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ABSTRACT

This paper presents a new method of modeling pentaphone-context
units using the hybrid HMM/BN acoustic modeling. Rather than
modeling pentaphones explicitly, in this approach we extend the
modeled phonetic context within the triphone framework, since the
probabilistic dependencies between the triphone context unit and the
second preceding/following contexts are incorporated into the tri-
phone state output distributions by means of the BN. Another ad-
vantage is that we can use a standard decoding system by assum-
ing the next preceding/following context variables hidden during
recognition. In this study, the performance of pentaphone HMM/BN
model was evaluated with our LVCSR system by phoneme recog-
nition and by large-vocabulary continuous word recognition tasks.
In both cases, we observed consistently improved performance over
the standard HMM based triphone model with the same number of
parameters.

1. INTRODUCTION

A triphone, which includes the immediate preceding and following
phonetic contexts, is the most widely used acoustic unit in current
hidden Markov model (HMM) based large-vocabulary continuous
speech recognition (LVCSR) systems. Although such triphones have
proven to be an efficient choice, they are considered insufficient for
capturing all coarticulation effects. These effects may come not
only from the first preceding/following contexts but also from further
neighboring contexts. Thus, by incorporating something wider than
the triphone context, such as a pentaphone (or more), more than just
one preceding and one following phonetic context dependencies are
taken into account, which is expected to improve the performance of
such acoustic models.

Actually, the idea of using wider-than-triphone units is not novel
in automatic speech recognition (ASR) systems. To date, the IBM
and AT&T LVCSR systems have quite successfully used pentaphone
models [1, 2]. Some researches also have tried to use wide-context
models, such syllables or multi-phone units, that give better over-
all recognition rates [3, 4]. However, there is no common, flexi-
ble enough framework that allows integration of additional informa-
tion of wide-context dependency into existing HMM-based triphone
acoustic models. To train wide-context models from scratch and use
them properly in cross-word decoding, we may encounter many dif-
ficulties due to the increased complexity of the model and computa-
tional costs; training data and memory space are also limited. Fur-
ther difficulties may arise if the available decoding system adheres
to a fixed model structure. In [5], it was proposed to compile wide-
context-dependent models into a network of Weighted Finite State
Transducers (WFST), so the decoding process is completely decou-

pled from dealing with the wide context. However, when higher
order models are used, difficulties lie in the compilation itself. The
work in [6] was thus conducted to simplify the compilation method.
Another much simpler procedure in LVCSR systems is to apply wide
context models in rescoring passes only.

Over the last decade, Bayesian Networks (BN) have become a
popular method for encoding uncertainty in artificial intelligence,
and recently they have also attracted from attention speech recogni-
tion researchers. A BN can model complex joint probability distri-
butions of many different (discrete and/or continuous) random vari-
ables in well structured and easy to represent ways [7]. In some of
the first reports on Dynamic BNs (DBN) in speech recognition [8, 9],
they were regarded as a generalization of HMM, which in addition to
speech spectral information can easily incorporate additional knowl-
edge, such as articulatory features, sub-band correlation, or speaking
styles. Another advantage of BNs is that additional features which
are difficult to estimate reliably during recognition may be left hid-
den, i.e., unobservable.

The approach we propose in this paper is to incorporate wide-
context-dependency by utilizing the advantages of BNs, while al-
lowing us to keep the existing: (1) HMM-based triphone acoustic
model topology and (2) standard triphone-based decoding system. It
is based on the hybrid HMM/BN model [10]. With this method, we
can easily extend the conventional triphone HMM to cover a wider
context where the probabilistic dependencies between the triphone
context unit and the next preceding/following contexts are learned
through a BN and the pentaphone state output probability distribu-
tion can be modeled. Our standard triphone-based decoding sys-
tem can still be used without modification, since the next preced-
ing/following context variables are assumed hidden during recogni-
tion.

In the next section, we briefly describe the hybrid HMM/BN
background, followed by the structure of the hybrid pentaphone
HMM/BN model in Section 3 including model topology, training
procedure, and recognition issues. Details of the experiments are
presented in Section 4, including results and discussions. A conclu-
sion is drawn in Section 5.

