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Likelihood Normalization Technique
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SUMMARY In this paper we describe a method, which
allows the likelihood normalization technique, widely used for
speaker verification, to be implemented in a text-independent
speaker identification system. The essence of this method is to
apply likelihood normalization at frame level instead of, as it is
usually done, at utterance level. Every frame of the test utter-
ance is inputed to all the reference models in parallel. In this
procedure, for each frame, likelihoods from all the models are
available, hence they can be normalized at every frame. A special
kind of likelihood normalization, called Weighting Models Rank,
is also experimented. We have implemented these techniques in
speaker identification system based on VQ-distortion codebooks
or Gaussian Mixture Models. Evaluation results showed that
the frame level likelihood normalization technique gives higher
speaker identification rates than the standard accumulated like-
lihood approach.
key words: speaker identification, likelihood normalization,

frame level processing

1. Introduction

Speaker recognition has been research topic for many
years and various types of speaker models have been
studied. Hidden Markov Models (HMM) have become
the most popular tool for this task. The best results
have been obtained using Continuous HMM (CHMM)
[2], [3]. Since temporal sequence modeling capability of
the HMM is not essential for the text-independent task,
one state CHMM, also called Gaussian Mixture Model
(GMM), is widely used for speaker modeling [8], [9],
[11], [12]. As our previous study [1] showed, GMM can
perform even better than a CHMM with multi-states.

VQ-distortion codebook [3], [6] is another popu-
lar speaker model because of its non-parametric struc-
ture and its ability to model arbitrary data distri-
butions. We used in our speaker identification sys-
tem both the VQ-distortion codebook and GMM mod-
els and the standard accumulated distortion/likelihood
testing serves as a baseline technique.

The likelihood normalization approach has been
successfully applied for speaker verification [5], [9], [14],
[15], but has never been used for speaker identification
purposes. This is simply because when applied at ut-
terance level, as in speaker verification, the likelihood
normalization does not work [9]. In other words, when
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the reference speaker model scores (likelihoods) are cal-
culated over the whole test utterance and then normal-
ized, the likelihood normalization has no effect on the
speaker identification rate. But Gish and Schmidt [11]
have shown that when the speaker scores are computed
over relatively short time intervals (segments of the ut-
terances) likelihood normalization may be successful.
In their system each speaker is represented by multi-
ple GMMs trained on data from different sessions, and
only the best model’s score for each speaker over a given
segment is taken into account. The scores are further
normalized in order to obtain meaningful comparison
between segments.

Our likelihood normalization approach makes use
of a new speaker recognition system structure [17],
[18], which is different from the study [11] in two main
points. First, in our system each speaker is repre-
sented by only one GMM. Second, the speaker scores
are computed at each frame instead of short time in-
tervals. In other words, in our recognition system the
test utterance is processed by all the reference speaker
models in parallel in frame by frame manner. Having
the likelihoods from all models, given particular test
frame, allows these likelihoods to be normalized at the
frame level. This frame level normalization is different
from the standard normalization technique based on
sentence level normalization and used for speaker ver-
ification [5], [14].Generally, the frame level likelihoods
can be processed using not only normalization, but any
appropriate technique such as transforming them into
new scores. Transformed (normalized) likelihoods can
further be accumulated over all test frames to form a
final score for each speaker model. The identification is
accomplished by identifying that speaker, whose model
gives the best score.

2. Speaker models

In this section we give a brief description of the speaker
models we used.

2.1 VQ-distortion codebook

Using LBG algorithm [16], from the each reference
speaker training data a codebook model is trained such
that the average distortion [6]:
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D =
1

T

T
∑

t=1

min
1≤j≤M

d(yt, cj) (1)

is minimized over the whole training set Y = y1, . . . , yT

and where cj , 1 ≤ j ≤ M are the centroids of the code-
book and d(, ) is an Euclidean distance between two
vectors.

The standard test approach consists of vector
quantization of the test utterance X = x1, . . . , xT using
all speakers codebooks and accumulation of the quanti-
zation errors (or distortions) with respect to each code-
book across the whole test utterance. The average dis-
tortion with respect to the ith codebook (speaker) is:

Di =
1

T

T
∑

t=1

min
1≤j≤M

d(xt, c
i
j) (2)

and the final speaker identification decision is given by:

i∗ = arg min
1≤i≤N

Di (3)

where i∗ is the identified speaker and N is the number
of registered speakers.

