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Abstract. The main purpose of this research is to test the use of deep learning for automatically classifying an
English learner’s pronunciation proficiency, a step in the construction of a system that supports second language
learners. Our deep learning dataset consists of 28 speakers – ranging in proficiency from native to beginner non-
native – reading the same 216-word English story. In the supervised deep learning training process, we first
label the English proficiency level of the data, but this is a complicated task because there are a number of
different ways to determine someone’s speech proficiency. In this research, we focus on three elements: foreign
accent, speech fluency (as measured by total number of pauses, total length of pauses, and speed of speech)
and pronunciation (as measured by speech intelligibility). We use Long Short-Term Memory (LSTM) layers
for deep learning, train a computer on differently labeled data, test a computer on separate data, and present the
results. Features used from audio data are calculated by Mel-Frequency Cepstrum Coefficients (MFCCs) and
pitch. We try several combinations of parameters for deep learning to find out what settings are best for our
database. We also try changing the labeling method, changing the length of each audio sample, and changing
the method of cross-validation. As a result, we conclude that labeling by speech fluency instead of by speech
intelligibility tends to get better deep learning test accuracy.

1 Introduction

1.1 Motivation and goal

English is an important tool for communication in an in-
creasingly global society, and many non-native speakers
study English-as-a-Foreign-Language (EFL). However, it
is sometimes difficult for second language (L2) speakers to
perceive and produce pronunciation differences between
other speakers (including natives) and themselves. Al-
though this is not necessarily a problem for communica-
tion, such differences often do result in communication
breakdown.

Japanese English learners have common tendencies
in their English pronunciation errors [1]. For instance,
Japanese learners of English tend to mistake the pronunci-
ation of the high back lax vowel /U/ because it is not an un-
derlying phoneme in Japanese words. So, a minimal pair
such as “fool” and “full” may sound the same to them.
Moreover, in general, L2 speakers’ speed of speech is
slower than native speakers, because they are overly care-
ful when speaking in English. In this way, there are many
English pronunciation differences between native speakers
and non-native speakers, some of which lead to communi-
cation problems.

Based on this situation, the ultimate goal of our re-
search is constructing a system that supports pronunciation
study for EFL learners. A system that can give feedback
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about differences between L2 speakers’ and native speak-
ers’ English pronunciation would be a valuable pedagogi-
cal tool. Aside from pedagogical purposes, such a system
might be useful for forensic phonetics and security, when
people need to make positive identifications of speakers.
To construct such a system, it is helpful to automatically
detect errors in speech and judge the level of English pro-
nunciation (see [2] for a good overview).

However, categorizing a speaker’s pronunciation pro-
ficiency is not a straightforward task. To categorize speak-
ers, the problem is determining what factors cause peo-
ple to think “This speech sounds like a native speaker” or
“Person A sounds more proficient than person B”. Ratings
of language proficiency can be measured in many different
ways [3], [4], [5].

As a step towards making a pedagogical system as de-
scribed above, we first use deep learning for categorizing
non-native speakers’ English speaking proficiency. Deep
learning is a type of machine learning that uses deep neural
networks (DNNs). One of the merits of using deep learn-
ing is that a machine can choose the salient features from
many features in the data. To investigate speaking pro-
ficiency of L2 speakers, this method seems more appro-
priate than general machine learning because speech has
so many features, and proficiency has so many indicators.
Therefore, we chose deep learning for the main method in
this research.

Moreover, to get a large enough training dataset for
use with deep learning, we used (and added to) an exist-
ing database in our lab. There are 4 types of data in our



database: audio data, ultrasound tongue video data, side-
view face video data, and front-view face video data [6].
In this paper, we focus on only the audio data.

1.2 Deep learning

As mentioned above, deep learning is a type of machine
learning that uses DNNs. A deep neural network (DNN)
is an artificial neural network with multiple layers between
the input and output layers. The type of neural network
that we choose is important. For example, Convolutional
Neural Network (CNN) is suitable for image data, and Re-
current Neural Network (RNN) is better than CNN for data
with a time series [7].

