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PAPER Special Section on VLSI Design and CAD Algorithms

Routing of Monotonic Parallel and Orthogonal Netlists for
Single-Layer Ball Grid Array Packages

Yoichi TOMIOKA†a), Nonmember and Atsushi TAKAHASHI†b), Member

SUMMARY Ball Grid Array packages in which I/O pins are arranged
in a grid array pattern realize a number of connections between chips and
PCB, but it takes much time in manual routing. So the demand for automa-
tion of package routing is increasing. In this paper, we give the necessary
and sufficient condition that all nets can be connected by monotonic routes
when a net consists of a finger and a ball and fingers are on the two par-
allel boundaries of the Ball Grid Array package, and propose a monotonic
routing method based on this condition. Moreover, we give a necessary
condition and a sufficient condition when fingers are on the two orthogonal
boundaries, and propose a monotonic routing method based on the neces-
sary condition.
key words: ball grid array, monotonic, single-layer, package, routing

1. Introduction

Ball Grid Array (BGA) packages as shown in Fig. 1, in
which I/O pins are placed in a grid array pattern, realize
a number of connections between chips and the printed cir-
cuit board (PCB). Bonding fingers are connected to chips,
and solder balls are I/O pins of the package in a grid ar-
ray pattern. Since the structure of BGA packages is simple,
many routes can be realized in few layers in the packages
if connection requirements and routing patterns are suitable
for the structure. In current package routing design, the de-
signer generates satisfactory routing patterns by using the
properties of connection requirements effectively. But it
takes much time for large packages since the huge number
of routes needs to be realized. So, the demand for automa-
tion of package routing is increasing. In this paper, we con-
sider routing for a single-layer BGA package as the first step
for BGA packages routing.

In the literature on planar routing, there are a lot of
problem formulations and approaches. For example, prob-
lem formulations for single-row and double-row routing,
where terminals are placed on single-row and double-row,
are proposed in [1] and [2], respectively. Though these prob-
lem formulations are similar to problems for single-layer
BGA packages, approaches for them are not enough to ob-
tain satisfactory routes for BGA packages. Though there ex-
ist other approaches and parts of them are included in several
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Fig. 1 Ball grid array package.

tools, most tools are for routing on PCBs or IC chips. Most
approaches proposed so far can not immediately apply to
BGA packages routing which contains special requirements
and constraints on BGA packages. Actually, many parts of
the routing process for BGA packages are realized manually
with support tools.

In order to obtain a satisfactory routing pattern, the
analysis of manual routing patterns is necessary. We intro-
duce know-how in manual routing into our methods to ob-
tain satisfactory routing pattern efficiently. In manual rout-
ing patterns, though routes may snake, most of them do not
go back. The routes which do not go back are said to be
monotonic. In monotonic routing patterns, it is expected
that the total wire length tends to be small, and it is easy
to decide the route of each net. But there exists a netlist that
cannot be realized by monotonic routes in one layer with any
design rule. In cases that fingers in a netlist are on the same
boundary, the necessary and sufficient condition for all nets
being realized by monotonic routes is known. In this paper,
we generalize it for cases that fingers in a netlist are on two
boundaries.

There also exists a netlist in which a design rule may
be satisfied if non-monotonic routes are allowed. In these
cases, non-monotonic routes are needed. Though we aim to
realize nets in one layer under a certain design rule, in this
paper we propose an approach in which all nets are realized
by monotonic routes. The obtained monotonic routes will
be an initial solution in iterative improvement to satisfy the
design rule.

In literatures for BGA package, several approaches fo-
cusing on monotonic routes were proposed. The first ap-
proach for single-layer BGA packages was proposed in [3]
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and it was improved in [4]. Their approach generates opti-
mal uniform distribution of wire by generating connection
requirements. An approach for 2-layer BGA packages was
proposed in [5]. It is given connection requirements, and
optimizes the total wire length and the wire congestion by
improving via assignment.

Also, several approaches considering non-monotonic
routes were proposed. The approach for multilayer Pin Grid
Array (PGA) and Ball Grid Array packages were proposed
in [6] and [7], respectively. They assign each net to a layer,
and realize nets in respective layer.

