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Figure 1: Continuous line illustration of a plane image generated with three levels of detail.

Abstract
This paper introduces a method for automatically generating continuous line illustrations, drawings consisting of
a single line, from a given input image. Our approach begins by inferring a graph from a set of edges extracted
from the image in question and obtaining a path that traverses through all edges of the said graph. The resulting
path is then subjected to a series of post-processing operations to transform it into a continuous line drawing.
Moreover, our approach allows us to manipulate the amount of detail portrayed in our line illustrations, which is
particularly useful for simplifying the overall illustration while still retaining its most significant features. We also
present several experimental results to demonstrate that our approach can automatically synthesize continuous
line illustrations comparable to those of some contemporary artists.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation J.5 [Computer Applications]: Arts and Humanities—Fine Arts

1. Introduction

A continuous line illustration (CLI) is a type of drawing con-
sisting of a single line. This technique is commonly taught at
the early stages of many art courses in order to help students
to loosen up their artistic senses [Nic90]. In many cases,
these simple drawing exercises evolve into beautiful works
of art. Apart from artistic purposes, CLIs have other appli-
cations such as in quilting designs [Fri01], steel wire sculp-
tures [Loh09], and connect-the-dots puzzles.

Although relatively simple, these illustrations possess
a unique charm that captures the heart of whoever sees
them. This in turn has given birth to different artistic
styles. For example, the "labyrinthine projection" style
of Morales [Mor05] consists in tracing a single non-
intersecting line and creating shading effects by control-
ling the density of lines in certain areas. In the case of
Slater’s drawings [Sla01], a non-intersecting line fills the en-
tire drawing space while varying in thickness and color as
necessary, resulting in beautiful and colorful works of art.

c⃝ 2011 The Author(s)
Journal compilation c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



F. J. Wong & S. Takahashi / A Graph-based Approach to Continuous Line Illustrations with Variable Levels of Detail

Figure 2: A continuous line illustration by professional illus-
trator Rachel Ann Lindsay [Lin10].

On the other hand, Sable’s works [Sab09] are dominated
by continuous lines with several self-intersections and slight
variations in thickness, thus providing more insight on the
shape of depicted objects as well as shading effects.

Our CLI results are closer in appearance to the works
of professional illustrator Rachel Ann Lindsay [Lin10], on
which a self-intersecting continuous line with uniform thick-
ness is skillfully utilized in order to portray an object or
scene, as shown on Figure 2. It is astonishing to see how
much variety and beauty can be born from something as sim-
ple as tracing a single line.

Motivated by the works of the above mentioned artists,
as well as by the technical difficulties involved in creating
such drawings, we have devised a method for creating self-
intersecting CLIs. Our approach essentially consists in infer-
ring a graph based on a set of extracted image contours and
finding a path that traverses through all edges of the graph. A
series of simplification steps are employed in order to reduce
visual cluttering and also a method for controlling to some
extent the level of detail in the final illustration is proposed
as well. A result of this approach is shown in Figure 1.

This paper is organized as follows: Related work relevant
to our research is presented in Section 2. An overview of our
CLI algorithm is given in Section 3, and further details are
provided in Sections 4, 5 and 6. Results of our approach are
briefly discussed in Section 7, followed by conclusions and
pointers to future work in Section 8.

2. Related Work

Although the creation of continuous line illustrations has
been popular among artists, very few works on this kind of
drawings can be found in the field of computer graphics.

In [BH04] was proposed the creation of continuous line
drawings by first obtaining a set of points whose distribu-
tion along the drawing space was based on the intensity of

an input image. An instance of the traveling salesman prob-
lem (TSP) was then solved over the resulting set of points.
This work was later extended in [KB05] through the use of
modern image stippling techniques, in order to obtain a point
distribution that better resembled the original image.

CLIs are also related to labyrinths and mazes. The or-
ganic labyrinthine structures proposed in [PS06] are basi-
cally CLIs. Their method is based on the evolution of a set
of input curves into a labyrinth-like pattern, through the ap-
plication of several forces. CLIs can also be used as solution
paths for picture mazes, as seen in [WT09]. In this case, a
hybrid maze is created by placing maze walls according to a
primary image, and approximating the shape and shading of
a secondary one with the solution of the maze.