In our research, Long Short-Term Memory (LSTM) is
most frequent. LSTM is one type of RNN architecture. A
common LSTM unit is composed of a cell, an input gate,
an output gate, and a forget gate. The cell remembers val-
ues over arbitrary time intervals and the gates control the
information flow into and out of the cell. Thus, an LSTM
network is very suitable for classification and prediction
with time-series data.

In machine learning, the method the computer uses
to learn during training is important, specifically unsuper-
vised learning or supervised learning. Unsupervised learn-
ing means using a training dataset without pre-existing
labels – the computer determines categories on its own
– whereas supervised learning means using a training
dataset with pre-existing user-defined labels [7].

In the case of labeling for training deep learning mod-
els, one factor that could affect results is label noise – the
problem of not being able to clearly label some of the data
or the problem of a lack of agreement between experts on
a given label [8]. If one trains DNNs on noisy labeled
data, overfitting can occur, which lowers the effectiveness
of the deep learning [9]. In the past, some researchers tried
to make DNNs that overcome strong label noise [10] and
estimate probabilities of label noise.

In past research, many researchers have tried to au-
tomatically recognize pronunciation differences between
native speakers and non-native speakers by using a variety
of ways (for an overview, see [2]). One example is using
tongue trajectories of ultrasound tongue images [11]. In
that research, a cosine convolution filter was used to ex-
tract features from ultrasound tongue images. Native and
non-native speakers’ tongue motion was compared and
pronunciation errors could be automatically detected, es-
pecially for /k/, /S/, and /r/.

Other deep learning research has used not only audio
speech data, but also ultrasound image data [12] and the
combination of the two. In that research, the authors com-
pared (1) the accuracy of deep RNN by using only audio
data to (2) the accuracy of using both audio and point-
tracked tongue information. They found that using fea-
tures of both types of data can get higher accuracy for deep
learning than using features of only one data type.

2 Database for deep learning

2.1 Participants

We used data from a total of 28 participants in this study –
23 who were from a preexisting database [6] and an addi-
tional 5 participants whose data we collected in exactly the
same way as in the past. The former 23 were used in Tri-
als 1 & 2, and the entire 28 were used in Trials 3 & 4. Ta-
ble 1 shows information about the participants: their sound
(WAV) file identification number(s) for internal use, age,
gender, and English proficiency (TOEIC) score, if avail-
able. The 5 participants who were added after Trials 1 &
2 have an asterisk after the participant number.

Table 1: Participant list (ordered by TOEIC score)

Participant WAV Age Gender TOEIC
# file # score
1 618 32 M 9901

2 621 33 F 965
3* 635, 636 28 M 9602

4 619 30 F 920
5 617 — F 910
6 622 60 F 9003

7 616 49 F 9003

8* 632, 633 44 M 9003

9* 639, 640 21 F 810
10* 637, 638 22 M 765
11 620 32 F 685
12 598 23 M 650
13 597 24 M 600
14* 641, 642 19 M 595
15 603 20 M 560
16 605 24 M 510
17 599 23 M 450
18 612 24 M 440
19 613 20 M 425
20 604 24 M 400
21 606 24 M 400
22 610 19 M 400
23 600 19 M 395
24 607 19 M 375
25 609 18 F 375
26 602 23 M 350
27 615 23 M 350
28 608 21 M 225

* participant added after Trials 1 & 2
1 actually native speaker (USA)
2 converted from TOEFL iBT=98
3 converted from Eiken Level 1

2.2 Data collection

2.2.1 Apparatus

The apparatus used to collect data can be seen in Figure 1
and is described in detail in [6]. Participants sat on a chair
in front of a laptop that displayed stimuli using Powerpoint



slides. Ultrasound tongue image video was mixed with au-
dio and exported to an iMac computer. Participants needed
to wear a helmet holding the probe of the ultrasound ma-
chine to prevent the probe from shifting relative to the
skull during speech. We recorded participants’ speech at
a 48,000 Hz sampling rate, using a DPA 4080 cardioid
lapel microphone and a Korg MR-1000 recorder. Speak-
ers repeated the same stimuli passage twice, because we
recorded ultrasound movies in two separate planes: mid-
sagittal and coronal.