All of them divide the package into several sectors, and
nets are realized within each sector. Basically, each sec-
tor consists of bonding fingers on the same boundary of the
package and solder balls, and a net in each sector consists
of a bonding finger and a solder ball. Namely, these ap-
proaches cannot be applied if it is impossible to divide the
package into such sectors. So, we propose an approach for
the region consisting of solder balls and bonding fingers on
two boundaries of the package as shown in Fig. 2.

Section 2 introduces routing model, and gives some
definitions for analysis. Connection requirements are the
set of nets and are called a netlist. A parallel netlist, in
which bonding fingers are on two parallel boundaries of the
package, is shown in Fig. 2(a). In Sect. 3, we give the nec-
essary and sufficient condition that all nets in the parallel
netlist can be realized by monotonic routes, and propose
a monotonic routing method based on this condition. An
orthogonal netlist, in which bonding fingers are on two or-
thogonal boundaries of the package, is shown in Fig. 2(b). In
Sect. 4, we give a necessary condition and a sufficient condi-
tion that all nets in the orthogonal netlist can be realized by
monotonic routes, and propose a monotonic routing method
based on the proposed necessary condition. There may exist
more than one monotonic routing pattern that corresponds
to a parallel netlist and an orthogonal netlist, respectively.
How to select one among them that meets the design rule,
if it exists, is in our future works. Since it is not guaranteed
that our routing method for orthogonal netlists completes
routing, we implement our method for orthogonal netlists
with C++ language, and applied it to orthogonal netlists in

(a) Parallel netlist. (b) Orthogonal netlist.

Fig. 2 Monotonic netlists decision problem.

Sect. 5. Section 6 concludes this paper.

2. Preliminary

2.1 Definitions

In this paper, we assume that the BGA package has con-
nection requirements between bounding fingers placed on
boundaries of the package and solder balls placed in a grid
array pattern. A solder ball, which we will refer to as a ball,
is an I/O pin of the package and is connected to the PCB.
A bonding finger, which we will refer to as a finger, is con-
nected to the chip by a bonding wire.

We assume that all nets are two-terminal nets connect-
ing a finger to a ball. A netlist is the set of such nets and is
represented by N, and let n be the number of nets in N. We
refer to a finger placed on a bottom boundary of the pack-
age as a bottom finger, and refer to a net which consists of
a bottom finger and a ball as a bottom net. Similarly, a top
net and a left net are defined. Bottom nets and top nets are
labeled according to the order of fingers from the left to the
right as b1, b2, b3, . . . and t1, t2, t3, . . ., respectively. Left nets
are labeled according to the order of fingers from the bot-
tom to the top as l1, l2, l3, . . .. Let B,T, and L be the sets of
bottom, top, and left nets, respectively.

We define the relation between nets according to their
ball positions as shown in Fig. 3. Let (xa, ya) and (xb, yb) be
the coordinates of the balls of nets a and b, respectively. The
relation between a and b is defined as follows.

• If xa < xb and ya = yb, then a is said to be to the left of
b and the relation is represented by aHb.

• If xa = xb and ya < yb, then a is said to be below b and
the relation is represented by aVb.

• If xa < xb and ya < yb, then a is said to be to the lower-
left of b and the relation is represented by aS b.

• If xa < xb and ya > yb, then a is said to be to the upper-
left of b and the relation is represented by aS b.

• bHa, bVa, bS a and bS a are defined symmetrically.

In addition, net a is said to be adjacent to net b if balls of a
and b are adjacent in a row or in a column.

2.2 Order Graphs

We use some order graphs where a vertex v corresponds to

Fig. 3 Relationship between a and b.
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(a) All routes are monotonic. (b) R(b6) is non-monotonic.