3. Method Overview

Our approach generates a CLI from an image through the
use of image processing techniques and the application of
concepts in graph theory. We extract the edges of the image
and create a graph based on them. At this point, the graph
undergoes a series of modifications and then a path that tra-
verses all of its edges is found. This path is then transformed
into a CLI after several post-processing operations.

Depending on the application, users might find a lack or
excess of details in the resulting CLI. A few examples are:
controlling the amount of dots in connect-the-dots puzzles
and changing the amount of detail in the CLI according to
the distance from the viewer. For this reason, we have also
incorporated a method for allowing users to specify levels of
detail in the final illustration, while maintaining the coher-
ence of the CLI between detail levels at the same time.

In short, our approach takes an image I and a desired num-
ber of detail levels n as input, and does the following:

∙ Extract the contours of the input image.
∙ Classify the contours into n detail levels.
∙ Infer a graph from the extracted contours.
∙ Find a path that traverses through all graph edges.
∙ Trace a continuous line based on the obtained path and the

specified detail level.

A more detailed explanation of these steps is given in the
following sections.

4. Image Processing and Graph Construction

4.1. Initial Filtering and Edge Detection

Our method starts by obtaining a set of images derived from
the original, which gradually vary in the amount of features
they portray. Edge detection is then applied to each of them.

A set of images F = {F1 . . .Fn} (Figures 3a and 3b) is
created from the original image I, each of them obtained
through bilateral filtering [TM98] with decreasing kernel
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(a) F1 (b) F2

(c) M1 (d) M2

(e) L1 (f) L1 ∪L2

Figure 3: Edge Detection and Classification: Two bilateral
filtered images of a car, created with different kernel sizes
are shown in (a) and (b), while their edge detection results
are shown in (c) and (d). Their classified edges at two differ-
ent detail levels are shown in (e) and (f).

sizes. The kernel sizes for domain and range filtering at de-
tail level i are given by σ f (i) = ro +(n− i)rdec and σg(i) =
so +(n− i)sdec, respectively, where ro and so are the initial
kernel sizes while rdec and sdec are the amounts by which
the kernel sizes are decreased. In this way, most significant
features are retained in F1, while most minor details are pre-
served in Fn. We apply 5 iterations of the filter per detail
level. Since filtering becomes prohibitely expensive as the
kernel grows in size, we employ a separable kernel imple-
mentation [PvV05].

Edges are then detected for each Fi by making use of a
flow-based difference of Gaussians (FDoG) filter [KLC09].
This produces a set of binary maps M = {M1 . . .Mn}, where
detected edges are marked in black (Figures 3c and 3d).
Three iterations of the FDoG filter are performed per detail
level with the default parameters specified in [KLC09].

The edges detected in map Mn are then processed through
a line thinning algorithm [HWL03] in order to obtain a col-
lection of one-pixel-wide segments S.

4.2. Edge Classification into Detail Levels

The next step in our algorithm is to classify each of the ex-
tracted edges into one of n levels of detail. The idea is that

edges belonging up to a certain level are kept in the final
CLI, while others are suppressed or simplified.

Segments in S are classified into a set of detail levels
L = {L1 . . .Ln} (Figures 3e and 3f) in two steps. The first
step consists in comparing each segment against each binary
map, from the coarsest to the finest scale (from M1 to Mn).
In other words, we compare each segment s ∈ S against Mi,
and assign it to Li if most parts of the segment belong to
black areas in Mi (at least 80% of the pixels in the edge in
our implementation). The process is then repeated for all un-
classified edges against Mi +1 and so on.

During the second step, we reclassify the edges according
to length, since longer edges have a tendency to correspond
to significant features in general. Starting from Ln to L1, all
edges in Li with lengths exceeding ηi = µi + σi are reas-
signed to Li−1, where µi and σi are the average and standard
deviation of edge lengths in Li, respectively. The process is
then repeated for Li−1 and so on. After this step, L1 should
have a majority of the long and significant edges, while most
minor edges are left at higher levels.

We proceed to infer a graph from the edges in S after all
of them have been classified into detail levels.

