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Abstract— The combination of Neuromorphic Computing and
3D Integrated Circuits - the 3D stacking neuromorphic system
can be the most advanced architecture that inherits the benefits
of both computing and interconnect paradigms. However, simply
shifting to the third dimension cannot exploit the 3D structure
and also end up with a low yield rate issue. Therefore, in
this paper, we propose a methodology to design 3D stacking
synaptic memory for power-efficient operations and yield rate
improvement of Neuromorphic Systems (NCs). In this proposed
methodology, the synaptic weights are stacked on top of the pro-
cessing elements, and these weights are split into multiple subsets
placed in different layers. Furthermore, with the support of 3D
technology, the supply voltage of each layer can be controlled
independently which leads to power reduction by scaling down or
turning off the supply voltage of the memory layer(s) containing
the Least Significant Bits (LSBs) while maintaining acceptable
accuracy. On top of that, this work also proposes a methodology
to deal with the low-yield rate issue by treating the defective
memory cells as noises. In our evaluation with the CMOS
45nm technology, the energy per synaptic operation for MNIST
classification, when undervolting two upper memory layers (from
1.1V to 0.8V), reduces by 21.62% while the accuracy only reduces
sightly by 0.51%. This energy reduction increases to 66.77% with
6.58% accuracy loss when our system uses both power-gating and
undervolting for all memory layers. Furthermore, the system can
also improve the yield rate by 0.18% or 12.4% while suffering
0.38% or 1.7% of accuracy loss, respectively.

Index Terms—Spiking Neural Networks, Neuromorphic Sys-
tem, 3D-IC-based stacking memory, Low-power, Voltage Scaling,
Power-gating

I. INTRODUCTION

SPIKING Neural Network (SNN) is a well-known Artificial
Intelligence (AI) model for low-power solutions because

it has lighter weight inferences compared to other neural net-
work models’ ones [1]–[3]. SNNs, which mimic the activities
of the biological brain, transfer information under trains of
spikes that are spatial and temporal sparse [4]. Simultaneously,
the computations inside of SNNs are rather simplified from
the biological models, especially with Integrate-and-Fire-like
models [5], which are easier to implement into neuromor-
phic hardware. As a result, it allows the implementation to
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significantly reduce the area cost and energy consumption,
which benefits the vast majority of resource-intensity and
power-hungry applications such as Internet-of-Things (IoTs)
or wearable devices [6].

Moreover, the power consumption of NC systems can fur-
ther break down into the memory and the processing elements
(PEs) and the former takes more attention in order to reduce
overall power. It is because the memory usually consumes
most of the power in hardware systems, and it is about 50-75%
of the total power in NC systems [7]. The reason is that neural
network models, in general, require a large number of weight
computations to achieve high accuracy and those weights
are transferred back and forth between memory and PEs
with limited bandwidth capability under Von-Neumann-based
architectures. There are currently several design approaches
to solve this problem. The first solution is to perform the
computations near the memory [8]–[10], or better, to merge
PEs and memory, which is so-called In-Memory Computing
[11]–[15], in order to reduce data movements and terminate
delivery power. However, the drawback of this approach is the
technology’s scalability and reliability degradation over time.
Another approach is to reduce the supply voltage of memory,
as known as voltage scaling technique, to gain the energy-per-
access reduction, which saves a large number of total energy
consumption [7], [16]–[19]. The disadvantage of this method
is that the hardware still requires power to transfer data and has
a long transmission distance in large-scale systems since the
memory weight takes up the major part of the hardware. The
reason is that the previous works are conducted under only two
dimensions, where memory segments and computing segments
are in the same layer. However, if the voltage scaling technique
is applied to 3D-IC-based architecture, which has memory on
logic, the data movement problem is expectedly solved by the
natural characteristics of the 3D design. Another disadvantage
of these works is the great reduction of logic correctness
when the supply voltage is near the circuit’s threshold voltage
[19]–[22]. It is because all calculation bits are put into the
same voltage domain. Hence, the meaningful bits are affected
by noise caused at the near-threshold voltage. Therefore, our
main motivation is isolating the meaningful active bits and the
inactive bits using 3D-IC technology to solve these issues.

Although bringing multiple benefits such as the low foot-
print or energy efficiency, one of the most critical issues of
3D-IC-based architectures is their reliability, especially during
the manufacturing phase. Stacking 3D-IC chips usually have
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low yield rates, since the silicon layers are not tested before
bonding. Therefore, we may end up stacking defective layers
on top of the non-defective ones which generally destroy the
correctness of the chip. As a result, simply stacking multiple
layers to have 3D-IC chips is too naive due to the low yield
rate and costly manufacturing process.

Starting from the facts mentioned above, in this paper, we
propose a novel low-power neuromorphic architecture with in-
situ quantization and undervolting 3D stacking synaptic mem-
ory. With 3D-IC technology, a memory word can be split into
small subsets, and each subset is stacked in a separate layer on
top of the computing segment. These stacking layers, which
are called the memory layers hereafter, contain and represent
only the synaptic weights of the SNN model. In addition,
each memory layer can represent one, two, or multiple-bit
precisions of synaptic weights. Hence, the NC system has
the ability to reduce the supply voltage of memory layers
containing the Least Significant Bits (LSBs) or completely turn
off the power supply to save overall energy consumption while
maintaining accuracy. Moreover, our proposed architecture is
able to adapt to multiple different power scenarios by using
in-situ dynamic quantization.

Furthermore, by splitting and stacking in this mechanism,
we can help the system deal with the low yield rate by
accepting defective memory at the top layers. Since defects
in memory usually lead to stuck-at or bridging faults, they
are treated as noises in our architecture. While defects in the
computing logic could lead to incorrect results, they must be
well-tested. Here, we can only need to ensure the correctness
of the logic layer and the MSBs layers. Defects in the LSBs
can be ignored which leads to a much better yield rate and
reduced manufacturing cost.