Figure 1: Data collection apparatus in the CLR Phonetics
Lab

2.2.2 Stimuli

As English stimuli, we used a version of the famous Ae-
sop fable “The Boy Who Cried Wolf” [13]. The sentences
below show the whole 216-word Wolf Passage. Note that
this stimuli has at least three clear instances of each of the
English monophthong vowels, most of the diphthongs and
consonants, and even some minimal pair words such as
“fist”/“feast” and “raising”/“racing”. There are 134 unique
words in the passage, in a great range of phonetic environ-
ments.

There was once a poor shepherd boy who
used to watch his flocks in the fields next to a
dark forest near the foot of a mountain. One
hot afternoon, he thought up a good plan to
get some company for himself and also have
a little fun. Raising his fist in the air, he ran
down to the village shouting “Wolf, Wolf”.
As soon as they heard him, the villagers all
rushed from their homes, full of concern for
his safety, and two of his cousins even stayed
with him for a short while. This gave the boy
so much pleasure that a few days later he tried
exactly the same trick again, and once more
he was successful. However, not long after, a
wolf that had just escaped from the zoo was
looking for a change from its usual diet of
chicken and duck. So, overcoming its fear of

being shot, it actually did come out from the
forest and began to threaten the sheep. Racing
down to the village, the boy of course cried
out even louder than before. Unfortunately,
as all the villagers were convinced that he was
trying to fool them a third time, they told him,
“Go away and don’t bother us again”. And so
the wolf had a feast.

2.3 Data cleaning

When training a computer on a dataset for deep learning, it
is important to have as clear a signal as possible – whether
it is audio, visual, or other. Since participants sometimes
made whole-word mistakes in their pronunciation of the
stimuli, and since the signal intensity was not consistent
across participants, we had to clean the data before deep
learning. We used Praat software [14] to carry out the fol-
lowing steps for data cleaning: (1) extracted the required
part of the English stimuli, (2) scaled intensity to a new av-
erage of 70 dB, (3) converted audio from stereo to mono,
and (4) downsampled audio sampling rate from 48,000 Hz
to 24,000 Hz. In step 2, the root-mean-square amplitude
of the sound will come to lie 70 dB above the assumed
auditory threshold of 0.00002 Pa.

2.4 Data labeling

As mentioned in Section 1.2, before using the supervised
learning type of deep learning, we needed to label the data.
The problem is that there are so many ways to catego-
rize participants into English native speech levels: for-
eign accent, pronunciation intelligibility, fluency, gram-
mar, vocabulary, pragmatics, etc. To measure fluency,
past researchers have used speech rate in words per minute
(WPM) [15] and number and length of pauses [16]. Mea-
surement of speech intelligibility is often done by having
listeners transcribe spoken speech and seeing how many
words they get correct [17].

When determining the final labels in the supervised
deep learning training process, we decided to try defin-
ing labels using different factors such as perceived foreign
accent, fluency, and intelligibility. These different labeling
methods will be described in more detail in Section 3.

3 Deep learning data analysis and results

3.1 Trial 1: Two-second audio segments

In this trial, we used audio data from 23 participants. Be-
fore extracting features from the data, we separated the
audio into many 2-second files because the length of the
original sound files were too long to process in computer
memory. We allocated 1139 files (about 80%) for train-
ing and 310 files (about 20%) for testing. As for features,
we used 13-dimensional Mel-Frequency Cepstrum Coef-
ficients (MFCCs) and pitch (fundamental frequency (f0)).
MFCCs are coefficients that collectively make up the Mel-
frequency cepstrum. To calculate both MFCCs and f0, we



used the MATLAB function “HelperComputePitchAndM-
FCC” [18]. After calculating MFCCs and f0 features, we
normalized the features to be from -1 to 1. Adding the
pitch feature to the MFCCs, the resultant input data was
14-dimensional vectors.