Fig. 4 Monotonic and non-monotonic routes.

a net v ∈ N. The number of vertices in each order graph is
n. The edge from a vertex u to a vertex v is represented by
the ordered pair (u, v). In this paper, every order graph has
edges corresponding to the order of fingers in each bound-
ary. Eb

f , E
t
f , and El

f are the sets of edges corresponding to
the order in bottom, top, and left boundaries, respectively.
Formally, they are given as follows:

Eb
f = {(bi, bi+1) | bi, bi+1 ∈ B},

Et
f = {(ti, ti+1) | ti, ti+1 ∈ T},

El
f = {(li, li+1) | li, li+1 ∈ L}.

2.3 Monotonic Routes

A boundary, where the finger of a net is placed, is called the
finger boundary of the net. For example the finger boundary
of b1 in Fig. 2(a) is the bottom boundary. In this paper, a
monotonic route and a non-monotonic route are defined as
follows:

Definition 1: If the route from a finger to a ball intersects
any straight lines running parallel with the finger boundary
at most once, then the route is said to be monotonic. Other-
wise the route is said to be non-monotonic.

Let R(v) be the route of a net v ∈ N. All routes
are monotonic in Fig. 4(a), but R(b6) is non-monotonic in
Fig. 4(b).

If all nets in a netlist can be realized by monotonic
routes without intersecting each other, the netlist is said to
be monotonic.

A netlist is said to be single if fingers in the netlist are
placed on the same boundary. Examples of single netlists
are shown in Fig. 4. A single netlist is monotonic if and only
if nets on each row are in increasing order. Since the netlist
in Fig. 4(a) satisfies this condition, it is monotonic. On the
other hand, the netlist in Fig. 4(b) is non-monotonic since b6

and b9 are in decreasing order and either R(b6) or R(b9) be-
come non-monotonic. For a monotonic single netlist, mono-
tonic routing pattern in which all routes are monotonic is
unique. Similar observations are found in [3]–[5].

Whether a single netlist is monotonic or not is decided

(a) Order graph GS for monotonic netlist in Fig. 4(a).

(b) Order graph GS for non-monotonic netlist in Fig. 4(b).

Fig. 5 Order graphs for single netlists.

by the order graph GS . Let ES be the set of edges (a, b)
where a and b are in aHb and adjacent. E(GS ) consists of
Eb

f and ES . For example in Fig. 4(a), GS has edges (b2, b5)
and (b5, b8) corresponding to the bottom row. Similarly, GS

has edges for other rows.
The order graph GS corresponding to the netlist in

Fig. 4(a) is acyclic (See Fig. 5(a)). But, the order graph
GS corresponding to the netlist in Fig. 4(b) is cyclic (See
Fig. 5(b)). Clearly, GS is cyclic if and only if there exist nets
on a row which are in decreasing order, such as b6 and b9 in
Fig. 4(b).

3. Parallel Netlists

A parallel netlist is a netlist in which fingers are placed on
the two parallel boundaries of the package. In this section,
we analyze parallel netlists.

3.1 Monotonic Parallel Netlists

The Monotonic Parallel Netlist (MPN) Decision Problem is
defined as follows:

Definition 2: MPN Decision Problem
Input:

A parallel netlist.
Question:

Is it possible to realize all connection requirements by
monotonic routes?

An example of MPN Decision Problem is given in
Fig. 2(a). In this case, N = B ∪ T. The necessary and suffi-
cient condition for being monotonic is that nets on each row
are in increasing order without distinguishing bottom and
top nets. This condition is represented by the order graph
GP. Let Ep be the set of edges (x, y) where x and y are in
xHy and adjacent. E(GP) consists of Eb

f , Et
f , and Ep. A par-

allel netlist is shown in Fig. 6(a), and its order graph GP is
shown in Fig. 6(b). In Fig. 6(a), edges in Ep are shown. A
parallel netlist is monotonic if and only if GP is acyclic.

Theorem 1: A parallel netlist is monotonic if and only if
the order graph GP is acyclic, where E(GP) = Eb

f ∪ Et
f ∪ Ep

and
Ep = {(u, v) | u, v ∈ N, u is adjacent to v, uHv}.
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(a) Parallel netlist. (b) Order graph GP. (c) Monotonic routing pattern.

Fig. 6 MPN decision problem.

Fig. 7 b j Htp ∧ tq Hbi .