The main contributions of this paper are summarized as
follows:

• A novel low-power methodology to implement neuro-
morphic architectures with 3D stacking synaptic memory,
where the memory word is split into multiple subsets and
placed in separate layers.

• With 3D-IC technologies, the under-voltage technique is
applied separately to each memory layer in 3D architec-
ture based on the significant bits of synaptic weights. It
aims to reduce overall power consumption with accept-
able accuracy.

• Consequently, an in situ dynamic quantization for synap-
tic weight is implemented in this work as the next level
of undervolting. The weights are configured in the design
phase and stay unchanged during inference. Therefore,
the bit precision of synaptic weights is dynamically
modified by removing completely the supply voltage of
memory layer(s).

• A novel stacking memory mechanism which helps im-
prove the yield rates by accepting imperfection at the top
layers.

The rest of this paper is organized as follows. Section II
presents the related works. Section III introduces the method-
ology for 3D-IC implementation. The hardware architecture
is shown in section IV. In Section V, the performance and
power consumption of our spiking computing core in each

supply voltage scenario is evaluated. In Section VI, we discuss
the challenges and issues of this work and potential solutions.
Finally, we end the paper with conclusions in Section VII.

II. RELATED WORKS

A. Neuromorphic Systems for low-power applications

To exploit the potential of SNNs as low-power AI solutions,
numerous academic literature and research works have been
conducted under the name of Neuromorphic Computing (NC)
systems [1]–[3], [10], [23]–[28]. Especially, the power con-
sumption of these NC systems is minimized optimally by im-
plementing specialized hardware, such as Field-Programmable
Gate Arrays (FPGAs) [25], [26] or Application-Specific In-
tegrated Circuits (ASICs) [23], [24]. In practice, NC systems
have three main implemented approaches, which are (1) 2D-IC
based Analog Mixed-signal Hardware Designs [2], [3], (2)
2D-IC based Digital Hardware Designs [1], [10], and (3) 3D-
IC based Hardware Design [27], [28]. Analog mixed-signal
systems are able to emulate the activities of our biological
brains accurately with low power consumption; however, this
type of system is difficult to scale in different fabrication
technologies. This is because the activities of analog circuits
tend to extremely vary and require careful calibration in
different technology nodes. The digital approach, on the other
hand, is robust and scalable and it is easier to prototype and
debug systems compared to the analog mixed-signal ones.
However, this approach consumes the most portion of power in
the aforementioned three approaches, if the same technology
node is used [29]. Meanwhile, the 3D-IC-based approach
brings great benefits in terms of power consumption, hardware
footprint, and signal transmission. The disadvantage of this
approach is that it lacks solid architecture at the system level,
which brings out the potential of 3D-IC for SNN applications.
This premise leads to the necessity of designing a low-power
and high-efficiency 3D-IC-based neuromorphic architecture.

At the end of Moore’s Law for a single monolithic die,
hardware architectures, especially memory architectures, begin
to transform into 3D packages or 3D-IC based Hardware
Design. The SNN architecture is not an exception [30]. For
example, the Loihi-2 architecture [28] currently has appealed
to support 3D multi-chip scaling, which begins to switch
to the next generation of hardware architectures. NeuroSIM
[27], a 3D neuromorphic system, is integrated with two-layer
memristors as the electronic synapses of SNN. It results in
reducing half of the hardware area, 1.48× times in terms of
power consumption and 2.58× times in terms of latency com-
pared to the traditional 2D one-layer configuration. MigSpike
[31], a 3D-IC-based SNN architecture used for fault tolerance,
reduces the migration cost from remapping in NoC by 10.19×
compared to 2D approaches. Therefore, 3D-ICs promise many
significant benefits compared to the two above approaches,
such as hardware footprint, cost, and power consumption. As
a premise, a 3D SNN system would have even greater leverage
for reducing power consumption and hardware area.
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B. Power-Optimal Memory for low-power AI-oriented appli-
cations

The voltage scaling technique is one of the famous tech-
niques that are widely used for low-power systems. In fact,
previous works proved that by applying the under-voltage
technique power consumption related to memory could be
greatly reduced. For example, Salami et al. [18] reduces power
consumption by 39% on FPGA on-chip memories, Leng et al.
[32] saves 20% of power in GPUs, and power consumption
of DRAMs in [33] is dropped by 16%. In addition, Minerva
[34] lowers the supply voltages of SRAMs to save a total of
2.7x power consumption. In order to accomplish the voltage
transformation, the system is required to have an off-chip
voltage regulator (VR) with a power switching technique
[35], [36] or an on-chip one (i.e.: low-dropout VR [37],
[38], switched capacitor VR [39], [40]). Moreover, the under-
voltage technique could also be applied to internal components
of FPGAs [19] or HBMs (High Bandwidth Memory) [41]
to gain around 3× and 2.3× power efficiency, respectively.
However, due to the supply voltage reduction, the noise margin
of a memory cell is also reduced, which leads to an increase
in the probability of errors such as read stability failure, write
stability failure, or access time failure [42]. As a result, such
small errors could lead to a huge impact on the accuracy
of conventional 2D neural network architectures [19]. It is
because there is a chance that the MSBs of weights are affected
by reducing the supply voltages of SRAMs. However, with
3D technology, the weights can be split into multiple subsets
placed in separate layers with isolated supply voltage, which
is able to protect the memory layers containing MSBs and
reduce the supply voltage of memory layers containing LSBs.