2. HYBRID HMM/BN BACKGROUND

The HMM/BN model is a combination of an HMM and a BN. Tem-
poral speech characteristics are still governed by HMM state tran-
sitions, but HMM state probability distributions are inferred from
the BN. This allows for very flexible and consistent models of state
probability distribution that can easily integrate different speech pa-
rameterizations. A block diagram of the HMM/BN is shown in Fig.
1, with HMM on top and BN underneath.
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Fig. 1. HMM/BN model structure, where HMM transitions model
speech temporal characteristics and BN represents state probability
distributions.

This model is described by two sets of probabilities: HMM tran-
sition probabilities P (qi|qj) and joint probability distribution of BN
P (Z1, ..., ZK), where Zk, k = 1, ..., K are the BN variables. The
BN joint probability density function (PDF) can be factorized as:

P (Z1, Z2, ..., ZK) =

K∏

k=1

P (Zk|Pa(Zk)), (1)

where Pa(Zk) denotes the parents of variable Zk.
It is also possible to use different BN structures for different

sets of HMM states. Fig. 2 shows several different examples of
simple BN structures where variable Q represents the HMM state,
X represents the spectrum observation variable, and both W and Y
represent other additional information, such as pitch, articulatory po-
sitions, speaker gender, context information, etc. Here, Q, W, and Y
are discrete variables denoted by square nodes, and X is a continu-
ous variable denoted by a circle node. The dependency between two
variables (parent and child nodes) is denoted by an arc and described
by a conditional probability function. Since it is usually difficult to
automatically learn the BN structure, it is designed manually based
on our knowledge about the data. More details about the HMM/BN
approach can be found in [10, 11].
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Fig. 2. Three simple examples of different BN structures with vari-
ables Q,W,Y, and X.

3. HYBRID PENTAPHONE HMM/BN ACOUSTIC MODEL

3.1. Topology of Pentaphone HMM/BN Model

In our pentaphone HMM/BN model, the HMM at the top level cor-
responds to the triphone-context acoustic unit and has three states.
The BN at the bottom level is used to model the probabilistic de-
pendencies between triphone-context units and the second preced-
ing/following contexts represented by different BN variables. Let
/a−, a, a+/ be a triphone context, then the corresponding penta-
phone three-states left-to-right HMM/BN structure becomes the one
shown in Fig. 3.
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Fig. 3. Hybrid pentaphone HMM/BN structure.

If we extend the conventional triphone HMM with additional
second preceding and following contexts, we have a pentaphone con-
text like /a−−, a−, a, a+, a++/. The left, center, and right state
output probability distributions can be represented by three differ-
ent BN topologies, as shown in Figs. 4(a), (b), and (c), respectively.
BNL and BNR have only one additional discrete variable, as in Fig.
2(a), which is the second preceding context CL (for BNL) and the
second following CR (for BNR). BNC , however, has two addi-
tional context variables CL and CR, which is similar to Fig. 2(c).
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Fig. 4. BN topologies of the left state (a), center state (b), and right
state (c) of pentaphone-HMM/BN, for modeling a pentaphone con-
text /a−−, a−, a, a+, a++/.
3.2. Pentaphone HMM/BN Model Training

The training procedure for the hybrid pentaphone HMM/BN model
can be adopted from the general training of the HMM/BN model
[10]. It is based on the Viterbi algorithm and consists of the follow-
ing steps:

1. Initialization: HMM/BN parameter initialization using the
bootstrap conventional HMM model.

2. Viterbi alignment: Obtain time aligned state segmentation of
the training data.

3. BN training: Train the BN using state labelled training data.

4. Transition probability updating.

5. Embedded BN/HMM training.

6. Convergence check: Stop if convergence criterion is met, oth-
erwise go to step 2.

The training of the state BN at step 3 above is done using standard
statistical methods. Since all variables, including triphone state Q,
second preceding (CL) context, second following (CR) context, and
probability distribution X are observable during training, only sim-
ple ML parameter estimation can be applied on the training of the
state BN at step 3 of the algorithm.

3.3. Recognition with a Pentaphone HMM/BN Model

In a conventional HMM, the state PDF is usually represented by
Gaussian mixture density, and the state output probability is obtained
as:

P (xt|qi) =
M∑

m=1

bmN (xt; µm, Σm), (2)

where bm is the mixture weight for the mth mixture in state qi, and
N (.) is a Gaussian function with mean vector µm and covariance
matrix Σm.