We categorized the 23 participants’ data into groups,
labeling based on judgements of degree of nativeness ob-
tained from 8 native or near-native EFL professors at the
University of Aizu. At first, we made a questionnaire us-
ing a Google form, a free tool provided by Google. Pro-
fessors listened to each person’s first two sentences from
the Wolf Passage. The order of the files was randomized.
After listening to an audio sound file from a given speaker,
they rated the speaker’s English pronunciation level on a
scale from 1 to 7, where 7 meant that it sounds like an En-
glish native speaker and 1 meant that it sounds like a very
poor non-native English speaker. After collecting all re-
sults, we calculated an average level for each speaker and
divided the 23 participants (speakers) into 5 levels.

After that, the machine trained on the labeled data and
output the test results. Settings for this trial and all the oth-
ers are shown in Table 2. Optimizer is the algorithm for
operating parameters from input layer to output layer. Ini-
tial learning rate is the step size in optimization for weight
adjusting. The size of MiniBatch is the number for choos-
ing training data randomly. If we set MiniBatch size to
be 25, training data is split into 25 sets randomly. Epochs
means the number of times that the machine trained on the
whole training dataset. The purpose of L2 regularization
is to prevent overfitting, which is a failure to fit additional
data to the training data or to predict future observations
reliably. The activation function is a function that is in-
cluded in the optimization step.

After training the computer on 80% of the sound files,
we used the remaining 20% to test how well the computer
could learn to classify the sound files into proficiency lev-
els. The test results for Trial 1 are shown in Figure 2.
The row labels in this figure are the actual given labels of
the test data, and the column labels are ones calculated
by the neural network. So for example, in the top-left
cell of the table, 6159 samples of Level 1 (labeled as the
lowest proficiency from the professors’ judgments) were
accurately classified as Level 1 by the computer. In the
top-right cell of the table, 848 samples of Level 1 were
inaccurately classified as Level 5 (the highest proficiency)
by the DNN. In the line above the 25 cells, accuracy can
be seen to be 25.246% – only about 5% better than ran-
dom chance, which would be 20%. In an attempt to obtain
a higher accuracy, we decided to use different lengths of
audio segments in Trial 2.

3.2 Trial 2: One-second and 0.1-second audio
segments

In the previous deep learning trial, audio files were divided
into many 2-second samples for deep learning. How-
ever, past researchers have used other lengths of sam-
ples [12]. Therefore, in Trial 2, we used three different
sample lengths for the audio files, to discover what sample
length could achieve the best test accuracy for our data.

Figure 2: Test results and accuracy in Trial 1. Row labels
are the actual given labels of the test data, and column
labels are ones calculated by the DNN

The three sample lengths were 100 milliseconds, 1 sec-
ond, and 2 seconds. Table 3 shows the number of files
used in training and testing for each sample length. In
Trial 2, the labeling method, the features that were used
and the amount of data were the same as in Trial 1. Be-
cause of the increase in the number of sound files, we had
to decrease the setting for maximum number of epochs,
otherwise the training portion would have taken much too
long (i.e., many days of processing).

The results showing the highest test accuracy for each
of the three sample lengths are shown in Figure 3. As
can be seen, the test accuracy of 100-millisecond sam-
ple lengths (25.9%) was slightly higher than the other two
sample lengths. Therefore, in Trials 3 and 4, we used 100-
millisecond sample audio data for deep learning.

Figure 3: Highest test accuracy obtained for each sample
time length in Trial 2



Table 2: Participants, stimuli segments, labeling, and deep learning parameters used in Trials 1–4

Parameter Trial 1 Trial 2 Trials 3 & 4
# of participants 23 23 28

Audio segment length (s) 2 2, 1, 0.1 0.1
Labeling Nativeness Nativeness Fluency & intelligibility

Optimizer Momentum (SGD) Momentum (SGD) Momentum (SGD)
Initial learning rate 0.01 0.01 0.1

MiniBatch size 25 25 64
Max epochs 70 30 30

L2 regularization 0.00001 0.00001 0.0001
Classification output activation Softmax Softmax Softmax

