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Abstract

In this paper, we describe automatic speech recognition 

system where features extracted from human speech 

production system in form of articulatory movements 

data are effectively integrated in the acoustic model for 

improved recognition performance. The system is

based on the hybrid HMM/BN model, which allows for 

easy integration of different speech features by

modeling probabilistic dependencies between them. In 

addition, features like articulatory movements, which 

are difficult or impossible to obtain during recognition, 

can be left hidden, in fact eliminating the need of their 

extraction. The system was evaluated in phoneme

recognition task on small database consisting of three 

speakers’ data in speaker dependent and multi-speaker

modes. In both cases, we obtained higher recognition 

rates compared to conventional, spectrum based HMM 

system with the same number of parameters.

1. Introduction

Most of the current state-of-the-art speech

recognition systems are based on the Hidden Markov

Model (HMM) framework where speech is modeled as 

a sequence of disjoint non-overlapping units. While this 

approach has been most successful so far it does not 

take much into account the human speech production 

mechanism. It has been noted that “[the HMM] is a 

very inaccurate model of the speech production

process” [1].

To account for co-articulations, the common

phenomena of speech production, in ASR, a number of

models based on hidden dynamic models have been 

proposed [2-5]. Such models describe the physical 

process of speech production, and attempt to account 

for the co-articulations and transitions between

neighboring frames and phones . In [2], Deng

considered the effects of articulatory movements on 

speech by modeling the dynamic properties using a

quadratic motion equation, and applied the idea in

speech recognition.  Hogden and Valdez proposed a

method called MALCOM  [3], that treated the

articulation as continuous movements in a virtual

speech production space, and used the continuity of the

articulation to compensate some discontinuities of

acoustic parameters.  Gao et al. [4] tried to build a 
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rm model for both speech production and speech 

nition via a combination of the Kalman filter and 

-layer perceptron networks. In [5], Erler and

an proposed HMM based Articulatory Feature

l (AFM) in which each state represents one point 

e acticulatory space defined by several hidden 

laroty features.  Common to all these approaches 

at the acticulatory model and features are

dered hidden.  This allows for eliminating the

of observed articulatory data, which is difficult to 

t for training and, in practice, impossible to obtain 

cognition.

 contrast, our speech recognition system makes 

f observed articulatory data, but only for the

tic model training. During recognition, the system 

only acoustic data in form of the standard MFCC 

res. Such scenario is possible when the hybrid 

/BN model [6] is applied. In this model,

latory movement data and acoustic speech data 

ntegrated at HMM state level using Bayesian 

ork (BN), which can model probabilistic

dency between them. The BN para meters are

ated using standard statistical algorithms using 

articulatory and acoustic data. In recognition,

ver, articulatory data are assumed hidden and no 

vations are required. This allows to fully account 

e speech production mechanism in a statistical 

l, so that the automatic parameter estimation can

ained and a practical system can be built.

2. Articulatory data

he articulatory data used in this study was

ted using the electromagnetic midsagittal

lographic (EMMA) system at NTT, Japan [7].

e 1 shows the placement scheme of the receive 

used in the experiment.  Four receive coils were 

d on the tongue surface in the midsagittal plane,

d T1 through T4, and one coil for each of the 

 lip, lower lip, maxilla incisor, mandible incisor 

and the velum, respectively.  The coordinate

m is shown in the figure, where the maxilla incisor 

chosen as origin. The acoustic signal and

latory data were recorded simultaneously. The

ling rate was 250 Hz for the articulatory channels 



and 12 kHz for the acoustic channel. The data was 
collected from three adult male speakers each reading 
about 360 Japanese sentences at normal speech rate. 

Figure 1: The placement of the reserve coils in the 
EMA experiment, and the coordinate system used in 
this study.  The gray circles show the observation 
points in the target vector.

       To confirm validity of the articulatory data for 
the speech recognition task, we conducted a 
preliminary experiment using the acoustic data and the 
articulatory data alone as well as both of them together. 
The articulatory data obtained from the eight 
observation points are time-varying vectors with 16 
components accounting for both the x- and y-
coordinates. Thus, our articulatory feature vectors were 
48 dimensional (including first and second order 
coefficients). Using these features we trained 27 
monophone 3-state left-to-right HMMs from 900 
(3x300) utterances and the rest 180 utterances were 
used as test data. The same experimental setup was 
applied with the acoustic data alone. The feature 
vectors in this case were 16 MFCC coefficients 
(including C0) and their delta and delta-deltas. In the 
third case, acoustic and articulatory parameters were 
combined by replacing the delta-delta coefficients of 
the acoustic feature vectors with the static articulatory 
coefficients. Table 1 shows the phoneme recognition 
accuracy for these three cases using HMMs with 
different number of mixtures per state.  