Another way to improve the power efficiency of memory
is to apply new technologies to restructure the memory cells
such as In-Memory Computing (IMC), and 3D stacking
memory. For instance, the emergence of IMC methods can
be divided into analog IMC [43]–[45] and digital IMC [46]–
[48]. Analog IMC may not be suitable for high-precision
applications such AI because as it has the disadvantage of low
conversion accuracy limited by the low-cost analog-to-digital
converters (ADCs), while digital IMC has the advantage of
high computational accuracy. Moreover, the analog IMC is
also vulnerable to noise caused by temperature, sneak currents,
and many other sources of variations [49]. On the other hand,
although the digital IMC has robustness and precision, it
consumes more power compared to the analog IMC [50]. For
the 3D stacking memory in chips, there are several proposed
works [51], [52] to shorten the data movements, which reduces
power consumption. With a high bandwidth and a large
capacity, 3D stacking of SRAMs has drawn attention for being
a large cache in CPUs and a large memory in DNN inference
accelerators [53], [54]. The data communication between 3D
layers can be wired integration using through-silicon vias
(TSVs) [51], [52] or a wireless integration using inductive
coupling known as ThruChip Interface (TCI) [55]. However,
despite these great benefits of 3D stacking technology, the
challenge of this approach is that it has a low yield rate and low
reliability. In this paper, to tackle one of these problems, we

TABLE I
DIFFERENCE BETWEEN BIT FLIPPING POSITIONS

Value Original Flipped bit position
MSB 3rd bit 5th bit LSB

Binary 10101100 00101100 10001100 10100100 10101101
Float -0.34375 0.34375 -0.09375 -0.28125 -0.3515625
Diff. 0 +0.6875 +0.25 +0.0625 +0.0078125
(%) (0%) (+200%) (+72.727%) (+18.182%) (+2.273%)

propose a 3D architecture, which is able to improve the yield
rate, by accepting defective layers while maintaining tolerable
accuracy.

III. METHODOLOGY OF 3D STACKING SYNAPTIC
MEMORY

Before presenting the implemented architecture, in this
section, we would like to illustrate the methodology of 3D
Stacking Synaptic Memory. To the best of our knowledge,
this is the first work that utilizes both voltage scaling and
power gating partially for memory without a significant drop
in accuracy. It is because the prior works [19]–[22] put all bits
into the same voltage domain. As a result, the noise caused
by dropping supply voltage to the subthreshold affects the
meaningful active bits or MSBs. However, by taking advantage
of 3D-IC and multiple power rails through TSV, we can
isolate the meaningful active bits and the inactive bits into
different layers. Hence, we can reduce the supply voltage
below the subthreshold or completely power-gate the inactive
bits without greatly affecting the final accuracy, unlike the
prior works. Another difference between our work and the
prior dynamic-voltage-scaling 3D-IC architecture [56] is that
we also utilize the power-gating technique for the memory
layers. Here, assuming that the synaptic weights consist of n-
bit and are in fixed point and quantized from the floating point
in the case of off-chip training. These bit configurations are
unchanged after manufacturing.

A. Different Important Levels of Bits

Conventionally, all bits are treated as same as each other
regardless of their position in the weight. However, we can
simply realize that in terms of value, they are definitely not the
same. Although spike neural networks application can be noise
resilient, flipping bits due to undervolting or power gating
still has different impacts on different positions of the bit.
Assuming the weight of n = 8 bit: W [0 : 7] = 10101100
with one signed bit and seven bits fractional, the differences
in values are shown in Table I. In summary, flipping bit in the
LSBs gives a lesser impact on the value of the weight itself.

Motivated by this, this work presents a method to allow
power-reduction targeting LSBs. However, we can quickly
notice that power-gating or voltage scaling for LSBs is mostly
not possible with the native 2D memory architecture. On
the other hand, the 3D architecture is different. It provides
different power nets to each stacking layer. Therefore, the
voltage-scaling and power-gating techniques could be applied
to the memory layers consisting of LSBs to reduce power
consumption while maintaining acceptable accuracy.
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Fig. 1. The overview hardware architecture with 3D stacking memory for the proposal methodology. (a) The overview of SNN hardware implementation.
(b) The overview architecture with n stacking memory layers. (c) The synapse weight decomposition with 3D stacking memory layers. (d) The hardware
architecture of each neuromorphic computing core.

B. Dynamic Low-power Memory Structure

In this proposed methodology, the n-bit weights are dis-
tributed into different memory layers stacked on each other. It
could be also treated as a set of subset bits {m0,m1, ...mM−1}
where mi is the ith subset of synaptic weights and M is
the number of subsets. In this case, m0 contains the most
significant bits, and mM−1 contains the least significant bits.
The number of bits in each subset could be different and
can be modified during the design phase. The strategy for
in-situ low-power structure is acquired by the three following
modes (I, II, III), which represent the corresponding low-power
techniques. We define those three modes for easier mentioning
in the explanation and evaluation.

• Normal power mode: The neuromorphic systems oper-
ates without power-gating or voltage-scaling.

• Low-power mode I: Voltage-scaling is applied to the
neuromorphic systems.

• Low-power mode II: Power-gating is applied to the
neuromorphic systems.

• Low-power mode III: Both voltage-scaling and power-
gating are applied to the neuromorphic systems.

If the system is currently at low-power mode and the
normal power mode is detected, the system gradually restores
the supply voltage to every inactive memory layer. The order
will be bottom-up, which starts from MSBs among all inactive
bits. One of the drawbacks of splitting memory weights is
having smaller memory cells which lead to lower density and
high power consumption. However, we could solve this issue
by merging multiple adjacent weights into a single memory
cell [10], [23]. Moreover, we utilize multiple power rails for
every memory layer to change their power supply. Hence, it
is the hardware overhead compared to the traditional voltage
scaling. However, our hardware architecture is implemented in

TABLE II
NOTATIONS AND PARAMETERS DEFINITION.

Symbol Definition Symbol Definition

L # LIF Modules M # Stacking Memory
Layers

n # Bit of Weights mi ith Memory Layer
t # Turned-off Bits D # Die
W Synaptic Weights P Power Consumption

BER Bit Error Rate fsw Switching Frequency
VDD Supply Voltage Y Yield Rate
SNM Signal Noise Margin I Current of Circuits

T # Accepted Layers VT Voltage Threshold

α
Ratio between logic

components and memory Vmi

Supply Voltage for ith

Memory Layer

C, K,
N

Technology Dependent
Parameters for Power

Dissipation

k, r, q,
β, Vs,
Vr ,

Technology Dependent
Parameters for SNM

3D and every memory layer has the same hardware area. As
a result, compared to the implementation in 2D architecture,
there is no overhead in hardware footprint. Another concern of
this method is that the number of combinations for configuring
and deciding low-power mode for each layer is huge. As
a result, a standalone optimization algorithm is required to
decide the best operating mode in a specific situation. In this
paper, the decision is based on our experimental experience.