2.2 Gaussian mixture model

A Gaussian mixture model is a weighted sum of M

component densities and is given by the form [8]:

p(x|λ) =

M
∑

i=1

cibi(x) (4)

where x is a d-dimensional random vector, bi(x), i =
1, . . . , M , is the component density and ci, i =
1, . . . , M , is the mixture weight. Each component den-
sity is a d-variate Gaussian function of the form:

bi(x) =
1

(2π)
d
2 |Σi|

1

2

e−
1

2
(x−µi)

tΣ−1

i
(x−µi) (5)

with mean vector µi and covariance matrix Σi. The
mixture weights satisfy the constraint that:

M
∑

i=1

ci = 1 (6)

The complete Gaussian mixture model is param-
eterized by the mean vectors, covariance matrices and
mixture weights from all component densities. These
parameters are collectively represented by the notation:

λ = {ci, µi, Σi} i = 1, . . . , M (7)

In our speaker identification system, each speaker
is represented by such GMM and is referred to by
his/her model λ. GMM parameters are estimated us-
ing the standard Expectation Maximization (EM) al-
gorithm.

For a sequence of T test vectors X = x1, . . . , xT ,
the GMM log-likelihood can be written as:

L(X |λ) = log P (X |λ) =

T
∑

t=1

log p(xt|λ) (8)

In the standard identification approach, the task
is to find speaker whose model maximizes a posterior
probability P (λi|X), 1 ≤ i ≤ N which according to the
Bayes rule is:

P (λi|X) =
P (X |λi)P (λi)

P (X)

=
P (X |λi)P (λi)

∑N

j=1 P (X |λj)P (λj)
(9)

Usually we don’t have any prior knowledge about how
likely unknown speaker is to be speaker i. That is why,
the prior probabilities P (λi) are assumed equal:

P (λi) =
1

N
, 1 ≤ i ≤ N (10)

The term P (X) is actually the probability of occurring
the utterance X and in text-independent task is the
same for all speakers. Therefore, max1≤i≤N P (X |λi)
will maximize the posterior probability and the identi-
fication decision can be simplified to:

i∗ = arg max
1≤i≤N

L(X |λi) (11)

where i∗ is the identified speaker.

3. The speaker identification system

Usually, speaker identification systems consist of collec-
tion of reference speaker models λi, front-end analysis
and decision modules. Speech utterance is being trans-
formed into a sequence of feature vectors X and after
that the likelihoods P (X |λi) (or distances Di in case
of VQ-codebook), corresponding to each of the speaker
models, are calculated. The best one is determined
in the decision module. This kind of speaker identi-
fication system allows only normalization of the final
likelihoods P (X |λi) or, in other words, only utterance
(sentence) level likelihood normalization which is often
used in speaker verification. In order to apply likeli-
hood normalization at other level, for example frame
level, the structure of identification system have to be
modified.

Fig. 1 shows the structure of our speaker iden-
tification system [18]. In this system, input speech
is analyzed and transformed into a feature vector se-
quence by Front-end Analysis block and then each test
vector xt is fed to all reference speaker models in par-
allel. The ith speaker dependent GMM produces like-
lihood pi(xt), i = 1, 2, . . . , N and all these likelihoods
are passed in the so called Likelihood processing block,
where they are transformed (normalized) and accumu-
lated for t = 1, 2, . . . , T to form the new scores Sci(X).
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Fig. 1 Block diagram of the speaker identification system.

The speaker identification is accomplished by compar-
ing these scores in the decision logic block and deter-
mining the best one . The unknown speaker is classified
as the speaker, whose model has given the best score.

4. Frame level normalization

In this section we describe our approach to likelihood
normalization at frame level and its implementation. A
new method called Weighting models rank (WMR) is
also presented. Both the likelihood normalization and
WMR techniques change the value of frame likelihoods
p(xt|λi), hence they can be called frame level likelihood
transformation techniques.