Table 3: The number of training and testing files for each
sample length in Trial 2

Sample Total # of training Total # of testing
length (s) wav files wav files

0.1 22922 6249
1.0 2279 621
2.0 1139 310

3.3 Trial 3: More participants and a variety of
labeling methods

In Trials 1 and 2, two problems existed in our database:
(1) not enough high-proficiency speakers meant that our
database was unbalanced, and (2) subjective judgments
caused excessive noise in the labeling of data. For these
reasons, after adding five new higher-proficiency speak-
ers’ audio data, in Trial 3 we compared results of different
labeling methods (the labeling used for categorizing En-
glish pronunciation proficiency level). The labeling meth-
ods in Trials 3 and 4 are as follows: (1) number of pauses
in the whole speech, (2) total length of pauses in the whole
speech, (3) speed of speech as measured by WPM, and
(4) labeling of data by intelligibility calculations obtained
from a native speaker transcription task in Amazon Me-
chanical Turk (AMT).

3.3.1 Labeling data by acoustic fluency information
(Trials 3 & 4)

Fluency of speech is one factor in judging someone’s L2
pronunciation. In this research, we calculated and labeled
fluency using three methods: (1) total number of pauses in
the whole speech, (2) total length of pauses in the whole
speech, and (3) speed of speech in WPM. In the first two
methods, a pause was defined as ≥400 ms, following [19].

In this way, we divided the 28 participants into 4 levels.
We changed the number of levels from 5 in the first two
trials to 4 here because 4 is a divisor of 28, so each of our
groups could have an equal number of participants. Unbal-
anced group numbers in Trials 1 and 2 were unavoidable,
but could have negatively affected deep learning results.
Table 4 shows proficiency group labeling for total number
of pauses, total length of pauses, and speed of speech in

WPM. Figure 4 shows the same data as Table 4, but plot-
ted for each individual participant.

3.3.2 Labeling data by intelligibility scores from
Amazon Mechanical Turk (Trials 3 & 4)

Another way of objectively labeling the data was using the
AMT system to get many listeners’ intelligibility scores.
AMT is one of the services offered by Amazon Web Ser-
vices. AMT is a social marketplace for tasks that require
talented human intelligence. AMT is useful for L2 speech
judgements by crowdsourcing, because we can easily de-
cide the requirements of participants [20]. To evaluate in-
telligibility, we used a dictation test [21], which is used to
determine how many words listeners are able to correctly
identify in the speakers’ speech. For judging this factor,
we used AMT because of the potential for a greater num-
ber of available participants. We set a requirement that
AMT participants be native English speakers resident in
the USA.

We used HTML for making the survey page and based
it on past research [22]. Overall, there were 56 randomly-
chosen questions for each AMT worker – two sound files
from each of the 28 participants – plus one practice ques-
tion with a native English speaker’s audio file. At first, we
divided the wolf-passage stimuli into 56 short phrases. Ta-
ble 5 shows all the phrases. Second, we made mp3 files of
all 56 phrases from each participant in the database. After
that, we pseudo-randomized the order such that the first
half (28 questions) for a given worker were randomly se-
lected from phrases 1 to 28, with each phrase being a dif-
ferent speaker. The second half (28 questions) for a given
worker were randomly selected from phrases 29 to 56,
again with each phrase being a different speaker. Doing
this enabled us to make sure that AMT workers listened
to each database participant twice in this survey and each
AMT worker heard phrases and participants in a random
order. A flowchart of how we sorted pseudo-randomly is
shown in Figure 5. Workers could listen to each of the 56
audio files up to two times and had to type exactly what
they heard each participant say.