IV. IMPLEMENTATION HARDWARE ARCHITECTURE

The overview hardware architecture for our proposed
methodology is shown in Fig. 1. In detail, Fig. 1(a) shows
our software-hardware design methodology with the abstract
hardware architecture, shown in Fig. 1(b), where we split the
logic components and the memory components into separated
layers. In addition, Fig. 1(c) illustrates our synaptic weights’
arrangement in each memory layer while Fig. 1(d) presents the
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block diagram of the logic components in our neuromorphic
system. For ease of understanding, the hardware architecture
is illustrated as a neuromorphic system consisting of L = 16
Leaky Integrate-and-Fire (LIF) neurons with four synaptic
memory layers stacking on top. However, the number of neu-
rons and stacking memory layers could be configured during
the design phase. In addition, the output of one neuron could
either be transferred to the neurons in the same cluster or in
other clusters. On the other hand, the input of one neuron sig-
nals the crossbar to extract the corresponding synaptic weight
from the memory layers via TSV for LIF computations. The
memory layers are stacked on top of the logic computational
layer and each memory layer contains a subset of synaptic
weights. Those synaptic weights could be either updated from
a broadcast message via the address decoder or from the
internal Spike-Time Dependent Plasticity (STDP) with self-
learning and self-updating functions. Moreover, by dividing
the synaptic weights into subsets and placing them on different
memory layers, our hardware is able to offer the in-situ dy-
namic quantization for synaptic weights with voltage-scaling
and power-gating schemes. These techniques are famous and
influential to reduce significantly power consumption in low-
power systems. In the following subsections, we explain the
strategy for in-situ dynamic quantization with voltage-scaling
and power-gating and its insight. The parameters, which we
use to ease the explanation, are introduced in Table II.

A. 3D Stacking Synaptic Memory

For a better explanation, the sample hardware for the
proposed methodology uses the 8-bit synaptic weights. In addi-
tion, it has four memory layers (M = 4) stacked on top of PEs
and each memory layer contains a 2-bit subset of 8-bit synaptic
weights. The LSBs are placed on the top layer and the MSBs
on the bottom layer ({m0,m1,m2,m3} = W [0 : 7]). As a
result, when applying the voltage-scaling technique or power-
gating one to the top memory layer, the power consumption
could be reduced from the original power consumption while
suffering a small fractional loss in accuracy (flip LSBs). It
is only available because of the bit-loss resilience of SNNs
[57], where other neural network systems usually drop their
accuracy sharply when reducing bit-operation on-fly [19]. In
conclusion, there are three benefits to the hardware architec-
ture. First, it takes advantage of 3D implementation, which
reduces the transferring distance between memory and PEs.
As a result, the power for data transferring can be reduced.
Second, the bit-weight quantization could be dynamically
activated during the inference without any interruption in
system operations. Last, the hardware can partially apply the
voltage-scaling technique and the power-gating technique to
the memory layer(s), which keeps the MSBs unchanged and
only affects LSBs. In addition, LSBs can be reloaded during
system operations because the supply voltage is dynamically
controlled.

B. Power Efficiency with 3D stacking memory

The power consumption of our hardware is similar to other
conventional neural network architectures, which is the sum

of power consumption by memory storage Pmem and power
consumption by PEs Ppe. In practice, the power consumption
from memory is usually dominant, which is about 75% of
the total power [7]. It is because the neural network models
often require millions of weights to acquire high accuracy and
those weights are transferred back and forth in long-distance
between memory and PEs. This leads to the huge size of
memory, which prolongs the transferring distance and requires
more power to transfer those weights in the conventional
2D systems. However, as mentioned above, the 3D design
of memory-on-logic brings the two most benefits: distance
reduction, and footprint reduction, for neural network models
in general, and the SNNs in particular.

On the other hand, the power consumption of CMOS-based
circuits could be further expressed as Ptotal, a sum of two
components, the dynamic power Pdyn (or active power) and
the leakage power Pleak (or static power).

Ptotal = Pleak + Pdyn (1)

Furthermore, those two power consumptions are mathemat-
ically represented by the following equations:

Pdyn = C × fsw × V 2
DD (2)

Pleak = K ×N × Ileak × VDD (3)

These equations clearly show that power consumption could
be significantly reduced by adjusting the supply voltage. In
the case of dynamic power, Eq. 2 expresses the power reduc-
tion in quadratic-fold when scaling down the supply voltage.
Moreover, the dynamic power consumption could be further
reduced with the power-gating technique, which completely
removes the supply voltage. It can only happen in our 3D
hardware architecture because of the multiple-layer memory
and the noise resilience of SNNs. Likewise, the leakage power
consumption is also reduced linearly, as shown in Eq. 3, by
implementing the same techniques. Each technique applied
to the hardware architecture is explained in the following
subsections.

C. Partial Voltage-scaling for 3D Stacking Synaptic Memory

In this subsection, the power efficiency and the Bit Error
Rate (BER) of voltage scaling for stacking synaptic memories
in our hardware are analyzed. In addition, since the synaptic
memory of our hardware is implemented using SRAM models,
the analysis will focus on the BER of SRAM cells. The BER
of an SRAM cell is the probability that the Static Noise Margin
(SNM) appears to be close to zero [58], [59]. Assuming that
SNM has a normal distribution, the BER of an SRAM cell is
analytically expressed by the following equation:

BER = f(SNM) =
1√

2πσSNM
exp− (SNM − µSNM )2

2σ2
SNM

(4)
where σSNM is the standard deviation of SNM and µSNM

is the mean value of SNM. In practice, these two values vary
from one technology to another. It is because SNM depends
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on the threshold voltage VT , the supply voltage VDD, and
the ratio β, which vary depending on the doping profile, the
manufacturing process, and the transistor sizing [60]. Fig. 2
shows the BER of 45-nm 6T SRAM with multiple supply
voltages near the threshold region. According to Seevinck et
al. [60], the SNM is estimably calculated by the following
equation:

SNM = VT −
(

1

k + 1

)[
VDD − 2r+1

r+1 VT

1 + r
k(r+1)

− VDD − 2VT

1 + k r
q +

√
r
q

(
1 + 2k + r

qk
2
)
 (5)

where r = βp/βa is the ratio of β between pull-up
transistors and access transistors and q = βd/βa is the ratio
of β between pull-down transistors and access transistors. k
is calculated by the following Eq. 6.

k =

(
r

r + 1

)(√
r + 1

r + 1− V 2
s /V

2
r

− 1

)
(6)

where Vs = VDD−VT and Vr = Vs−
(

r
r+1

)
VT [60]. As a

result, the BER of an SRAM cell from a specific technology
can be approximately obtained. In practice, Reviriego et al.
[58] evaluated the BER of SRAM cells approximately around
3.99 × 10−2 and 2.29 × 10−3 at the half of normal supply
voltage, 0.4V , at 16nm CMOS and FinFET technologies,
respectively. This BER usually accumulates over time which
steadily causes the collapse of memory. It is because the
conventional architecture does not support partial voltage-
scaling or power-gating the memory. However, our hardware
architecture takes advantage of 3D design to separate the
MSBs and LSBs of synaptic weights. Since the MSBs are kept
at a different layer with full-voltage protection, the collapse
of all memories does not happen. As a result, with the noise
resilience of SNNs, the accuracy of our hardware only suffers
a fraction of loss, yet its energy efficiency is able to gain up
to twice or threefold depending on the dropping voltage.

In the examplary model shown in Fig. 1, our hardware
has M = 4 memory layers, {m0,m1,m2,m3}. Therefore,
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Fig. 3. Example of 8-bit synaptic weights’ operation with undervolting
memory layer(s). (a) The operation of our hardware under normal conditions.
(b) The operation of our hardware with undervolting for the top memory layer.

the total power consumption of the memory Pmem could be
expressed as the following equation:

Pmem =

M−1∑
i=0

Pmi
(7)

where Pmi represents the power consumption of the ith

memory layer. In addition, each memory layer has its own
dynamic power consumption and leakage power consumption,
as shown in Eq. 2 and Eq. 3, respectively. Assuming that the
supply voltages in all four memory layers are the same voltage,
VDD, in the normal power mode. With the voltage-scaling,
those four memory layers then have their specific supply
voltages, {Vm0

, Vm1
, Vm2

, Vm3
}. Combining with Eq. 1, the

power consumption reduction of memory using undervolting
could be expressed as the following equation:

P ′
mem =

M−1∑
i=0

(
Ci × fswi

× V 2
mi

+Ki ×Ni × Ileaki
× Vmi

)
(8)

where P ′
mem is the power consumption of all four memory

layers when the undervolting is implemented. As a result,
the ratio between the power consumption of the undervolting
hardware and the power consumption of the normal hardware
is approximately equal to the following equation:

P ′
mem

Pmem
=

∑M−1
i=0

(
Ci × fswi

× V 2
mi

+Ki ×Ni × Ileaki
× Vmi

)
C × fsw × V 2

DD +K ×N × Ileak × VDD
(9)

To illustrate the power mode I, Fig. 3 shows our hardware
with undervolting only for the top memory layers and provides
the normal supply voltage for the remaining memory layers.
In detail, Fig. 3(a) shows the normal LIF operation without
voltage scaling, and Fig. 3(b) demonstrates the LIF operations
with the effect of voltage scaling at near-threshold voltage.
Here, the red-square areas are the flip-bits due to undervolting.
As a result, the flip-bit fault only causes the error in LSBs of
synaptic weights and the output spike will not be affected. We
first assume that the supply voltage of the top memory layers
is reduced by half and there are four stacked memory layers.
The total C is 6nF , K = 1, the total number of transistors
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Fig. 4. Example of 8-bit synaptic weights’ operation with undervolting and
power-gating memory layer(s). (a) The operation of our hardware with power-
gating the top memory layer. (b) The operation of our hardware with power-
gating the top memory layer and undervolting two memory layers.

is 109, the normal voltage supply is 1.1V , and the leakage
current is Ileak = 50pA. Hence, our hardware, which has
a switching frequency of 50MHz, theoretically could save
about 17.92% power consumption on the memories while
the accuracy of our hardware drops insignificantly because
of the noise resilience of SNNs. The drop in accuracy will
be later evaluated in Section V. In practice, it could extend
approximately the operating time of edge devices by 20%,
which is in a power-hungry situation without changing its
neural network model and hardware components. Moreover,
the accuracy is only trade-offed by a marginal volume.

D. Power-gating for 3D Stacking Synaptic Memory

With the power-gating, our hardware proceeds the in situ
synaptic weight quantization by turning the memory layer(s)
off if the low-power mode II is detected and turning it on if
the normal power mode is detected. Therefore, the alternation
of the total power consumption is from the memory. For
example, with the n-bit synaptic memory from the architecture
in Fig. 1, we can define the total power consumption of
synaptic memories based on Eq. 1.

Pmem = Pmemleak
+ Pmemdyn

(10)

where Pmemleak
is the leakage power of synaptic memories

and Pmemdyn
is the power consumption of synaptic memories

from switching activities. Assuming that the power supply
is divided equally into synaptic memories. Hence, when one
or more memory layers consisting of t LSB bits, are turned
off, the power consumption of synaptic memories theoretically
reduces by t/n.