4.1 Likelihood normalization

For speaker verification, likelihood normalization tech-
nique has been proved to improve significantly system
performance [5], [9], [14]. The general approach is to
apply a likelihood ratio test [13] to input utterance
X = x1, x2, . . . , xT using the claimed speaker model
λc:

l(X) =
P (λc|X)

P (λc|X)
(12)

Applying Bayes’ rule and assuming equal prior proba-
bilities, the likelihood ratio becomes:

l(X) =
P (X |λc)

P (X |λc)
(13)

where λc is a model representing all other possible
speakers (impostors). The likelihood P (X |λc) is di-
rectly computed from Eq.(8) assuming that the speaker
model is of GMM type:

P (X |λc) =
T

∏

t=1

p(xt|λc) (14)

The likelihood P (X |λc) is usually approximated using
a collection of background speaker models. With the
set of B background speaker models, {λ1, . . . , λB}, the
background speaker’s likelihood is computed as:

P (X |λc) =
1

B

B
∑

b=1

P (X |λb) (15)

The likelihood normalization provided by the back-
ground speakers is important for the speaker verifica-
tion task, because it helps to minimize the text de-
pendent variations in the test utterance. The speaker
identification task, based on utterance scores, does not
need the normalization, because decisions are made us-
ing the likelihood from a single utterance requiring no
inter-utterance likelihood comparisons [9].

But the situation for the speaker identification task
becomes different when likelihood normalization is ap-
plied on the single vector likelihood p(xt|λ), or at the
frame level. In this case, the likelihood normalization
is done using:

pnorm(xt|λi) =
p(xt|λi)

1
B

∑B
b=1 p(xt|λb)

(16)

When B is big enough and approaches the num-
ber of reference speakers N , normalized likelihood
pnorm(xt|λi) approximates a posterior probability
p(λi|xt) because according to the Bayes rule:

p(λi|xt) =
p(xt|λi)p(λi)

∑N
j=1 p(xt|λj)p(λj)

=
p(xt|λi)

∑N
j=1 p(xt|λj)

≈
p(xt|λi)

∑B

b=1 p(xt|λb)
=

1

B
pnorm(xt|λi) (17)

where a priori probabilities p(λi) are assumed equal for
all speakers. Therefore, this likelihood normalization is
similar to normalization based on posteriori probability
reported in [4]. However, it was applied for speaker
verification and not at frame level.

In contrast to the speaker verification task, in
speaker identification, there is no need of comparison
of the normalized likelihoods with a threshold. Instead,
they are accumulated over all vectors xt, t = 1, 2, . . . , T

for each speaker model i to produce the new scores:

Sci(X |λi) =
1

T

T
∑

t=1

log pnorm(xt|λi) (18)

The speaker to be chosen, in this case, will simply de-
pend on which speaker has the highest score Sci(X |λi).

As in the speaker verification task, here also arises
the problem of choosing the proper background speaker
set. In the closed set speaker identification, the back-
ground speakers should be selected from the available
set of N speakers. Given the speaker model i, the fol-
lowing background speaker sets seem to be reasonable:

• All others - the background speaker set consists
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of all speakers, except the speaker i.
• Top M speakers - since the likelihoods from all

speaker models for the current vector xt are avail-
able, it is possible to determine the speaker mod-
els, which have the M maximum likelihoods and
the background speaker set in this case consists
of these M speakers (excluding speaker i). Obvi-
ously, the Top M speakers will change from frame
to frame.

• Cohort speakers - the background speaker set
consists of K acoustically most close speakers to
the speaker i. The cohort speakers are determined
on the training data in advance and this procedure
is described in [14].

4.2 Weighting Models Rank (WMR)

This is a new technique which also transforms the
frame likelihoods as does the likelihood normalization
described above, but in rather different and determin-
istic way.

Since the likelihoods p(xt|λi) from all speaker mod-
els i = 1, 2, . . . , N for the current vector xt are avail-
able, it is possible to sort them in order, corresponding
to the value p(xt|λi). This is the same as to make N-
best list of models for each vector xt. At the top of this
list is the model having highest likelihood and at the
bottom, the model with the lowest likelihood. This pro-
cedure can be called also ranking of the speaker models.
Table 1 shows how the speaker models are ordered in
this list.