Proof. If the order graph GP is acyclic, then an order can
be obtained by GP. A monotonic routing pattern can be re-
alized according to the order as we will show in Sect. 3.2.
Conversely, consider that GP has a cycle C. If C consists
of only bottom nets, then non-monotonic routes are needed
since it means that bottom nets are in decreasing order on
a row. The same discussion is possible for top nets. So we
assume that C consists of bottom nets and top nets. Without
loss of generality, we assume that C has (bj, tp) and (tq, bi),
where bi, bj ∈ B (i < j) and tp, tq ∈ T (p < q). Since bj Htp

and tq Hbi , non-monotonic routes are needed by at least one
of them as shown in Fig. 7. �

3.2 A Parallel Routing Method

A partial order is defined by GP, and some orders are ob-
tained from the partial order. This order corresponds to an
order such that the sources in GP are removed one by one.
For example, the following order

t1 → b1 → b2 → t2 → b3 → b4 → t3 → t4 → b5

is obtained from the order graph in Fig. 6(b). According to

the obtained order, we put virtual fingers on bottom bound-
ary of the package for top nets and put virtual fingers on top
boundary for bottom nets. All nets can be realized because
we can connect a finger to its virtual finger via its ball by
monotonic route one by one from the left. An example of
solution are given in Fig. 6(c).

An order is obtained from GP in O(n+m) where m is the
number of edges in GP. The number of edges is O(n) since
each vertex in GP has at most two outgoing edges. There-
fore, the time complexity for obtaining an order is O(n).

For a monotonic parallel netlist, there are several
monotonic routing patterns since an order obtained from GP

is not unique in general. Though our method in this paper
selects an order obtained from GP at random, the selection
of the order that reduces the density is in our future work.

4. Orthogonal Netlists

An orthogonal netlist is a netlist in which fingers are placed
on the two orthogonal boundaries of the package. In this
section, we analyze orthogonal netlists.

4.1 Monotonic Orthogonal Netlists

The Monotonic Orthogonal Netlist (MON) Decision Prob-
lem is defined as follows:

Definition 3: MON Decision Problem
Input:

An orthogonal netlist.
Question:

Is it possible to realize all connection requirements by
monotonic routes?

An example of MON Decision Problem is given in
Fig. 2(b). In this case, N = B ∪ L.
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(a) Orthogonal netlist. (b) Monotonic routing pattern.

Fig. 8 MON decision problem.

4.1.1 A Sufficient Condition

An orthogonal netlist is monotonic if the order graph Gs,
which has edges corresponding to the order of nets on each
row and column without distinguishing bottom and left nets,
is acyclic. According to the order given by Gs, we put virtual
fingers. Nets are realized by connecting each finger to its
virtual finger via its ball from the lower left.

Theorem 2: An orthogonal netlist is monotonic if the or-
der graph Gs is acyclic, where E(Gs) = Eb

f ∪ El
f ∪ Es and

Es = {(u, v) |u, v ∈ N, u is adjacent to v, uHv ∨ uVv}.
An example of MON Decision Problem and a mono-

tonic routing pattern for the netlist are given in Fig. 8. In
Fig. 8(a), edges in Es are shown.

If ball of b2 in the second column in Fig. 8 is swapped
for ball of b3, Gs becomes cyclic. But, the netlist is mono-
tonic since a monotonic routing pattern for the netlist is
given in Fig. 2(b). So, this condition is not a necessary con-
dition.

4.1.2 A Necessary Condition

A route can be regarded as the set of points. Let b be a
bottom net and v be a net. If there exists a point (xb, yb)
on R(b) and a point (xv, yv) on R(v) such that xb < xv and
yb = yv, then R(v) is said to be to the right of R(b). In other
words, R(v) is said to be to the right of R(b) if there exists a
point on R(v) which is to the right of R(b). Similarly, R(v)
for net v is said to be above R(l) for left nets if there exists a
point on R(v) which is above R(l).

Theorem 3: Let routing pattern graph GR be the directed
graph constructed for a routing pattern, where the vertices
correspond to the nets, and edge set is defined as follows:

• An edge (b, v) (b ∈ B, v ∈ N) exists if and only if R(v)
is to the right of R(b).