P ′
mem =

n− t

n
× (Pmemleak

+ Pmemdyn
) (11)

This is because all the memories in the layers are unified
and have the same switching activities when the input spike
event occurs. With n = 8 as in Fig. 1, the expected power
reductions are 25% and 50%, for t = 2 and t = 4, respectively.
Therefore, for each possible value of t, we can define a power-
aware mode. In addition, we can also use the voltage-scaling
technique for the non-power-gated memory layer(s) to further
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Fig. 5. Example of 8-bit synaptic weights’ operation with fabrication defects.
(a) The operation of our hardware with the top memory layer defected by
fabrication. (b) The operation of our hardware with two upper memory layers
defected by fabrication.

decrease the overall power consumption. In this case, the
system enters the low-power mode III.

Fig. 4 shows the example of both low-power mode II
and low-power mode III. With the power-gated top layer,
the LSBs of synaptic weights are treated as zeros. It leads
to a slight decrease in the value of synaptic weights but our
architecture still receives the correct output spike, as shown
in Fig. 4(a). On the other hand, in the low-power mode III
(Fig. 4(b)), the synaptic weights in undervolted layers are
randomly flipped because of the lack of supply voltage. It
also leads to a transformation in the output value of the LIF
neuron but the output spike is still correct. It is because the
memory layer containing MSBs is untouched. However, the
number of untouched MSBs also needs to be considered for the
correctness of the SNN model. Despite the noise resilience of
SNNs, further dropping the power supply out of the remaining
memory layers will cause the spiking computing core to
collapse, unable to operate correctly. The evaluation section
will demonstrate the experimental results for each operating
power-aware mode.

E. Improving the yield rate by accepting LSBs layers’ defects

As we mentioned earlier in Section I, the low yield rate
is one of the most critical issues in stacking 3D-ICs tech-
nology. Assuming the yield rate for a single layer (die) is
Y1 layer < 1.0, the yield rate of D layers is YD layers which
is much smaller than Y1 layer. It is because each layer has
its own defection and, by stacking multiple layers, the defect
probability increases exponentially since we do not know the
die quality before stacking. This yield rate can be represented
by the following equation:

YD layers =

D−1∏
i=0

Yi (12)

where D is the number of layers and Yi is the yield rate
of the ith layer. For example, assuming that all layers have
the same yield rate, Ylayer = 0.9 and the stacked layer is
D = 4. Therefore, the actual yield rate of the 3D-stacked chip
is reduced to 0.6561 and the defect rate is increased to 0.3439.
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In detail, the defective layer will cause errors in the logic
functions of transistors, which are usually the stuck-bit or
bridging faults. Without the correctness of logic functions,
the fabricated chip cannot work as designed. However, in our
architecture, we split the memory and stack them on top of
processing elements. As a result, the yield rate of the second
layer onward can be categorized generally into two types,
which are for the control-logic region in memory, Ylogic, and
the memory cell region, Ymem.

Ylayer = Ylayerlogic × Ylayermem
(13)

Moreover, the memory cell region takes the most area in
memory. On the other hand, in our architecture, fabrication
defects in memories are considered noises, as shown in Fig.
5. The LIF operations with the defects of the top memory layer
and the two upper memory layers are presented in Fig. 5(a)
and Fig. 5(b), respectively. Assuming that we have stuck-at
defects in the memory cells of the top layer(s), the bit values
at defected regions always stay at ′0′ or ′1′. With the noise
resilience of SNNs, the output spike is still correct even with
defective synaptic weights. We assume that the defects that
appeared in the wafer have a uniform distribution. Therefore,
the probability that the defects occur in memory is equal to the
ratio of hardware area between logic components and memory
components multiplied by the yield rate. Assuming that this
ratio is approximately one-ninth (α = 1/9) and the total
number of layers is D = 5. We can have the actual yield
rate if we accept defects in T = 2 upper memory layers as
follows:

YD layers ≈
D−T−1∏

i=1

Ylayeri

D−1∏
j=D−T

[
1− α

1 + α
(1− Ylayerj )

]
(14)

Substituting numbers into the equation, the actual yield rate
is Yactual ≈ 0.7145, not 0.5904, which leads to an improved
overall yield rate. Therefore, we can accept the manufacturing
defects to improve the overall yield rate while reducing a
fraction of accuracy.

V. EVALUATION RESULTS

A. Evaluation Methodology

The proposed hardware architecture was implemented in
Verilog-HDL, synthesized, and evaluated with commercial
CAD tools from Cadence and Synopsys (Cadence Innovus,
Synopsys Design Compiler, PrimeTime, Custom Compiler,
HSPICE). The physical design of our hardware is imple-
mented with the NANGATE 45-nm library [61] and NCSU
FreePDK3D45 TSV [62]. The system memory is 6T SRAM
generated from OpenRAM [63] and its BER characteristic,
when undervolting is applied, is calculated from Python based
on Eq. 4 and is evaluated by HSPICE. In order to evalu-
ate the transformation of power consumption and accuracy,
we implemented our hardware as a neuromorphic core with
M = 4 memory layers stacked on top of L = 48 LIF modules.
The SNN model embedded into the hardware is configured
with a neural network of three layers (784:48:10) for the

MNIST dataset. We also evaluate the hardware system with
the VGG16 model under the CIFAR-10 dataset [64]. Since the
hardware design for VGG16 is not available in this work, we
estimate the energy consumption via CACTI SRAM’s model
[65]. The images were encoded into spikes using the rate-
coding scheme under the Poisson distribution. In addition, the
synaptic weights are trained as n = 8-bit values for MNIST,
and n = 16-bit values for CIFAR-10. They are split equally
into four memory layers of the hardware, which is two bits
per layer. Please take note that the configurations of the SNN
model and our hardware architecture can also be modified into
different ones during the design phase.

First, for the low-power mode I, we examine the Signal
Noise Margin (SNM) of SRAM cells at near-threshold supply
voltages to extract the BER or probability of faults according
to materials presented in previous works [58]–[60]. The BER
is exported through Monte Carlo simulations with PrimeSim
HSPICE and mathematical calculation at multiple supply volt-
ages. After that, we insert the faults according to the extracted
probabilities into synaptic weights trained from the software
model. The position of faults is distributed randomly using
the Monte Carlo simulation again with uniform distribution.
Because we implement the hardware with four memory lay-
ers, the undervolting evaluation is then categorized into four
settings. The modified synaptic weights are then loaded into
hardware to evaluate the power consumption and the accuracy
of the SNN model affected by undervolting.