This table also shows that each rank (each row in
the table) is assigned a weight wn, n = 1, 2, . . . , N . Now
the scoring procedure is as follows:

• Step 1. For each test vector xt, t = 1, 2, . . . , T ,
construct the N-best list of the reference models
λi, i = 1, 2, . . . , N , as shown in the Table 1.

• Step 2. For each model λi, i = 1, 2, . . . , N , find its
rank n, i.e. its place in the N-best list, and assign
the corresponding weight wi(t) to this model.

• Step 3. For each model λi, sum up all weights
assigned to this model to produce its score:

Sci(X |λi) =
T

∑

t=1

wi(t) (19)

where wi(t) is the weight of the model i at time t.
The unknown speaker is identified as the speaker,
who has the highest score Sc(X |λi), i.e.:

i∗ = arg max
1≤i≤N

Sci(X |λi) (20)

Obviously, in this scoring approach, the most im-
portant issue is how to set the values of the weights wn.
We have found that weight values corresponding to ex-
ponential function shown in Fig. 2 give the best results

Table 1 N-best list of speaker models.

Rank r Weight wr Model

1 w1 Model λl (max.likelihood)
2 w2 Model λj

. . . . . . . . .

m wm Model λk

. . . . . . . . .

N wN Model λp (min. likelihood)

Rank

Weight

N

N

1
1

Fig. 2 Exponential weight function.

[18]. The exact values of the weights were calculated
according to:

wr = exp

(

N − r + 1

a

)

, r = 1, . . . , N (21)

where r is the current rank (see Table 1) and a is a
scaling factor.

5. Databases and speech analysis

For the experiments we used two databases - NTT
database and TIMIT corpus.

The NTT database consists of recordings of 35
speakers (22 males and 13 females) collected in 5 ses-
sions over 10 months (1990.8, 1990.9, 1990.12, 1991.3
and 1991.6) in sound proof room [3]. For training the
models, 5 same sentences for all speakers and 5 different
sentences for each speaker, from one session (1990.8)
were used. Five other sentences uttered at normal, fast
and slow speeds and same for each of the speakers, from
the other four sessions were used as test data. Aver-
age duration of the sentences is about 4 sec. The input
speech was sampled at 12 kHz. 14 cepstrum coefficients
were calculated by the 14th order LPC analysis at every
10 ms with a window of 21.33 ms. Then these coeffi-
cients were further transformed into 10 mel-cepstrum
(cep) and 10 regressive (∆cep) coefficients. Each ses-
sion’s mel-cepstrum vectors were mean normalized by
mean subtraction and silence parts were removed.

The well known TIMIT database, consisting of
6300 utterances (630 speakers×10 utterances), was also
used in evaluation experiments. 8 utterances (one SA,
five SX and two SI) from each speaker were used for
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Table 2 Identification rates (%) using GMM models (NTT database).

Model Fea- Normalization Baseline
type ture All others Top 10 Cohort

Norm. Slow Fast Norm. Slow Fast Norm. Slow Fast Norm. Slow Fast

4 mix. cep 92.8 89.0 90.9 92.7 89.2 90.7 92.4 89.4 91.2 92.3 88.6 90.4
full c+∆c 94.6 91.6 91.7 94.8 91.6 91.8 94.8 92.4 92.3 94.1 90.8 91.0

8 mix. cep 96.5 92.0 94.3 96.5 92.0 94.3 96.2 92.7 93.6 96.1 91.3 93.4
full c+∆c 97.0 93.4 94.6 97.0 93.6 94.5 97.0 93.8 94.3 97.0 93.0 94.0

32 mix. cep 95.5 92.7 92.6 95.5 92.7 92.6 95.2 92.6 93.2 95.0 92.4 91.7
diag. c+∆c 95.8 92.6 92.0 95.8 92.6 92.0 96.3 93.0 92.0 96.0 92.3 91.7

64 mix. cep 95.2 90.9 92.0 95.2 90.9 92.0 94.9 92.0 92.6 94.5 90.0 91.4
diag. c+∆c 95.7 91.6 92.3 95.7 91.5 92.3 95.9 91.7 91.9 95.4 91.0 91.4

training and the rest 2 (one SA and one SI) utterances
for testing. The same speech analysis was performed
as for the NTT database, except that cepstrum vectors
were not mean normalized and silence was not removed.