• An edge (l, v) (l ∈ L, v ∈ N) exists if and only if R(v) is
above R(l).

If the routing pattern is monotonic, then GR is acyclic.

Proof. Consider that GR is cyclic. Let C be a cycle in GR.

Fig. 9 A cycle in GR.

The cycle C cannot consist of only bottom nets or only left
nets since there is no non-monotonic route. So, there are
edge from a bottom net to a left net and edge from a left net
to a bottom net. Without loss of generality, we assume that
C includes (bj, lp) and (lq, bi), and that R(bi) is above R(lq),
where bi, bj ∈ B (i ≤ j) and lp, lq ∈ L (p ≤ q).

Let region I be the region which is to the left of R(bi) or
R(lq), and region O be the other region except I. Formally,

I = {(x, y) | (xr, y) is on R(bi) or R(lq) where x < xr}
See Fig. 9. Since all routes are monotonic, the ball of bj and
R(bj) need to exist in region O shown in Fig. 9. The ball of lp

and R(lp) need to exist in region I, though region I contains
region in which R(lp) can not exist if R(lp) is monotonic.
Therefore, R(lp) is not to the right of R(bj), since xi < xo

if yi = yo where (xi, yi) and (xo, yo) are points in region I
and O, respectively. However, GR has the edge (bj, lp). It
contradicts definition of GR. So, GR is acyclic if all of routes
are monotonic. �

GR is not defined when a routing pattern is not given.
However, depending on the relationship between bottom net
b and left net l, there are cases that R(l) is always to the
right of R(b) in any monotonic routing patterns. In such
cases, edge (b, l) exists in GR for any monotonic routing pat-
terns. Similarly, there are cases that edge (l, b) exists in GR

for any monotonic routing patterns. The graph where only
such edges exist is the graph obtained from GR by removing
some of edges. Therefore, we consider such order graph Gn.
Clearly, Gn is acyclic.

For example, if a monotonic orthogonal netlist contains
nets b and l of relation bHl as shown in Fig. 10(a), then edge
(b, l) is in Gn since R(l) is always to the right of R(b) in any
monotonic routing patterns (Type Eh). Similarly, if a mono-
tonic orthogonal netlist contains nets bi, bj, and l (i < j) of
relation bj S bi∧(lHbi∨lS bi )∧bj S l as shown in Fig. 10(b), then
edge (l, bj) is in Gn since R(bj) is always above R(l) in any
monotonic routing patterns (Type Eb

1). Also, if it contains
nets of relation bj S

bi ∧ lS bi ∧ (bj Hl ∨ bj S l ∨ lVbj ) as shown
in Fig. 10(c), then edge (l, bi) is in Gn since R(bi) is always
above R(l) in any monotonic routing patterns (Type Eb

2).
An order graph derived from necessary conditions be-

tween two or three nets is a subgraph of Gn. Let G′n be such
order graph, and an orthogonal netlist is not monotonic if G′n
is cyclic.

Theorem 4: An orthogonal netlist is not monotonic if the
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(a) Type Eh. (b) Type Eb
1. (c) Type Eb

2.

Fig. 10 Examples of constraints.

(a) Orthogonal netlist. (b) Order graph G′n.

Fig. 11 A monotonic orthogonal netlist.

Fig. 12 Alternative constraints (b3, l3) ⊕ (l3, b2).

order graph G′n is cyclic, where E(G′n) = Eb
f ∪El

f ∪Eh∪Ev∪
Eb

1 ∪ El
1 ∪ Eb

2 ∪ El
2,

Eh = {(b, u) | bHu},
Ev = {(l, u) | lVu},
Eb

1 = {(l, bj) | bj S bi ∧ (lHbi ∨ lS bi ) ∧ bj S l},
El

1 = {(b, l j) | li S l j ∧ (bVli ∨ bS li ) ∧ bS l j },
Eb

2 = {(l, bi) | bj S
bi ∧ lS bi ∧ (bj Hl ∨ bj S l ∨ lVbj )},

El
2 = {(b, li) | l j S

li ∧ bS li ∧ (bHlj ∨ bS l j ∨ l j Vb)},
where u ∈ N, b, bi, bj ∈ B, l, li, l j ∈ L, and i < j.