4.3. Inferring a Graph From a Set of Contours

Our approach infers a graph G = (E,V ) from a set of line
segments S in a straightforward manner. Assuming no line
s ∈ S intersects with any other line t ∈ S, we regard the end-
points of each segment as graph vertices. If two or more
endpoints are within a certain distance from each other, we
merge them as a single graph vertex. Additional nodes are
created at points where the line curvature presents sudden
changes. An example of such a graph is shown in Figure 4a.

In case more than one connected component exists in the
graph, we create additional auxiliary edges between pairs
of vertices so that it becomes a fully connected graph. How-
ever, there are cases in which we would prefer to connect two
graph components at points along their edges rather than be-
tween vertices. Our model attempts to simulate this behavior
during the creation of auxiliary edges.

Auxiliary edges are created by first obtaining a set of seg-
ments S′ from subdividing each segment s ∈ S into smaller
segments of length h. Each of these small segments belongs
to the same detail level of its original. A graph G′ = (E′,V ′)
is then inferred from S′ (Figure 4b). Please note that V ⊆V ′

in this graph. Two Delaunay triangulations T (V ) and T (V ′)
(Figures 4c and 4d) are computed over the vertex sets V
and V ′, respectively. The weight of each triangulation edge
(u,v) ∈ T (V ) is computed as

w(u,v) = d(u,v) (1)

where d(u,v) denotes the length of (u,v). In contrast, the
weight of each edge (u′,v′) ∈ T (V ′) is computed as

w(u′,v′) = α×d(u′,v′) (2)
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where α ≥ 1 is a user-specified penalty parameter that pro-
vides a trade-off between the usually longer edges connect-
ing original vertices and the usually shorter ones connecting
vertices created after line subdivision. At each iteration, the
edge (u,v) ∈ [T (V )∪T (V ′)] with the lowest weight among
both triangulations is processed. If vertices u∈V ′ and v∈V ′

are in different components, an auxiliary edge (u,v) is in-
serted in E′. Edges are processed in this way until the graph
becomes a single component or no more triangulation edges
remain unprocessed.

After this procedure, graph G′ becomes fully connected,
nevertheless, it usually presents a high amount of degree-
one vertices. These are particularly problematic, since this
means their incident edge will have to be forcefully retraced
in the final CLI, thus increasing the amount of line density.
In order to reduce the amount of these vertices, we process
once more all edges (u,v) ∈ [T (V )∪ T (V ′)]. If either u or
v has degree one, d(u,v) < β and (u,v) has a difference in
orientation of at most 30 degrees to the edge incident to the
degree-one vertex, we insert auxiliary edge (u,v) in E′. Pa-
rameter β controls the maximum length allowed for these
edges, while the orientation constraint is imposed in order to
avoid sudden changes in line curvature on the CLI.

At this stage, we reduce graph G′ by merging all edges
sharing a common vertex of degree two, as long as the ver-
tex in question is not one of the original vertices and both

(a) (b) (c)

(d) (e) (f)

Figure 4: Constructing the Graph: (a) An initial graph is in-
ferred according to the edges of the image. (b) Additional
vertices are created at fixed intervals within each line seg-
ment. (c) A Delaunay triangulation T (V ) of the original ver-
tices is calculated. (d) A second triangulation T (V ′) is cal-
culated from the new set of vertices. (e) Auxiliary edges (in
red) are inserted in order to merge the disconnected graph
components, based on the edges of both triangulations. (f)
Duplicate edges (in green) are created in order to Semi-
Eulerize the graph.

edges belong to the same level of detail. Figure 4e shows
an example of a graph created through this approach. For
ease of explanation, we will refer to this reduced graph as
G = (E,V ) throughout the rest of this paper.

5. A Path that Traverses All Edges in a Graph

An Eulerian path in a graph G = (V,E) is a sequence of ver-
tices v ∈ V that traverses through all edges e ∈ E exactly
once. G is called Semi-Eulerian if only two of its vertices
are of odd degree, which implies that an Eulerian path can
always be found in it. If all vertices are of even degree, the
graph is then Eulerian, and an Eulerian cycle can be found.
An Eulerian path or cycle can be found in G by making use
of Fleury’s algorithm [Fle83].

Thus, if G is a graph inferred from the features of an in-
put image, then a CLI could be considered as an Eulerian
path in G. Usually, our graphs will contain more than two
odd-degree vertices, as seen in Figure 5a. In such cases, odd
vertices are removed through a Semi-Eulerization process.