Second, the transformation of power consumption and ac-
curacy at low-power mode II are evaluated. Similar to the
low-power mode I, the power-gating hardware also has four
settings to inspect. However, the accuracy of our hardware is
broken when the supply voltage of the third memory layer
is turned off. Therefore, in this paper, the evaluation only
covers three settings which are: normal setting without power-
gating any layers, power-gating one layer, and power-gating
two layers. In this case, our hardware treats the bit values of
synaptic weights as zero(s) and uses them to perform LIF
computations. Similarly, the switching activities of power-
gating hardware are then loaded into Synopsys PrimeTime
to extract power consumption. Third, the low-power mode
III are evaluated. Because of the time-consuming simulation,
we only pick one case out of all combinations to evaluate
the power-accuracy transformation. Finally, we evaluate the
hardware complexity and compare our system with other
works [1], [10], [23], [24], [66]–[69].

B. Undervolting Hardware (Low-power Mode I)

As shown in Fig. 6, the evaluation of power transformation
and accuracy transformation are taken with supply voltages
from 0.7V to 0.85V with downing 0.025V per step. Partic-
ularly, Fig. 6(a) is the evaluation of accuracy transformation,
Fig. 6(b) is for energy transformation, and the BER of our
SRAM is shown in Fig. 6(c). According to the NANGATE 45-
nm library [61], the voltage threshold of a transistor is around
0.65V . As a result, we evaluate the transformation from 0.7V
to 0.85V to capture the best affective region of SNM in the 6T
SRAM. Here, the bit order of synaptic weights, as mentioned
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Fig. 6. The transformation of BER and accuracy and energy with undervolting memory layer(s). (a) Accuracy when undervolting each combination of memory
layer(s). (b) Energy when undervolting each combination of memory layer(s). (c) BER when undervolting each combination of memory layer(s).
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power-gating). b) Trade-off Accuracy vs. Energy when power-gating m3 c) Trade-off Accuracy vs. Energy when power-gating m3,m2.

in Section IV, is that the memory layer m0 contains the MSBs
and the memory layer m3 contains the LSBs. Furthermore, we
synchronize all four memory layers ({m0,m1,m2,m3}) with
the same supply voltage (Vm0 = Vm1 = Vm2 = Vm3 = VDD).
Please take note that the supply voltages could be independent
of each memory layer.

Fig. 6 shows that the energy per prediction could be reduced
1.4× times when scaling down the supply voltage to 0.85V
all four memory layers compared to the scaling down of only

one memory layer, m3. However, with the supply voltage
going down, which is near to threshold voltage region, the
BER of SRAMs starts to increase exponentially. For example,
when undervolting only the memory layer m3, the BER is
approximately 0.00029 and 0.001557 at a supply voltage
of 0.825V and 0.7V , respectively. The numbers increase to
0.00116 and 0.623 when undervolting to all four memory
layers. However, the accuracy of our hardware greatly reduces
when undervolting is applied to the third memory layer m1

This article has been accepted for publication in IEEE Transactions on Very Large Scale Integration (VLSI) Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVLSI.2023.3318231

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10

TABLE III
THE SETTINGS FOR THE EVALUATION OF LOW-POWER MODE II.

Name Setting II-1 Setting II-2 Setting II-3

Defination Normal operation Power-gating one
memory layer

Power-gating two
memory layers

Power-gated
layer - m3 m2, m3

# Active bits 8 bits 6 bits 4 bits

(0.75 − 0.8V ). It is because the MSBs of synaptic weights
start to be affected. In this case, the average accuracy drops
from 92.38% to 49.74% with the supply voltage at 0.8V
and 0.75V , respectively. In addition, the accuracy swing
(MaxAccuracy −MinAccuracy) also increases greatly, which
is from 6.7%

∣∣
VDD=0.8V

to 43.12%
∣∣
VDD=0.75V

.
To illustrate the transformation of accuracy under the

voltage-scaling, Fig. 7 shows the accuracy of our hardware per
time step, up to 350 time steps. As seen in Fig. 7, the average
accuracy in all four undervolting modes at a supply voltage of
0.825V is around 92%. The noticeable transformation is that
the accuracy significantly swings when undervolting all four
memory layers. It is because the MSBs of synaptic weights
are affected. However, the BER of SRAMs at this supply
voltage is low (0.00116). Therefore, the number of modified
synaptic weights is low and the worst case for accuracy is
around 82.58%. With the supply voltage scaling down, the
average accuracy curves of undervolting three memory layers
and undervolting all memory layers are steadily dropped,
while the ones from undervolting two memory layers and
undervolting one memory layer are only changed slightly.
Consequently, undervolting memory layers containing LSBs
can lead to achieving high energy efficiency while maintaining
acceptable accuracy.

C. Power-gating Hardware (Low-Power Mode II)

In this section, we evaluate the power transformation and ac-
curacy transformation of our hardware when power-gating the
memory layer(s). Our hardware architecture can gain power
efficiency by power-gating the memory layers containing LSBs
depending on the power situation. Moreover, with the proposed
architecture, the in-situ dynamical quantization for synaptic
weights was achieved without modifying the hardware com-
ponents. Therefore, we evaluate with two factors: (1) the
accuracy when removing the LSBs by power-gating memory
layer(s) and (2) the energy efficiency when power-gating. In
this paper, we evaluate the accuracy of our hardware and its
energy consumption in three operation settings, as shown in
Table III.

As shown in Fig. 8, the accuracy of our power-gated
hardware at the 350th computing time-step reaches 95.32%,
94.98%, and 83.28% for each power setting, respectively. This
is a very strong indicator that we may be able to offer low-
power modes in the trade-off of accuracy loss. In fact, at the
100th computing time-step, the accuracy of our system drops
to 94.49%, 93.96%, and 68.71% in each power-gating setting.
The accuracy of 4-bit synaptic operations (Fig. 8(c)), when
applying the setting II-3, loses about 15% compared to the

TABLE IV
THE SETTINGS FOR THE EVALUATION OF LOW-POWER MODE III.