6. Experiments

We evaluated our speaker recognition system using sev-
eral types of GMMs with both full and diagonal covari-
ance matrices and VQ-codebooks of different sizes. As
a baseline system we used the standard approaches of
Eq.(8,11) and Eq.(2,3).

6.1 NTT database results

The results presented in the following tables are aver-
aged over all test sessions. Table 2 shows the identifi-
cation rates using frame level likelihood normalization
with the three types of background speaker set - All
others, Top M with M = 10 and Cohort. Cohort size
is set to B = 5. Three separate experiments were done
for each type of the test utterances speeds (speaking
rate) - normal, slow and fast. In the table, the columns
marked with ”Norm.” (”N”), ”Slow” (”S”) and ”Fast”
(”F”) show the identification rate in these three cases.
Note that the speaker models were trained only with
normal speed utterances. The column ”Model type”
shows the GMM structure. ”4 mix. full” means a GMM
with 4 mixture densities with full covariance matrices
and ”32 mix. diag.” - GMM with 32 mixture densities
with diagonal covariance matrices. The results in the
”cep” rows present the identification rates when only
10-dimensional mel-cepstral feature vectors are used.
Adding the cepstral derivative (∆cep) as a separate
feature stream resulted in higher identification rates
shown in the ”c+∆c” rows. Table 2 shows that the
frame level likelihood normalization gives better results
than the baseline system. All types of the background
speaker set give comparable identification rates. How-
ever, more important result is that the likelihood nor-
malization technique is much better than the baseline
at the ”Slow” and ”Fast” utterance speeds compared
to the ”Normal” speed. This fact shows that the frame
level likelihood normalization approach is more robust

against variations of the speaking rate.
Table 3 presents the results when Weighting mod-

els rank normalization technique is used. The expo-
nential weights were ranging from w1 = 33.11, w2 =
29.96, w3 = 27.11 . . . to w34 = 1.22, w35 = 1.10. It is
noted that identification rate of 97.3% is the best on
this database (for comparison see [3]) and is achieved
using WMR technique and GMM with 8 full covariance
matrix mixtures.

When reference speakers are represented by the
VQ-codebooks, likelihood normalization technique can
be adapted interpreting the distortions as negative log-
likelihoods, i.e:

d(xt, Ci) = − log p(xt|λi) (22)

where Ci is the ith speaker codebook and λi is the cor-
responding GMM. From this equation follows that:

p(xt|λi) = exp(−d(xt, Ci)) (23)

Now using this relationship the normalization for-
mulae for the VQ-distortions is:

dnorm(xt, Ci) =
exp(−d(xt, Ci))

1
B

∑B

b=1 exp(−d(xt, Cb))
(24)

where Ci is the current speaker’s codebook and Cb, b =
1, . . . , B are the background speakers codebooks. The
following accumulation of the normalized distortions is
as in the case of likelihoods and the total score given
the test utterance X = x1, . . . , xT is:

Table 3 Identification rates (%) using GMMs and weighting
models rank normalization (NTT database).

Mod. Fea- WMR Baseline
type ture normalization

N S F N S F

4 m. cep 92.4 90.3 89.9 92.3 88.6 90.4
full c+∆c 95.2 91.0 91.9 94.1 90.8 91.0
8 m. cep 96.6 93.9 94.1 96.1 91.3 93.4
full c+∆c 97.3 94.3 94.8 97.0 93.0 94.0

32 m. cep 95.0 92.5 91.4 95.0 92.4 91.7
diag. c+∆c 95.3 92.6 90.5 96.0 92.3 91.7
64 m. cep 96.2 91.4 92.0 94.5 90.0 91.4
diag. c+∆c 95.8 91.9 92.4 95.4 91.0 91.4
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Table 4 Identification rates (%) using VQ-codebook models (NTT database).