Table 1:  Phoneme recognition accuracy obtained in 
three cases: acoustic data alone, articulatory data alone, 
and combination of both.

Mixture 
#

Artic. 
Data

Acost. 
Data

Acoust.+ Artic. 
Data

3 74.70 80.77 83.92 

4 75.01 81.34 84.12 

5 75.80 81.81 84.76 

8 76.28 82.53 85.64 

12 78.42 84.04 86.82 

16 79.09 81.93 84.68 

The results suggest that articulatory data is not as 
good as the acoustic data, but when combined together, 
clear performance gain is observed.  This fact indicates 
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 the articulatory data is not easy to be obtained, 
maining question is how to utilize the available 
d data.  

3. The hybrid HMM/BN model 

possible answer is to use the hybrid HMM/BN 
tic model [6], which we briefly describe in this 
n. 

his model is essentially a combination of  the 
en Markov Model and  Bayesian Network, where
temporal characteristics of speech signal are 
led by HMM state transitions, while HMM state 
bility density is modeled by the Bayesian 
ork.  The structure of the HMM/BN model is 
n in Figure 2. 

q1 q2 q3

State Bayesian Network

igure 2: The hybrid HMM/BN model structure.

model is described by two sets of probabilities: 
 transition probabilities P(qj|qi) and joint 
bility distribution of the Bayesian Network 
…,Xk), where Xi, i=1,…,K are the BN variables. 
N joint probability density function (PDF) can be 

rized as: 

∏
=

=
K
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 Pa(Xi) denotes the parents of variable Xi.

Q

Y

X

igure 3: Simple state BN structure. Q is the HMM 
ate variable, X – speech observation variable and 
 –some additional variable.

e 3 shows an example of a simple state BN 
ure with three variables. By circle we denote 
nuous variables, and the squares are used for 
te ones.  Therefore, Q and Y are discrete and X is 

nuous.  The arcs  represent dependencies between 
t and child nodes which can be modeled by 



Conditional Probability Tables (CPT) if the child is 

discrete or by Gaussian  pdf if the child is continuous. 

State output probability for the BN of Fig. 3 can be 

calculated from the joint PDF in a closed form.

According to Eq. 1:

)(*)|(*),|(),,( QPQYPQYXPQYXP =    (2)

If  all the BN variables are observable, then state output

probability is just P(X|Y,Q)  which is one of the BN 

parameters. However, much more interesting for our

task is the case when the additional variable Y is hidden. 

Then, we are looking for P(X|Q) :
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One can see that this expression is actually equivalent to 

the conventional mixture of Gaussians expression if 

simply treating the term of P(Y=y|Q) as a mixture

weight coefficient for the Gaussian P(X|Y=y,Q). After

this treatment, the HMM/BN state output calculation 

becomes  the same as of the standard HMM.  Thus, the 

existing HMM decoders can work with the HMM/BN 

model without any modification.

Training of the hybrid HMM/BN model is based on 

the Viterbi algorithm and consists of following steps:

1. Initialization: Set initial model parameters

randomly or using bootstrap HMM model.

2. Viterbi alignment:  Obtain time aligned state

segmentation of the training data.

3. BN training: Train BN using state labeled

training data.

4. HMM transition probabilities updating:

Update HMM transition probabilities using

standard forward-backward algorithm.

5. Convergence check: Stop, if convergence

criterion (training data likelihood increase or

preset number of iterations) is met, otherwise go 

to step 2. 

Training of the state BN at step 3 above is done using 

standard statistical methods. For small networks, when 

all variables are observable during training, simple ML 

parameter estimation can be applied. If some of the 

variables are hidden, then conventional EM algorithm

can be used.