After making the HTML file, we registered our ques-
tionnaire in AMT as a requester, and we set it to close
in 10 days. As a qualification of our questionnaire, we
required that the workers’ (listeners’) locations be within



Table 4: Proficiency group labeling, for Trials 3 & 4, for all participants by each of three measurements of fluency (total
# of pauses, total length of pauses, speed in words/minute) and one measurement of pronunciation (% intelligibility
calculated from 54 native listeners’ transcriptions)

Proficiency Proficiency Partic. Total Partic. Total Partic. Speed Partic. Word
Ranking Group # # of # length of # (WPM) # intelligibility

(high to low) label pauses pauses (s) from AMT (%)
1 7 12 1 23.2 10 156.9 8 93.5
2 1 17 15 23.2 1 152.4 7 92.2
3 15 19 12 23.5 7 134.5 4 89.6
4 4 6 19 10 23.8 3 127.8 1 89.4
5 10 19 6 27.0 8 125.4 5 89.0
6 4 20 5 28.5 11 125.3 12 85.7
7 8 20 7 28.5 15 124.3 15 85.5
8 12 21 11 29.5 6 115.2 6 84.3
9 5 21 2 31.1 26 111.3 14 83.1
10 2 21 13 31.1 4 110.9 3 81.3
11 3 11 23 8 31.2 12 109.6 11 78.3
12 9 26 18 31.3 5 108.1 26 76.8
13 13 28 26 33.9 16 107.3 27 76.3
14 26 28 3 35.3 13 105.1 10 72.2
15 3 29 22 35.3 23 103.7 17 72.1
16 16 32 16 37.0 9 103.3 13 72.0
17 18 32 27 37.8 18 102.1 2 70.2
18 2 14 32 17 39.1 22 101.0 9 68.6
19 25 33 4 39.6 21 99.8 18 66.8
20 27 33 25 40.5 17 99.2 24 64.4
21 23 34 9 45.0 27 95.1 16 64.1
22 22 35 24 45.8 2 94.2 22 64.1
23 24 36 23 48.2 24 92.9 21 62.9
24 19 37 19 49.5 25 90.3 19 62.4
25 1 17 39 21 53.1 19 87.8 28 58.4
26 21 41 20 60.3 14 87.8 20 55.7
27 20 46 14 62.5 20 84.9 23 54.5
28 28 79 28 96.9 28 64.0 25 36.4

the USA, because most English learning systems in Japan
are based on American English, and the location is easy
to set that way in AMT. We also set the qualification that
workers must be master-level workers to raise the proba-
bility that we got only dedicated workers. Master level is
an Amazon-defined level meaning that workers have re-
ceived a very high percentage of positive feedback from
requesters in the past. In 10 days, we could get answers
from 55 workers. Looking at the answers, one worker’s
results were considered unreliable, because that worker
completely mis-transcribed the native English speaker’s
clear pronunciation, which we had added as a practice part
in the questionnaire. Therefore, we used the remaining 54
workers’ answers to determine the group labeling. After
checking answers, we paid 2 dollars to each worker, ex-
cept for the worker who we judged to be unreliable.

Based on 54 workers’ answers, we calculated the score
of each participant speaker. We evaluated speakers by
comparing the workers’ typed results and the correct an-
swer for each word. For measuring intelligibility, whole-
word identification rather than phoneme identification is
important, so we scored intelligibility based on the number

of correct whole words. Then for each speaker, we calcu-
lated their AMT accuracy by dividing the number of work-
ers’ correct answer words by the total number of words
in the phrases. After that, we divided the speakers into 4
equal groups based on the results, labeling them from level
1 (low proficiency) to level 4 (high proficiency). The final
proficiency labels according to AMT workers’ transcrip-
tions are shown in Table 4, and Figure 4 shows the same
data as Table 4, but plotted for each individual participant.

We then compared test accuracies for each labeling
method, in order to find the best way to label for classi-
fying English pronunciation levels. The numbers of files
per label is shown in Table 6. The deep learning training
network layers were: input > LSTM > dropout > fully
connected > softmax > classification. The test accuracy
results for each labeling method are shown in Figure 6. As
can be seen, when data was labeled by elements of speech
fluency (total number of pauses, total length of pauses and
WPM) it got better test accuracy than when data was la-
beled by AMT intelligibility.