CB Fea- Likelihood normalization WMR Baseline
size ture Top 10 Cohort

Norm. Slow Fast Norm. Slow Fast Norm. Slow Fast Norm. Slow Fast

16 cep 86.4 82.8 81.6 85.8 82.7 82.0 86.6 84.7 81.3 85.3 82.6 80.4
c+∆c 88.9 85.7 84.7 88.2 86.0 84.7 88.7 87.7 84.9 87.0 85.4 82.7

32 cep 93.0 91.2 89.4 92.7 91.2 89.2 92.4 91.7 87.3 91.0 89.7 87.0
c+∆c 94.0 91.6 89.7 93.7 91.7 90.4 93.8 92.7 89.6 91.4 90.7 87.0

64 cep 92.2 91.8 90.3 92.2 92.0 90.3 93.3 92.0 89.7 91.4 92.0 89.4
c+∆c 94.1 92.7 91.0 93.8 91.8 91.4 95.1 93.7 90.6 93.4 92.1 89.8

128 cep 94.4 93.0 91.3 94.2 93.0 91.3 94.0 93.1 91.0 94.1 93.2 91.3
c+∆c 95.6 93.4 91.6 95.4 93.7 92.0 94.6 94.6 92.4 95.3 92.6 91.1

Di
norm =

1

T

T
∑

t=1

log dnorm(xt, Ci) (25)

= −Di −
1

T

T
∑

t=1

log(
1

B

B
∑

b=1

exp(−d(xt, Cb)))

(26)

where Di is obtained form Eq.(2). In this case, the
unknown speaker is identified by:

i∗ = arg max
1≤i≤N

Di
norm (27)

Implementation of the WMR technique is easier
because we need only to sort the distortions in re-
verse order. That is, the codebook with minimum
d(xt, Ci), i = 1, . . . , N is at the top of the table (see
Table 1).

Table 4 shows the results of the experiments
with VQ-codebook models and our normalization tech-
niques. The column ”CB size” shows the number of
codewords in the codebook and the meaning of the
other columns is the same as in Table 2. VQ-codebook
models results show the same degree of superiority of
the normalization techniques as in the GMMs case. Us-
ing the same train and test data identification rates
of 90.9%, 93.0% and 93.9% (normal speed) for VQ-
codebooks of sizes 32, 64 and 128 were reported in [3].

6.2 TIMIT database results

In Table 5, the results on TIMIT database are sum-
marized. The column “Likelihood” means likelihood
normalization using “All others” type of background
speaker set (the other types are currently under ex-
periments), and “WMR” means weighting models rank
normalization with exponential weights. Identification
rates for both the SA and SI test utterances are pre-
sented separately. Here also can be seen that our ap-
proaches give better results, except for the 4 mixture
GMM.

Note that the best results for TIMIT database
are achieved using WMR approach as for the NTT
database, but this time using GMM with 16 full co-
variance matrix mixtures. The reason is that from the
TIMIT data silence was not removed and thus, several

Table 5 Identification rates (%) using GMMs (TIMIT
database).

Mod. Fea- Normalization Base line
type ture Likelihood WMR

SA SI SA SI SA SI

4 m. cep 94.0 90.0 89.7 87.3 93.2 91.6
full c+∆c 94.8 91.1 89.8 87.0 95.1 92.9
8 m. cep 97.0 93.7 97.1 94.4 97.0 93.0
full c+∆c 97.3 94.1 95.7 93.0 96.8 93.8

16 m. cep 97.6 95.4 97.6 96.7 97.0 94.8
full c+∆c 96.8 93.8 98.1 95.1 96.7 94.4

16 m. cep 93.8 91.1 92.1 90.2 91.0 87.6
diag. c+∆c 94.1 90.8 89.4 86.3 92.4 87.9
32 m. cep 95.2 92.2 94.4 94.6 94.3 92.4
diag. c+∆c 94.9 92.1 94.1 91.4 94.3 92.4

of the GMM mixtures are necessary for modeling the si-
lence. Since silences were removed from the NTT data,
less mixtures were needed for the best performance.