5.1. Semi-Eulerization

Semi-Eulerizing a graph consists in creating duplicate edges
in order to remove all but two odd-degree vertices. Ide-
ally speaking, we would like to find an optimal Semi-
Eulerization that minimizes the sum of the length of all du-
plicate edges. Although efficient algorithms for finding opti-
mal graph Eulerizations have been proposed [EJ73], obtain-
ing an optimal Semi-Eulerization is still computationally ex-
pensive. Also, these methods tend to rely solely on edge du-
plication, while the nature of CLIs grants us more flexibility,
allowing direct connections between vertices and even the
removal of some edges. For these reasons, we apply instead
a greedy approach to Semi-Eulerization.

A complete graph Go = (Eo,Vo), whose set of vertices
Vo ⊆V contains only the vertices of odd degree in G, is cre-
ated (Figure 5b). The length l(u,v) of each edge (u,v) ∈ Eo
is calculated as the total length of the shortest path P(u,v) in
the original graph G. Each edge (u,v) ∈ Eo is processed in
ascending weight order, until only a single edge remains. If
neither u ∈ Vo nor v ∈ Vo have been processed already, the
shortest path P(u,v) is found in G and the distance d(u,v)
is calculated. If l(u,v) > κ× d(u,v) and d(u,v) < ε, then
a new auxiliary edge (u,v) is inserted in G, otherwise all
edges traversed by P(u,v) are then either duplicated (if no
duplicate of the edge exists) or removed (if a duplicate ex-
ists) in G. This means each edge in the final graph is dupli-
cated at most once. Parameter κ provides some balance be-
tween merely retracing edges and making direct connections
between vertices, while ε keeps direct connections within a
certain length.

In addition, the length of a duplicate edge is set to the neg-
ative value of its original, so that P(u,v) has a tendency to re-
trace over previously duplicated edges, thus removing them
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(a) Weighted contour graph (b) Odd-vertex graph

Figure 5: Semi-Eulerization steps: (a) A graph with several
odd-degree vertices (labeled in red). (b) A complete graph
Go is built upon the odd-degree vertices of the input graph.
Vertex matchings (in green) are chosen in a greedy manner
in our approach.

from the graph. We are aware that current shortest path algo-
rithms are unable to guarantee the returned path is indeed the
shortest one in undirected graphs with negative edges, but
they still provide a good approximation measure for such
paths. In an attempt to reduce line cluttering, all auxiliary
edges and short edges duplicated during this process are re-
moved along with their duplicates, as long as the graph re-
mains connected. Figure 4f shows a Semi-Eulerized version
of the graph in Figure 4e.

5.2. Modified Fleury’s Algorithm

Once a Semi-Eulerian graph is obtained, Fleury’s algo-
rithm [Fle83] can be used in order to find an Eulerian path
in G. The logic behind Fleury’s algorithm for Semi-Eulerian
graphs is to start at any of the two odd-degree vertices, then
traverse through an edge e ∈ E whose removal would not
disconnect G, remove e, and repeat the procedure for the
following vertex.

We propose a modification to the algorithm in order to
avoid sudden changes in line direction, while also minimiz-
ing the amount of cluttering at graph vertices. Before remov-
ing an edge, the next edge to be traversed is selected by per-
forming a minimum weighted matching of all edges still in-
cident to the current vertex. A complete graph Gv = (Ev,Vv)
is built, where each vertex vi ∈ Vv corresponds to an edge
ei ∈ E incident to the vertex v ∈ V . The weight of an edge
(vi,v j) ∈ Ev is defined as

we(vi,v j) =−→oi ⋅−→o j (3)

where −→oi denotes the normalized orientation vector of edge
ei. A matching of minimum weight is then found in Gv.
Since the amount of edges incident to a vertex in any of our
inferred graphs is very low (at most 8 edges in all the cases
we have seen), we have opted for examining all possible
matchings in Gv and selecting the one with lowest weight.
The next edge to be traversed is the one matched to the last
traversed edge. If the next edge disconnects the graph upon

removal, then the matching is discarded and the next one
with lowest weight is selected.