Figure 4: Proficiency ranking of all 28 speakers by each measurement method

3.4 Trial 4: Deep learning with 3-fold cross
validation and flexible accuracy definition

In Trial 4, we changed only two things from Trial 3. The
first one is 3-fold cross validation. Before this trial, test
results were not stable because there was a possibility that
features in the training data were unbalanced. To avoid
this variability, we adopted the system of 3-fold cross val-
idation in Trial 4. Cross validation is performing multiple
rounds of cross-validation using different partitions and
then averaging the results over all the rounds.

The second change is changing the definition of test
accuracy. In the previous definition, we specified that only
test data that were labeled by the computer at exactly the
same proficiency level as were labeled by us were accu-
rate. However, in this way, data labeled as even only one
level out of position (e.g., proficiency group 3 participants
being categorized as group 2 or 4) were considered to be
hard errors (i.e., accuracy = 0) and this was not helping the
computer to learn the categories as quickly and accurately.
Therefore, in a new, more flexible definition of test accu-
racy, we set data labeled as only 1 level out of position to
be soft errors (“almost correct”), and we gave those accu-

racies a value of 0.5 points instead of 0 points. Through
this change, we could get much higher accuracy here than
in our previous deep learning trials.

Figure 7 shows the highest test accuracy results for
each labeling method in Trial 4. Because of the flexibility
in the definition of test accuracy, almost all test accuracies
are higher than in Trial 3. Labeling proficiency by total
number of pauses led to the highest test accuracy (47.7%)
in deep learning Trial 4.

4 Discussion

4.1 Labeling data

Usually when using supervised deep learning, training sets
can be unambiguously labelled. For example, if train-
ing a computer to recognize animal images, the training
data contains images of cats, dogs, elephants, etc. that
are clearly labelled as such. These labels are often called
the “ground truth”. However, in some machine learning
cases in the medical field for example, different experts
diagnose (i.e., label) the same patient’s problem in differ-
ent ways [23]. Likewise, in our research, it is difficult to



Table 5: The 56 selected phrases from the Wolf Passage used in the AMT intelligibility test in Trials 3 & 4

No. Phrase No. Phrase
1 There was once 29 that a few days later
2 poor shepherd boy 30 he tried exactly
3 who used to watch 31 the same trick again
4 his flocks 32 and once more
5 in the fields 33 he was successful
6 next to a dark forest 34 However, not long after
7 near the foot of a mountain 35 a wolf that had just escaped
8 One hot afternoon 36 from the zoo
9 he thought up a good plan 37 was looking for a change

10 to get some company 38 usual diet of chicken and duck
11 for himself 39 overcoming
12 have a little fun 40 its fear of being shot
13 Raising his fist 41 it actually did come out
14 in the air 42 from the forest
15 he ran down 43 and began to threaten the sheep
16 to the village 44 Racing down to the village
17 shouting Wolf Wolf 45 the boy of course cried out
18 As soon as 46 even louder than before
19 they heard him 47 Unfortunately
20 the villagers 48 as all the villagers
21 rushed from their homes 49 were convinced that
22 full of concern 50 he was trying to fool them
23 for his safety 51 a third time
24 and two of his cousins 52 they told him
25 even stayed with him 53 Go away
26 for a short while 54 don’t bother us again
27 This gave the boy 55 And so the wolf
28 so much pleasure 56 had a feast

Table 6: Number of training and testing files for each label
in Trial 3

Label Total # of training Total # of testing
wav files wav files

Total # 29833 4943
of pauses

Total length 30311 4465
of pauses

WPM 29822 4954
AMT 29611 5165

establish the ground truth about someone’s language pro-
ficiency, because there are so many ways of measuring it
and each way may give different results.

In our research, we decided to have five levels of pro-
ficiency in Trials 1 and 2, and four levels of proficiency in
Trials 3 and 4. Each level was a different label for deep
learning. In Trials 1 and 2, we had expert listeners judge
the nativeness of our speakers on a 7-point scale. How-
ever, this method has a problem: since the expert listen-
ers were listening to whole sentences, they had supraseg-
mental information like stress and intonation, which were
not available to the AMT workers, who were only judging
very short phrases. It is not clear what points the expert

listeners were judging nativeness on. Hence, we decided
to use an objective measure – fluency indicators found in
the acoustic signal.