G′n in Fig. 11(b) corresponds to the orthogonal netlist
in Fig. 11(a). (b1, l1), (b1, l3), and (b2, l4) are in Eh. Also,
(l1, b4), (l1, b2), and (l3, b5) are in Ev. (b3, l3) is in El

1 since
there exists a condition derived from three nets b3, l2, and l3.

In addition, there are alternative constraints. When
three balls of nets b2, b3, and l3 are placed as shown in
Fig. 12, R(l3) is non-monotonic if R(l3) is to the right of
R(b2) and below R(b3). So, in any monotonic routing pat-
terns, R(l3) is either below or to the right of R(b2) and
R(b3). Therefore, GR contains either (b3, l3) or (l3, b2) for
a monotonic routing pattern. This constraint is represented
by (b3, l3) ⊕ (l3, b2).

There exists an alternative constraint (bj, l) ⊕ (l, bi) if

(bj Vbi ∨ bj S
bi ) ∧ bi S l ∧ bj S l, where bi, bj ∈ B (i < j) and

l ∈ L. Similarly, alternative constraints for two left nets and
a bottom net are defined.

Assume that there exists three alternative constraints

(b2, l1) ⊕ (l1, b1), (b2, l2) ⊕ (l2, b1), and (b2, l3) ⊕ (l3, b1).

All of combinations except {(l1, b1), (l2, b1), (l3, b1)} and
{(b2, l1), (b2, l2), (b2, l3)} generate cycles in an order graph by
adding their edges. Therefore, we can regard these alterna-
tive constraints as an alternative constraint (b2, l1) ⊕ (l3, b1).
Since the number of alternative constraint corresponding to
two bottom nets or two left nets is at most one, the number
of alternative constraints is O(n2).

We constructed G∗n by adding some edges that corre-
sponds to alternative constraints to G′n. Let the number of al-
ternative constraints be c, and denote alternative constraints
by ai ⊕ a′i (1 ≤ i ≤ c). G∗n is defined as follows: Let G be
G = G′n; If G + ai is cyclic, then G = G + a′i; If G + a′i
is cyclic, then G = G + ai; G∗n is obtained by repeating this
operation until no edge can be added.

By the definition of G∗n, G∗n has all edges of alternative
constraints if G∗n is cyclic.

Theorem 5: G∗n is well-defined.

Proof. Let G1 and G2 be graphs obtained by the previ-
ous procedure, and suppose that G1 is different from G2.
let e1, e2, . . . , eu and f1, f2, . . . , fv be the sequences of edges
added to G′n in obtaining G1 and G2, respectively. G1 has an
edge that G2 does not have. Let ek be the first edge in the
sequence e1, e2, . . . , eu that is not an edge of G2. ek is the
edge of alternative constraint ek ⊕ e′k, and ek was selected
since G′ + e′k is cyclic where G′ = G′n + {e1, e2, . . . , ek−1}.
Since G′ is a subgraph of G2, G2+e′k is also cyclic. So, ek is
an edge of G2. It contradicts that ek is not in G2. Therefore
each ei is an edge of G2. Similarly, each fi is an edge of G1.
So, G1 = G2 and G∗n is well defined. �

In Fig. 11(a), there exist two alternative constraints
(b3, l3) ⊕ (l3, b2) and (b4, l3) ⊕ (l3, b2). Since G′n + (l3, b2)
is cyclic, G∗n = G′n + (b3, l3) + (b4, l3).

G∗n is also a subgraph of Gn if the netlist is monotonic.
We consider following lemma to show it.