In the case of pentaphone HMM/BN, the state PDF is the BN
joint probability model. For the left and right state PDF, the BN join
probability model is expressed as:

P (X, C, Q) = P (X|C, Q)P (C|Q)P (Q), (3)

where it depends on the second preceding or following context C.
Since X is a continuous variable, P (X|C, Q) is modeled by Gaus-
sian density. The second preceding/following context C is discrete,
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Fig. 5. (a) Recognition accuracy rates of phoneme recognition experiments. (b) Number of improvements for each phoneme.

and therefore P (C|Q) is represented by conditional probability table
(CPT). When C is observable, the left/right state output probability
is simply:

P (xt|cn, qi) = P (X = xt|C = cn, Q = qi). (4)

However, since the second preceding/following context C (CL or
CR) is assumed hidden during recognition, the left/right state output
probability is then calculated by marginalization over C:

P (xt|qi) =

N∑

n=1

P (cn|qi)P (xt|cn, qi), (5)

where for simplicity, we use xt, qi, and cn instead of 〈X = xt〉,
〈Q = qi〉, and 〈C = cn〉, respectively. Analyzing Eq. (5), we can
see that it is equivalent to the state output probability of the conven-
tional HMM of Eq. (2) if we treat term P (cn|qi) as a mixture weight
coefficient for the Gaussian component P (X|cn, qi).

For the center state PDF, the BN joint probability model is ex-
pressed as:

P (X, CL, CR, Q)=P (X|CL, CR, Q)P (CL|Q)P (CR|Q)P (Q), (6)

where it depends on both the second preceding context CL and the
second following context CR. P (X|CL, CR, Q) is modeled by Gaus-
sian density, and each P (CL|Q) and P (CR|Q) is represented by
CPT. During recognition, the center state output probability is ob-
tained from the BNC assuming also that both additional variables
CL and CR are hidden during recognition and take NL and NR val-
ues:

P (xt|qi) =

NL∑

l=1

NR∑

r=1

P (cl|qi)P (cr|qi)P (xt|cl, cr, qi), (7)

where for simplicity, we use xt, qi, cl, and cr instead of 〈X = xt〉,
〈Q = qi〉, 〈CL = cl〉, and 〈CR = cr〉, respectively. Here, we can
see that Eq. (7) is also equivalent to the state output probability of the
conventional HMM of Eq. (2) if we treat termP (cl|qi)P (cr|qi) as a
mixture weight coefficient for the Gaussian component P (X|cl, cr, qi).
Using these expressions (Eqs. (5) and (7)), we can perform recog-
nition using existing triphone HMM based decoders without modifi-
cation.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

Our baseline triphone HMM acoustic model was trained on more
than 60 hours of native English speech data from the Wall Street
Journal (WSJ0 and WSJ1) speech corpus [12]. A sampling fre-
quency of 16 kHz, a frame length of a 20-ms Hamming window,

a frame shift of 10 ms, and 25 dimensional feature parameters con-
sisting of 12-order MFCC, ∆ MFCC, and ∆ log power were used as
feature parameters. Three states were used as initial HMM for each
phoneme. Then shared state HMnet topology was obtained using a
successive state splitting (SSS) training algorithm. Since the SSS
training algorithm used here was based on the minimum description
length (MDL) optimization criterion, the number of shared HMM
states is determined automatically by the algorithm. MDL-SSS de-
tails can be found in [13]. Here, the length of the HMnet path for
each triphone context is restricted to three states. The total number
of states is 1,144 with four different versions of Gaussian mixture
component numbers per state: 5, 10, 15, and 20.

Using the same database corpus, we obtained time-aligned state
segmentation. Then we performed the hybrid pentaphone HMM/BN
and trained each BNL, BNR, and BNC with additional context
variables, as described in the previous section. The HMM/BN state
topology, the total number of states, and the transition probabilities
remain identical to those of the baseline. According to Eqs. (5) and
(7), the number of Gaussian components depends on the second pre-
ceding/following phonetic context C. If we use a 44-phoneme set
(including silence) for the English ASR, it means that the total num-
ber of Gaussians for each left/right state may reach 44, and the total
number of Gaussians for each center state of may reach 442=1,936.
To avoid unreliable estimated parameters and to compare their per-
formances with the baseline having exactly the same total number
of Gaussians, we used data-driven clustering technique and reduced
the size of the pentaphone HMM/BN model to correspond to a 5, 10,
15, and 20 mixture component baseline.