In Trials 3 and 4, we used four methods of measur-
ing speaking proficiency: total number of pauses, total
length of pauses, words per minute, and subjective judge-
ments by AMT participants. As seen in Figure 4, the pro-
ficiency ranking of any given participant varies somewhat
depending on the labeling method, indicating that a ground
truth is difficult to establish. For example, participant #1,
who has the highest TOEIC score, is also ranked #1 in to-
tal length of pauses, but is ranked #7 in total number of
pauses, #8 in intelligibility, and #10 in speed of speech.
It may be that a combination of measurements would be
a better way of labeling the proficiency of participants for
the purpose of training a DNN.

In Figure 4, the straight lines are linear estimates of
the rankings for each label. The R2 values in the key
under the plot show the strength of correlation between
each proficiency ranking method and the TOEIC ranking
of the participants. Note that the total number of pauses
in the read speech for each participant correlates most
strongly with their TOEIC scores (R2=0.577). The TOEIC
scores are from the Listening and Reading test and did
not include Speaking or Writing, so this strong correla-
tion makes sense. It is interesting that this same measure



Figure 5: Flowchart of algorithm used in the HTML file
for pseudo-randomization of phrases in the AMT intelligi-
bility transcription task. This was used in Trials 3 & 4.

Figure 6: Deep learning highest test accuracies by labeling
method in Trial 3

Figure 7: Deep learning highest test accuracies by labeling
method in Trial 4 – with flexible definition of test accuracy

(total number of pauses) is the one that gave the highest
test accuracy in the final deep learning trial (Trial 4).

As seen in the results of both Trials 3 and 4, when la-
beling by AMT, deep learning test accuracy was the lowest
among the four ways of labeling. From these results, we
can say that when a machine classifies English proficiency
level from audio data, it appears to be easier for the ma-
chine to learn from speech fluency labels than from speech
intelligibility measures. One reason for this phenomenon
is probably due to label noise. Labeling by speech fluency
(number of pauses, total length of pauses, WPM) avoids
label noise because labels are calculated using objective
scientific measurements. However, when labeling intelli-
gibility, even though the calculations themselves are done
objectively, the correct/incorrect transcriptions are entirely
based on the subjective listening task of the AMT work-
ers. This may have affected the accuracy of deep learning.
Therefore, in the case of our audio database, the neural
network can learn features more easily when data is la-
beled by speech fluency – specifically by the total number
of pauses in the read speech of a speaker.

As a whole, the deep learning accuracy tended to be
low in this study. We believe that there may be two pos-
sible reasons for this problem: overfitting in the train-
ing process and an insufficient amount of training data.
Overfitting means that the production of an analysis cor-
responds too closely or exactly to a particular set of data,
and may therefore fail to fit additional data or predict fu-
ture observations reliably. Thus, if we prevent overfitting
and also add more audio files, we may get better accuracy
and would be able to use this DNN algorithm in a future
system.

5 Conclusions and future work

In our research, we tested deep learning classification of
speech proficiency while using several ways of labeling
degree of proficiency from the data. In the case of the



labeling method, we could show it is easier for neural
networks to learn elements of speech fluency rather than
speech intelligibility. However, we trained and tested data
by deep learning using only a fairly small database. In
future work, we should test our neural network with an
unknown database. Based on testing with unknown data,
we could make a better system in the future.

Moreover, we labeled our data in several ways: to-
tal number of pauses, total length of pauses, WPM, and
speech intelligibility from AMT. Although each of these
points are important for those who are English native
speakers, it does not necessarily mean that any given one
of them can determine one’s proficiency. If proficiency
was simply decided by a single objective measurement, it
would be easy for a machine to rank proficiency. However,
proficiency is most probably dependent on various objec-
tive factors, and not necessarily in an equal way. In future
work, it is necessary to combine various types of labeling,
with each one weighted in various ways, to determine the
best result of deep learning.
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