5.3. Custom Endpoints

Specifying custom endpoints for an Eulerian path is rela-
tively simple. Let p and q denote the desired endpoints of
the path. Then, prior to Semi-Eulerizing the graph, we in-
sert a fictitious edge (p,q) into G. The Semi-Eulerization
process is then performed as explained before, only that the
goal now is to completely remove all odd vertices from G. If
we remove (p,q) from the graph, we end up once more with
a Semi-Eulerian graph and then we can apply our modified
Fleury’s algorithm to obtain an Eulerian path from p to q.

6. Drawing a Continuous Line

6.1. Path Modification According to Detail Level

Before tracing the CLI, users specify a detail level d in the
range [1,n] and the path is modified according to it. For each
edge sequence in the Eulerian path containing only edges in
Ld+1∪ . . .∪Ln and auxiliary edges, we do the following:

1. Let Pe(i, j) = {ei . . .e j−1} denote such a sequence of
edges and Pv(i, j) = {vi . . .v j} denote the corresponding
sequence of vertices spanned by Pe(i, j).

2. Create a subgraph G∗ from G, composed only from ver-
tices in Pv(i, j).

3. Obtain shortest path P(vi,v j) in G∗.
4. Replace Pv(i, j) for P(vi,v j) in the Eulerian path.
5. Modify Pe(i, j) according to P(vi,v j), and set all of its

edges as auxiliary edges.

In this way, all edges at detail levels higher than d are ei-
ther removed or replaced by auxiliary edges, which are ren-
dered differently as will be explained in Section 6.3, while
suppressing any particular details in the CLI that are at-
tributed to such levels.

6.2. Line Trimming

In order to draw the CLI, each edge is trimmed by a cer-
tain distance from its endpoints, and then a new connecting

(a) (b) (c)

Figure 6: Trimming and reconnecting: (a) Original segments
in the Eulerian path. (b) Line segments are trimmed by a
distance t(vi). (c) Connecting curves are traced between the
endpoints of subsequent line segments in the path.

c⃝ 2011 The Author(s)
Journal compilation c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



F. J. Wong & S. Takahashi / A Graph-based Approach to Continuous Line Illustrations with Variable Levels of Detail

curve is traced between the current edge and the next in the
Eulerian path (Figure 6).

The maximum trimming distance from an endpoint of
edge e ∈ E is calculated as

dtrim(e) = min(λ,γle) (4)

where λ is the maximum allowed trimming distance, γ is
a control parameter in the range [0,0.5] and le denotes the
length of edge e. If γ is close to 0, almost no trimming occurs.
On the other hand, if we select a value close to 0.5 the line
might be trimmed in its entirety.

Edges are then trimmed in the following manner:

1. Let the Eulerian path be defined by a vertex se-
quence Pv = {v1 . . .vm} and a sequence of edges Pe =
{e1 . . .em−1} (Figure 6a).

2. Define the trimming distance at each vertex vi ∈ Pv as

t(vi) = min(dtrim(ei−1),dtrim(ei)) (5)

3. For each vertex vi ∈ Pv, trim edges ei−1 ∈ Pe and ei ∈ Pe
by a distance t(vi) from vertex vi (Figure 6b).

We set dtrim(e0) and dtrim(em) to 10 in our implementa-
tion. Also, if ei is an auxiliary edge, we set dtrim(ei) = λ, but
do not trim this edge as it does not yet exist.

6.3. Connecting Curves and Additional Edges

Once edge trimming has been completed, a connecting curve
is created between each pair of consecutive edges in Pe (Fig-
ure 6c). Catmull-Rom splines [CR74] are employed for this
purpose, since they are easy to compute and pass through all
their control points.

Auxiliary edges and duplicate edges in our CLIs are traced
as well with Catmull-Rom splines. In the case of auxiliary
edges, a new curve is created from the last point of the pre-
vious edge to the first point of the next one. For duplicate
edges a different approach is taken. Since these edges are
copies of other ones, we would like them to have similar
curvature to that of their originals, but at the same time we
would like them to be different enough so as to avoid exces-
sive overlapping of curves. For these reasons, we estimate
the points at which the edge presents changes in curvature,
and use these points as control points of a new curve. Be-
fore tracing the curve, each control point, except for the first
and last, is displaced by a random distance in a direction per-
pendicular to the tangent of the curve at the control point in
question. In this way, duplicate curves that completely over-
lap their original counterparts are avoided to some extent.