4. Integration of the articulatory data

In the previous section we showed how an additional 

data is used together with the speech observations by 

employing the hybrid HMM/BN model. Obviously, the 

articulatory  data can be represented by the additional 

variable Y. The BN of Fig.3, however, requires this 

additional  variable to be discrete. Discretization of the 

continuous articulatory vectors can be done using

standard VQ technique, but at the expense of  loosing 

some
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 are, in fact, observations of the additional

latory variable. Thus, all BN variables are

vable for training and the estimation of Gaussian 

eters for P(X|Y,Q) can be done through ML

ithm. Weights P(Y|Q) are obtained from label 

s. During recognition, articulatory observations

ot necessary if HMM/BN state output probability 

tained from Eq. 3 because articulatory variable is 

n.

5. Experiments

s section, we describe our experimental conditions

eport results obtained using speaker dependent and 

speaker acoustic models.

ommon to both cases is the speech and

latory data processing. Speech front-end was

 as the one used in the preliminary experiment we 

ibed in Section 2. 12kHz sampled speech wave-

 were framed at 8ms rate with 20ms long Ham-

 window. Feature vector consisted of 16 MFCC 

icients with their delta and delta-deltas. The

ine acoustic only system has 27 phoneme HMMs

3 states and various number of mixtures and was 

d using the HTK toolkit. Since articulatory data 

recorded simultaneously and sampled at 250 Hz 

h is equivalent to 4 ms frame rate), we used every 

 articulatory vector corresponding to one frame of 

h. As it is required  by our HMM/BN model, 

latory features were quantized using VQ

ooks with sizes ranging from 4 to 128 and trained 

e same data. Prior to the vector quantization, 

latory data dimension was reduced from 16 to 4 

 PCA analysis technique with a loss of no more 

20% of the information. VQ labels of the

ized articularory vectors were used as training 

or the BN articularory variable.

peaker dependent model results

 each of the three speakers training data (300 

nces) we trained several HMM/BN models using 

latory VQ codebooks with different sizes. Ideally, 

ze of the codebook would determine the number 

ussians per state. However, since the amount of 

aligned to different states and having different 

latory labels varies significantly, Gaussians were 

d only when this amount of data exceeded

rically set threshold. Thus, different states had 

ent number of mixtures and we use the average 

re per state to describe the model complexity. 

gure 4 shows phoneme recognition results for

 speakers for both HMM/BN and baseline HMM 

ls.  Although mixture numbers in the figure are 

ers, actual average mixture number of the

/BN is within 10% of those numbers. The test 

were the same as those used in the preliminary 

iment of  Section 2 and consisted of  60 utterances 

eaker.



Figure 4: Phoneme recognition accuracies using the 

acoustic data alone (light-color bars) both acoustic and 

articulatory data (dark-color bars) for three speakers.

The basic tendency of the results is that the

accuracy of HMM/BN is higher than that of HMM.

Especially, the accuracy got worse for HMM with 16 

mixtures, but there was almost no degradation for the 

HMM/BN. The recognition accuracy for Speaker 3 is 

always lower than that from the others, but it shows the 

same tendency.  This experiment reveals two facts: one 

is that the speech production mechanism is helpful for 

ASR; and the other is that the HMM/BN model is 

capable of combining additional information in an ASR

system.

5.2. Multi-speaker model results

One multi-speaker HMM/BN model was trained using 

the training data from all the speakers (900 utterances). 

Figure 5 shows the average accuracy over the three

speakers for this model (squares) and the baseline

acoustic features only HMM (diamonds) in the same 

phoneme recognition task. Also, shown in this figure is 

the result obtained in Section 2 using combined

acoustic and articulatory feature vectors (triangles).

For the multi-speaker case, HMM/BN also performs 

better than the baseline HMM.  However, replacement 

of partial acoustic parameters by articulatory data in 

MFCC vectors shows the highest accuracy.  This means 

that t
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gure 5: Multi-speaker model results. The diamond

e shows baseline HMM results, the square line -
MM/BN, and the triangle line – HMM with

mbined of acoustic and articulatory feature vectors 

rom Section 2).

6. Conclusion

study confirmed that articulatory data have some 

l information to speech recognition, which is not 

ed in speech sounds.  The HMM/BN model was

yed to combine the articulatory data and the

imental results showed its superiority over the

ntional HMM in almost all cases.  This study 

nstrates a way to apply the speech production 

anism in an ASR system. 
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