The performance of the models was tested on the ATR Basic
Travel Expression Corpus (BTEC)[14]. It consists of travel related
expressions, which is quite different from the training corpus. In this
study, we randomly selected 200 utterances from 4,080 utterances
spoken by 40 different speakers (20 males, 20 females).

First, we evaluated the performance of the pentaphone HMM/BN
model in a phoneme recognition task. Recognition results of both
pentaphone HMM/BN and the triphone HMM baseline are shown in
Fig. 5(a). It can be seen that within the same number of parameters,
the performance of pentaphone HM/BN models always performed
better than the baseline. To investigate in more detail, we calculated
the difference between the number of errors in the baseline results
and in the pentaphone HMM/BN results (#error in baseline - #error
in pentaphone HMM/BN) for each phoneme. The calculation re-
sults, summarized in Fig. 5(b), indicate that most phonemes could
get the benefits of incorporating wider context dependencies.

To investigate the consistency of the effect of using pentaphone
HMM/BN, we also evaluated the performance of the pentaphone
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HMM/BN in LVCSR task. In this case, we use a 20k word dic-
tionary and also a bigram and trigram language model trained on
about 150,000 travel related sentences. The word recognition results
of both pentaphone HMM/BN and the triphone HMM baseline are
shown in Fig. 6. As in the phoneme recognition task, pentaphone
HMM/BN outperformed the baseline model in all cases. The best
result achieved a 10% relative word error rate (WER) reduction.

However, one might argue that the superior performance of our
proposed model is mainly because it has a varied number of mixture
components, while the baseline only has a fixed number of mixture
components. To investigate this issue, we conducted additional ex-
periments with: (1) the triphone HMM model with a varied num-
ber of mixture components per state trained by simply assigning the
number of mixture components per state depending on the amount
of training data for that state, and (2) the pentaphone HMM/BN with
a fixed number of mixture components per state trained by apply-
ing data-driven clustering to each state. To minimize the time pro-
cess, clustering was only performed for Gaussian components of the
left and right states. The Gaussian components of the center state
were equivalent to the Gaussian components of the center state of
the triphone baseline, assuming that the next preceding and follow-
ing contexts mainly affect the outer states of the model. Their per-
formances were compared with the baseline and the previous pen-
taphone HMM/BN model with all having about the same 15 mix-
ture components per state, and the results are shown in Fig. 7. The
performance of pentaphone HMM/BN with a fixed number is still
better than the triphone models with a varied number of mixture
components. This shows that by conditioning each Gaussian with
additional knowledge of such pentaphone-context dependency, the
state PDF becomes more precise, effecting an improvement in per-
formance.

Fig. 6. Recognition accuracy rates of the LVCSR experiments.

Fig. 7. Comparing recognition word accuracy rates of triphone
HMM and pentaphone HMM/BN model with a fixed and a varied
number of mixture components per state, but having the same 15
mixture components per state on average.

5. CONCLUSION

We have presented the possibility of utilizing wide-context depen-
dency which benefits from the HMM/BN modeling framework. This
method allows for easy integration of additional information of wide-

context dependency into existing HMM-based triphone acoustic mod-
els, where the additional knowledge of pentaphone-context depen-
dency is incorporated into the triphone state PDF by means of the
BN. Beneficially, we can impose a kind of knowledge-based struc-
ture so that the state PDF can be learned more specifically and pre-
cisely. On the issues of recognition, if we lack appropriate decod-
ing for pentaphone HMM/BN models, we can still use the stan-
dard decoding system without modification, while the second pre-
ceding/following context is then assumed hidden, and the state PDF
can be calculated by marginalization over those BN joint PDFs. Ex-
perimental evaluation in both phoneme recognition and large- vo-
cabulary continuous word recognition tasks, showed that the pro-
posed pentaphone HMM/BN model consistently improved ASR sys-
tem performance, even when it has the same number of Gaussians as
the baseline triphone HMM.
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