ieice.org/es/est/activities/kihan_mst/01/main.html
http://dx.doi.org/10.1109/22.734574
http://dx.doi.org/10.1109/22.734574
http://dx.doi.org/10.1109/22.734574
http://dx.doi.org/10.1109/22.734574

706
IEICE TRANS. ELECTRON., VOL.E97–C, NO.7 JULY 2014

Yutaro Ishigaki graduated from Tokyo
National College of Technology, Tokyo, Japan,
in 2012. He is currently pursuing a bachelor’s
course at Tokyo University of Agriculture and
Technology, Tokyo, Japan. His research inter-
ests include microprocessor and image process-
ing. He is a member of IEEE.

Ning Li is currently pursuing a bachelor’s
course at Tokyo University of Agriculture and
Technology, Tokyo, Japan. His research inter-
ests include digital circuits and FPGAs.

Tsugimichi Shibata graduated from Tokyo
National College of Technology in 1980 and
received the B.S., M.S., and Ph. D. degrees
in electrical engineering from the University of
Tokyo in 1983, 1985, and 1995, respectively. In
1985, he joined NTT, where he had been en-
gaged in research on electromagnetic-field anal-
yses, design of high-speed optical front-end ICs,
and protocol-control LSIs for data transmission
systems. From 1996 to 1997, he was a Visit-
ing Scholar at the University of California at Los

Angeles (UCLA), where he did research on diakoptics in numerical simu-
lations. He is a senior member of the IEEE and IEICE, and the director of
NTT Microsystem Integration Laboratories.

Mamoru Nakanishi received the B.E. and
M.E. degrees in physical electronics from Tokyo
Institute of Technology, Tokyo, Japan, in 1986
and 1988, respectively. In 1988, he joined the
LSI Laboratories, Nippon Telegraph and Tele-
phone Corporation (NTT). He was engaged in
research on highly parallel processing system
and LSI architectures. He is a project manager
of the First Promotion Project, NTT Microsys-
tem Integration Laboratories. He is a member of
IPSJ and IEEE.

Hitoshi Kitazawa received his B.S., M.S.,
and Ph.D. degrees in Electronic Engineering
from Tokyo Institute of Technology, Tokyo,
Japan, in 1974, 1976 and 1979, respectively. He
joined the Electrical Communication Laborato-
ries, Nippon Telegraph and Telephone Corpora-
tion (NTT), in 1979. Since 2002, he is a profes-
sor at Tokyo University of Agriculture and Tech-
nology. His research interests include VLSI
CAD algorithm, computer graphics and image
processing. He is a member of IPSJ and IEEE.

	e97-c_7_697_top
	e97-c_7_697