7. Discussion

7.1 Statistical test of the improvements

In order to investigate the significance of the improve-
ments achieved using frame level likelihood normaliza-
tion and WMR techniques, we performed statistical sig-
nificance test on the obtained results. For this, we used
the sign test methodology described in [19].

When performing statistical significance test on
the experimental results, the number of test samples
by which the identification system was tested, is an im-
portant issue. For example, for few test samples, an ac-
ceptable significance level (or risk) will require quite big
difference between identification rates of the standard
and the new systems. In the case of NTT database, we
had 5 test sentences per each of one of the 35 speakers
which gives 175 tests per session, or 700 tests for all ses-
sions. It is natural to take the best results of the both
baseline and our system to calculate the significance
level. Our baseline system achieved 97.0% identifica-
tion rate for the 8 mixture full covariance matrix GMM.
Having only 700 tests, a significance level of about 5%
would require improvement of this result up to more
than 98.6%. To achieve such identification rate is very
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Table 6 Significance level (risk) (%) of the improvements for
NTT database. (GMM - 8 mixture, full matrix).

Feature WMR Cohort

cep 0.1 7.3
cep+∆cep 4.4 11.9

difficult task on this database (it may not exist such a
powerful method). However, since our test data consist
of sentences uttered at normal, slow and fast speeds, we
can perform significance test using averaged results of
these three test conditions. This increases the number
of the test samples to 2100. We performed significance
test on the results obtained using 8 mixture full co-
variance matrix GMM, WMR technique and likelihood
normalization with “Cohort” type background speaker
set (this set performs best among the all sets). Ta-
ble 6 shows the significance levels (risk) when both the
“cep” and “cep+∆cep” feature vectors are used. These
results confirm that WMR technique is best with sig-
nificance level of 0.1% for “cep” features and 4.44% for
“cep+∆cep” features. In other words, we can say with
risk of only 4.4% that WMR is better than baseline for
the NTT database when used with 8 mixture, full ma-
trix GMM and cepstral and ∆cepstral feature vectors,
which gave the best result. The WMR identification
rate for the TIMIT database (best performing configu-
ration) also gives similar significance level.

7.2 Amount of computation

It is known that each improvement of any system in-
creases its complexity. In our speaker identification sys-
tem, since likelihood normalization is applied at frame
level, for each test vector more computations are re-
quired than in the standard one. However, different
background speaker sets require different number of ad-
ditional operations. It is straightforward to estimate
this number from the normalization formulae (Eq.(16)).
For the “cohort” background speaker set two divisions
and B summation (2 ∗ div. + B ∗ sum.) operations are
required. Since the cohort size is a priori determined,
in this case the number of additional operations does
not depend on the number of reference speakers N

and is roughly not more than 0.3% of the operations
per frame for the baseline system using diagonal co-
variance matrices. If full covariance matrices are used
additional amount of computation becomes negligible.
“All others” background speaker set, however, requires
2∗div.+(N−1)∗sum and the amount of additional com-
putation depends linearly on N . “Top M” background
speaker set as well as WMR technique require frame
likelihoods from all models to be sorted and in these
cases the number of additional operations is a nonlinear
function of N . When importance is given to the ratio
performance/speed of the identification system, cohort
frame likelihood normalization will be appropriate.

7.3 Frame level normalization

Here we would like to discuss about the normalization
problem since it appears to be important to understand
why likelihood normalization works only at the frame
level for the speaker identification task.

First of all, the difference follows from the defini-
tions of the frame and sentence level likelihood normal-
ization, though the normalization formula is the same.
For frame level likelihood normalization it is:

pnorm(xt|λi) =
p(xt|λi)

1
B

∑B

b=1 p(xt|λb)
(28)

where B is the number of background speakers. Sen-
tence level likelihood normalization is defined as:

Pnorm(X |λi) =
P (X |λi)

1
B

∑B

b=1 P (X |λb)
(29)

From these two equations follows that the sentence
log-score is:

Scframe(X |λi) =

=

T
∑

t=1

(log p(xt|λi) − log(
1

B

B
∑

b=1

p(xt|λb)))

=

T
∑

t=1

log p(xt|λi) −

T
∑

t=1

log(
1

B

B
∑

b=1

p(xt|λb))