6.4. Curls and Cusps

We have noticed that most continuous line drawings, such as
the ones from Sable [Sab09] and Lindsay [Lin10], usually
contain several curl and cusp features at different parts of

(a) Curl (b) Cusp

Figure 7: Curl or cusp?: (a) A sequence of line segments is
converted into a curl feature. (b) A sequence of line segments
is converted into a cusp feature.

the line. Our approach attempts to reproduce such features
by taking advantage of duplicate edges in the Eulerian path.
Before actually tracing the CLI, all pairs of subsequent edges
(ei,ei+1) in Pe are checked. If ei and ei+1 correspond to the
same edge, that is, one is a duplicate edge that immediately
traces over its original, then this pair of edges is turned into
either a curl or cusp feature. After studying line drawings of
several artists, we chose the following decision function for
determining whether to draw a curl or a cusp:

D =

{
curl if arccos(∣−−→oi−1 ⋅−−→oi+2∣)> π

4
cusp otherwise

(6)

where −−→oi−1 and −−→oi+2 are the normalized orientation vectors
of edges ei−1 and ei+2, respectively, at the point they meet
with either ei or ei+1. Figure 7 provides more detail in the
selection of these features.

We represent both curls and cusps as two different
Catmull-Rom splines. As can be seen in Figure 7, the dif-
ference between both type of features lies at vertex vi+1, in
other words, at the tip of the curl or cusp. To trace a curl,
the tangent vectors of both curves at vi+1 are estimated as
vectors perpendicular to the orientation of ei at this vertex.
Cusps are done similarly, with the difference that, after esti-
mating the tangent vectors, they are rotated so as to give the
impression of a sharp cusp being present in the curve.

After converting parts of Pe into either curl or cusp fea-
tures, the CLI is drawn by tracing the edges in order as well
as the connecting curves between them.

7. Results and Discussion

Our prototype system was implemented in C++ on an Intel
Core 2 Duo E6550 2.33 Ghz CPU with 2 GB of RAM. The
CGAL library was used for efficient computation of Delau-
nay triangulations [cga].

Several results are shown on Figures 1 and 10. These ex-
amples show the capability of our approach in suppressing
or providing details as the level is changed. All of these ex-
amples were generated with values n = 3, ro = 1, rdec = 3,
so = 10, h = 25, α = 4, β = 20, γ = 0.12, ε = 100, κ = 3
and λ = 25. The "Arc" results were generated with sdec = 5,
while the "Motorcycle" results were obtained with sdec = 15
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Table 1: Step-by-step timing results of CLI generation.

Arc Motorcycle Ukiyoe
Size 885×960 1024×681 1024×693
Bilateral Filter 52.726s 43.283s 44.006s
Flow-based DoG 14.394s 12.082s 12.303s
Edge Classification 0.031s 0.032s 0.035s
Graph Construction 0.148s 0.173s 0.212s
Delaunay Triangulation 0.678s 0.593s 0.865s
Graph Merging 0.082s 0.119s 0.199s
Semi-Eulerization 1.191s 1.072s 2.041s
Fleury’s Algorithm 0.024s 0.029s 0.058s
Line Drawing 0.147s 0.190s 0.215s
Total 69.421s 57.573s 59.934s
Detected Edges 817 829 1078
Odd Vertices 374 346 458

and the "Ukiyoe" ones with sdec = 10. A summary of the
running times for generating these results is given on Ta-
ble 1.

Although our approach is indeed able to generate a CLI
from an image, usually there are several unnatural lines at
some parts, such as in the front wheel and the main body of
the bike in Figure 10e. This is partly due to our approach
being based on edge detection techniques, which are not ac-
curate enough for our purposes, and to edge classification
not taking into account the shape of the object in question.

7.1. Comparison to Previous Approaches

The proposed method is based on the contours of the input
image, resulting in smooth continuous lines that better rep-
resent object shapes. This is a major difference from [BH04]
and [KB05], which attempt to approximate the overall shad-
ing of the image with a single line. As explained earlier, a
set of points is distributed according to the intensity of the
image in these approaches, then the CLI is created by com-
puting a TSP tour over the set of points. In contrast, our
approach uses edge detection to obtain the contours of the
image and infers a graph based on these contours. The re-
sulting CLI is then created from an Eulerian path found in a

(a) (b) (c) (d)

Figure 8: Comparison between CLI approaches: (a) Original
input image. (b) Result from [BH04]. (c) A CLI obtained by
solving the TSP over a set of detected edges from the image.
(d) Our approach.