Lemma 1: Let ak and a′k be edges of alternative constraints
ak ⊕ a′k in monotonic orthogonal netlist, and let G be a sub-
graph of Gn. ak is in Gn if G + a′k is cyclic.
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Proof. If the orthogonal netlist is monotonic, then mono-
tonic routing patterns exist. Let GR be the routing pattern
graph for a monotonic routing pattern. Let G be a subgraph
of Gn such that G + a′k is cyclic. Since G is also a subgraph
of GR, GR + a′k is cyclic. Therefore, GR does not have a′k
since GR is acyclic. GR has either ak or a′k, hence GR has ak.
Since the routing pattern graph for any monotonic routing
pattern has ak, Gn has ak. �

Theorem 6: An orthogonal netlist is not monotonic if G∗n
is cyclic.

Proof. We show that if an orthogonal netlist is monotonic,
then G∗n is acyclic. If the orthogonal netlist is monotonic,
then G∗n is a subgraph of Gn by Lemma 1 since G′n is a sub-
graph of Gn and edges added are edges in Gn. Therefore, G∗n
is acyclic since Gn is acyclic. �

An alternative constraint ai ⊕ a′i is said to be undecided
if G∗n + f is acyclic for any f ∈ {ai, a′i}. Assume that N is
a monotonic orthogonal netlist, and there are c′ undecided
alternative constraints. Let ai ⊕ a′i (1 ≤ i ≤ c′) be unde-
cided alternative constraints. Let GR be the routing pattern
graph for a monotonic routing pattern of N. Since either
ai or a′i is in GR, there exists a combination { f1, f2, . . . , fc′ }
of alternative constraints such that G∗n + { f1, f2, . . . , fc′ } is
acyclic, where fi ∈ {ai, a′i}. Therefore an orthogonal netlist
is not monotonic if G∗n+{ f1, f2, . . . , fk} is cyclic for any com-
bination { f1, f2, . . . , fk} of undecided alternative constrains.
This constraints should be analyzed thoroughly in our fu-
ture work since the number of combinations is exponential
in terms of the number of undecided alternative constraints.

4.2 An Orthogonal Routing Method

In this section, we present a monotonic orthogonal rout-
ing method. Similar to parallel routing method, we obtain
an order from an order graph, and each route is generated
one by one according to the order. But, it has several dif-
ferent points. Firstly, we need to consider alternative con-
straints and undecided alternative constraints should be de-
cided without generating a cycle in the order graph. Though
our algorithm try not to generate cycles, an order graph may
become cyclic depending on a combination of undecided al-
ternative constraints since each undecided alternative con-
straint is decided one by one. Secondly, it is not guaran-
teed that a monotonic routing pattern can be obtained even
if we can construct an acyclic order graph with edges of all
alternative constraints, and generate routes according to an
order obtained from the order graph. Non-monotonic route
might be generated due to the unknown constraints between
four more nets, as if order b2, l3, and b3 for the netlist in
Fig. 12(b) was obtained without considering alternative con-
straints. In this paper, we give a simple method for orthogo-
nal netlist, though we should investigate whether monotonic
routing pattern can be obtained or not if an acyclic order
graph is obtained which is in our future work. More prac-
tical algorithm will be obtained if more detailed analysis of
alternative constraints is given and the density is considered.

In our order selection method first, order graph G′n
is constructed by necessary conditions without alternative
constraints. Then, edges corresponding to alternative con-
straints is added if the decision is possible. This procedure
is shown in Fig. 13 as Alternative Decision. The graph ob-
tained by alternative decision is a subgraph of G∗n since some
edges which can be added to G∗n may not be added.

In alternative decision, whether an order graph be-
comes cyclic by adding either edge or not is checked for
each alternative constraint at most once. Cyclic check needs
O(n + m). So, the time complexity in alternative decision
is O(n3 + n2m) since the number of alternative constraints is
O(n2). Since alternative decision is applied after each source
removal, the time complexity finding order is O(n4 + n3m).
But, in Sect. 5 we show that our method can obtain a mono-
tonic routing pattern speedy.