= log P (X |λi) − log

T
∏

t=1

(
1

B

B
∑

b=1

p(xt|λb)) (30)

for the frame level normalization (actually, for the Top
M background speaker set λb varies depending on the
current frame and more correct would be to write λb(t),
but for the other sets background speakers are the same
for all frames) and:

Scsent(X |λi) =

= log P (X |λi) − log(
1

B

B
∑

b=1

P (X |λb))

= log P (X |λi) − log(
B

∑

b=1

(
1

B

T
∏

t=1

p(xt|λb))) (31)

for the sentence level likelihood normalization. The fi-
nal formulae became quite different. This shows that
two normalization methods work in different way, but
does not show why sentence level likelihood normaliza-
tion has no effect on the identification rate. For this,
each kind of the background speaker sets must be con-
sidered.

Top M - By definition this background speaker
set is the same for all speaker models. That is why
the normalization would be done by the value, which
does not depend on the current speaker i and is the
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same for all of them. If for any two speakers i and
j the likelihoods are Pi and Pj , then the normalized
likelihoods are:

Pnorm
i =

Pi

1
M

∑M

b=1 Pb

=
Pi

C
(32)

Pnorm
j =

Pj

1
M

∑M
b=1 Pb

=
Pj

C
(33)

Since the identification procedure is based on compar-
isons, the ratio between two likelihoods is important.
If

Pi

Pj

= k (34)

then

Pnorm
i

Pnorm
j

=
Pi

C
Pj

C

=
Pi

Pj

= k (35)

which means that this kind of background speaker set
does not change this ratio and, therefore, the identifi-
cation rate, no matter at sentence or at frame level the
normalization is applied.

That is why, a modified Top M background speaker
set was used in the experiments. The modification con-
sists of excluding the current speaker i from the back-
ground set in case his/her model’s likelihood has been
among the top M likelihoods. Thus, the modified Top
M background speaker set changes the ratio (35) in a
manner similar to all others background set, but only
for the top M speakers at each frame.

All others - This background speaker set differs
among the speakers. Following the same considera-
tions, we have:

Pnorm
i =

Pi

1
N−1

∑

b6=i Pb

=
Pi

1
N−1(

∑N

b=1 Pb − Pi)

=
Pi

C − Pi

N−1

(36)

The same holds for speaker j:

Pnorm
j =

Pj

C −
Pj

N−1

(37)

Then if
Pi

Pj

= k (38)

the normalized likelihoods ratio becomes:

Pnorm
i

Pnorm
j

=
Pi(C −

Pj

N−1 )

Pj(C − Pi

N−1 )

= k
(N − 1)C − Pj

(N − 1)C − kPj

= k
A − Pj

A − kPj

(39)

where A = (N − 1)C. Now, if k > 1 then:

k
A − Pj

A − kPj

> k (40)

and if k < 1 then:

k
A − Pj

A − kPj

< k (41)

This means that this type of background speaker se-
lection gains the ratio between likelihoods, but does
not invert the inequality. Therefore, applied only once
at sentence level it would not change the identification
rate.

Cohort - With this type of background speaker
set it is difficult to show analytically, that it does not
work on sentence level normalization, because the co-
hort speakers are quite different for each speaker. How-
ever, it is obvious that it also changes the ratios between
model likelihoods and, used in the frame level normal-
ization, it gives improvement in the identification rate.

Weighing models rank - This technique, viewed
as a special case of the likelihood normalization, can be
applied only at the frame level. By its definition, it
apparently changes proportions between model likeli-
hoods, hence the identification rate. However, experi-
ments showed that not every kind of the weight function
gives the desired results.

8. Conclusion

We have experimented a new structure of the speaker
identification system, which allows the likelihood nor-
malization method to be utilized at frame level. A
new technique, Weighting Model Rank, was also exper-
imented. Both approaches showed better results in the
speaker identification task compared to the standard
accumulated likelihood/distortion methods on both the
TIMIT and NTT databases. It was shown that any
transformation (normalization) of the likelihoods at the
frame level, which changes the ratio between them, in-
fluences the speaker identification rate.

We have confirmed that frame level normalization
technique described here is also effective in speaker ver-
ification [17].
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