Semi-Eulerized version of the graph. Although object con-
tours are somewhat noticeable in the results of [BH04], this
comes at the expense of an increased number of cities for
the TSP, slowing the running time considerably. On the other
hand, our approach creates CLIs that portray these contours
without much computational overhead, but is unable to ap-
proximate the shading of the image.

Figure 8 shows a comparison between results from
[BH04] and our proposed approach. The result in Figure 8b
took about 15 minutes to compute while the result in Fig-
ure 8d only took 51.94 seconds. This, however, is quite an
unfair comparison given that both approaches intend to re-
produce two different CLI styles with different applications.
While [BH04] shows results similar to the drawing style
of Morales [Mor05], which is useful as a half-toning tech-
nique, our approach produces results more akin to the works
of Lindsay [Lin10], which are more suitable for producing
connect-the-dots puzzles and wire sculptures. We also at-
tempted to compute a TSP tour (Figure 8c) over the same
set of edges used in Figure 8d. The TSP tour took 36.5 sec-
onds to compute, as opposed to our Semi-Eulerization ap-
proach, which generated the CLI in 1.27 seconds from the
same set of edges. Also, some unnatural edges are present in
Figure 8c, particularly at the left and the bottom of the tower.

7.2. Application to Connect-the-Dots Puzzles

We applied our CLI algorithm for the generation of connect-
the-dots puzzles such as the one shown in Figure 9, which
was generated from the CLI in Figure 1c. Furthermore, we
conducted a user study in which 10 participants were handed
5 puzzles generated through this approach and asked to iden-
tify the object behind each puzzle before and after solving it.
The results of this study are summarized in Table 2.

As you can see, the experiment demonstrates that our puz-
zles, and thus, the CLIs created with our method, are able to
portray the objects in a visually plausible manner. Work on
the generation of these puzzles is still at an early stage, as
we cannot completely hide the shape of some objects with
the current method, as was the case for Puzzle 3.

Figure 9: A connect-the-dots puzzle derived from a CLI.
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Table 2: Results of the study with connect-the-dots puzzles.

Puzzle BS AS
Puzzle 1 (Figure 9) 2/10 9/10
Puzzle 2 0/10 10/10
Puzzle 3 9/10 10/10
Puzzle 4 5/10 10/10
Puzzle 5 5/10 10/10
BS: Subjects able to recognize the object before solving.
AS: Subjects able to recognize the object after solving.

8. Conclusions

We have introduced a novel approach to create continuous
line illustrations from input images, based on edge detection
and graph Semi-Eulerization. Moreover, our method allows
users to specify the amount of detail shown on our line illus-
trations. The results portray rather smooth continuous lines
that contain important features such as curls, cusps and self-
intersections. Also, we have demonstrated that continuous
line illustrations created through our approach resemble the
objects depicted in the original images in a visually plausible
manner, and shown a possible application of these illustra-
tions to the generation of connect-the-dots puzzles.

Our approach is limited by the current state of edge detec-
tion algorithms, which are prone to subdetection and overde-
tection of lines. Even with our level-of-detail approach, this
incurs in line cluttering at some areas of the illustration,
while lacking enough detail in some others.

We plan to further extend this work by introducing vi-
sual attention elements [IKN98] to decide which segments
should be considered as part of the continuous line illus-
tration, as well as determining automatically which areas
should be free of line cluttering. We are also working on
improving the visualization of these drawings by introduc-
ing additional effects such as the shading of certain areas
by controlling the density of line segments, varying the line
width at certain parts, and line haloing [EBRI09].
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(a) Detail level 1 (b) Detail level 2 (c) Detail level 3

(d) Detail level 1 (e) Detail level 2 (f) Detail level 3

(g) Detail level 1 (h) Detail level 2 (i) Detail level 3

Figure 10: Some of our continuous line illustration results with varying detail levels.

(a) Arc de Triomphe (b) Motorcycle (c) Japanese Ukiyoe Painting

Figure 11: Original images used for generating our results.
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