According to the obtained order, fingers are connected

Order Selection(Netlist N) {
create order graph G′n from N
G← G′n
A← the set of alternative constraints for N
G← Alternative Decision(G, A)
S← a set of the sources in G
while S � ∅ {

select v ∈ S
remove the vertex v and edges connected to v in G
for each (u1, u2) ⊕ (u3, v) ∈ A

G ← G + (u1, u2)
if alternative constraints corresponding to v exist,

then they are removed from A
G ← Alternative Decision(G, A)
S← a set of the sources in updated G
}
if G is empty, return the obtained order of nets
otherwise return failure status

}

Alternative Decision(Graph G, alternative constraints A) {
for each ai ⊕ a′i

if G + ai is cyclic,
then G ← G + a′i , and remove ai ⊕ a′i from A

return G
}

Fig. 13 Order selection algorithm.

(a) Before b3 is realized. (b) After b3 is realized.

Fig. 14 An example of making routes.



3558
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Table 1 The results of experiments. (5000 patterns in each size)

#(Net) 64 121 256 529 1024 2025

#(Failure) 0 0 1 1 6 7
Success Rate [%] 100 100 99.98 99.98 99.88 99.86

#(Alt. Min.) 0 0 5 15 25 66
#(Alt. Ave.) 7.1 14.1 28.6 53.4 94.6 171.0
#(Alt. Max.) 37 71 125 277 336 651
Time [sec] 0.003 0.007 0.021 0.059 0.175 0.609

to balls by monotonic routes one by one from the lower left.
Formally, routing of a bottom net is defined as follows: A
ball is said to be connected if its route is completed. Oth-
erwise, a ball is said to be unconnected. Let b be a bottom
net. R(b) passes as the left as possible on condition that
R(b) passes to the right of the unconnected left net balls
in the lower-left region of b and connected balls. For ex-
ample, consider R(b3) in Fig. 14. R(l4) and R(l5) become
non-monotonic if R(b3) passes to the left of them. There-
fore, R(b3) needs to avoid balls of nets l4 and l5 as shown in
Fig. 14(b). Similarly, routes of left nets can be decided.

5. Experiments and Results

We implemented our method for orthogonal netlists with
C++ language and applied it to monotonic orthogonal
netlists in order to investigate success rate since it is not
guarantee that our method for orthogonal netlist completes
routing. The program ran on a personal computer with a
3.4 GHz CPU and 1 GB of memory.

Monotonic orthogonal netlists are generated by relax-
ing the sufficient condition in Sect. 4.1.1. We applied our
method to problems of 6 sizes from 8 × 8 to 45 × 45. 5000
patterns were generated in each size. Results are shown in
Table 1. In Table 1, the number of netlists that monotonic
routing patterns are not obtained and the ratio that mono-
tonic routing patterns are obtained for each size are shown
in second and third row, respectively. The minimum, av-
erage, and maximum number of alternative constraints and
average computation time per netlist for each size are shown
in from fourth row to seventh row, respectively. An example
of output is shown in Fig. 15.

In this experiment, all of failures occur because the or-
der graph becomes cyclic due to a bad selection of alter-
native constraints. A monotonic routing pattern may not be
obtained even if an order is obtained by our algorithm shown
in Fig. 13. However, a monotonic routing pattern is obtained
when an order is obtained in this experiment.

The number of alternative constraints increases linearly
in teams of the number of nets in this experiment. However,
the success rate is more than 99% and a monotonic routing
pattern is obtained within 1 second even if the number of
nets is more than 2000. For current problem size, the execu-
tion time and success rate are enough.

The practical algorithm will be obtained if the density
is taken into account in order selecting.

Fig. 15 An example of output. (100 nets)

6. Conclusion

We gave the necessary and sufficient condition for parallel
netlist being monotonic, and proposed a routing method for
monotonic parallel netlists based on this condition. More-
over we gave a necessary condition and a sufficient condi-
tion for orthogonal netlists being monotonic, and proposed a
routing method for monotonic orthogonal netlists based on
the necessary condition.

As our future work, we need to investigate alternative
constraints and whether constraints between four or more
nets exist or not. Routing methods that take routing den-
sity into consideration should be proposed. Moreover, the
method taking non-monotonic routes into account should be
proposed. In the method, the monotonic routes obtained by
our proposed method is used as an initial solution and is im-
proved iteratively to satisfy the design rule.
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