Name Setting III-1 Setting III-2 Setting III-3

Defination Undervolting two
memory layers

Power-gating one
memory layer,

Undervolting two
memory layers

Power-gating two
memory layers,

Undervolting two
memory layers

Power-gated
layer - m3 m2, m3

Under-volted
layer m3,m2 m1, m2 m0, m1

Supply Voltage
{Vm0 ; Vm1 ;
Vm2 ; Vm3}

1.1V ; 1.1V ;
[0.675− 0.8V ];
[0.675 − 0.8V ]

1.1V ; 0.8V ;
[0.675− 0.8V ];

0V

0.825V ;
[0.675− 0.8V ];

0V ; 0V
# Active bits 8 bits 6 bits 4 bits

8-bit operations (Fig. 8(a)). On the other hand, the accuracy
is only reduced slightly by 1% when applying the setting II-
2 (Fig. 8(b)). Here, we can observe that power consumption
could be also reduced greatly with the right time step while
maintaining a reasonable accuracy. In terms of energy, this
reduction in computing time-step leads to a reduction in energy
per prediction and energy per Synaptic OPeration (SOP). For
the total energy consumption per time-step with the same bit-
width synaptic operation, it increases from the 50th time-step
to the 350th one approximately by 7× fold.

D. Undervolting and Power-gating Hardware (Low-Power
Mode III)

In this section, we investigate the power-accuracy transfor-
mation of our hardware when mixing the voltage-scaling and
power-gating techniques for memory layer(s). For the power-
gating, the supply voltage of the power-gated memory layer is
treated as zero. In this paper, we have four stacked memory
layers. Therefore, the configuration of supply voltage for each
layer is {Vm0

, Vm1
, Vm2

, Vm3
}. Due to the time-consuming

simulation, we choose to evaluate only three settings out
of all combinations with 1,000 tests from the Monte-Carlo
simulation each. The configurations are defined in TableIV
and its evaluation is illustrated in Fig.9.

As shown in Fig. 9(a), the average accuracy of setting III-1
in 1,000 tests at the supply voltage VDD = 0.8V is similar
to the normal operation of our hardware and this accuracy
reduces by 1-2% per undervolting step. In the worst test,
the accuracy drops about 20% compared to the one at the
normal operation condition. However, the energy efficiency
gains 25%. The energy continues to drop when power-gating
is applied to the top layer and undervolting two middle
layers (Fig. 9(b)). Compared to the normal operation, it is
reduced by half yet the average accuracy only reduces slightly.
The only noticeable concern is that the range of accuracy
is expanded, and the worst accuracy is 55.27% (dropped
about 40% of accuracy compared to the normal operation).
As we continue to drop the supply voltage (Fig. 9(c)), the
accuracy swings stronger. Consequently, the worst accuracy
is 22.76% at Vm1 = 0.675V and Vm0 = 0.825V . However,
at Vm1

= 0.8V , we can see that the energy is reduced four
times compared to the normal operation while reducing 6.57%
in accuracy.
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Fig. 9. The evaluation of accuracy and energy with both power-gating and undervolting. The supply voltage of the power-gated layer is treated as zero. a)
Accuracy transformation and Energy transformation with setting III-1. b) Accuracy transformation and energy transformation with setting III-2. c) Accuracy
transformation and energy transformation with setting III-3.

TABLE V
THE ACCURACY AND THE YIELD OF OUR HARDWARE WITH TWO UPPER

DEFECTED MEMORY LAYERS (THE NORMAL ACCURACY = 95.35%).

Yield Rate
per Layer

Avg.
Acc.

Min.
Acc.

Max.
Acc.

Avg.
Acc.
Loss

Normal
Yield

Yield
Improv.

Y1 = 0.999 94.97% 94.45% 95.38% 0.38% 0.995 0.9968
(+0.18%)

Y2 = 0.99 94.71% 93.25% 95.45% 0.64% 0.951 0.9683
(+1.73%)

Y3 = 0.9 93.85% 91.38% 95.05% 1.70% 0.5905 0.7145
(+12.40%)

TABLE VI
HARDWARE COMPLEXITY OF THE PROPOSED ARCHITECTURE.

Technology 45nm

Frequency 100MHz

# LIF 48 LIFs

# Stacking Memory 4 layers

# bit of Synaptic Weights 8 bits

Bit Configuration in Memory Layer 2-2-2-2

Total 809.98KGEs

Gate Memory Blocks 791.76KGEs

Count Crossbar & Address Decoder 9.68KGEs

LIFs 8.52KGEs

E. Accuracy with defected memory layers

As explained in Section IV-E, the defective memory caused
by fabrication is treated as noise for our proposed architecture
and we accept these manufacturing defects to increase the
yield rate. In this section, we evaluate the accuracy of our
design with three different yield rates in one wafer, which are
Y1 = 0.999, Y2 = 0.99, and Y3 = 0.9. With the assumption
in Section IV-E, the defects that appeared in the wafer have a
uniform distribution. Therefore, we insert the stuck-bits events
into memory with the corresponding probabilities to evaluate
the trade-off between accuracy and yield rate. In this case, the
yield rate improvement is calculated based on Eq. 14.

Table V shows the accuracy of our hardware over 1,000
Monte-Carlo simulation tests. In each yield rate, we evaluate
the accuracy with M = 4 stacking memory layers and
one computing layer, which represents our evaluated archi-
tecture. Overall, the average accuracy in all cases drops by
0.38%−1.7% compared to the accuracy in normal conditions
(95.35%). In addition, the result in the worst case drops 3.97%,
which we could consider accepting the manufacturing defect
to increase the yield rate. Furthermore, in some cases, the
stuck-bit event even leads to an increase in the accuracy of
our hardware, which is maximally about 0.1%. In conclusion,
the yield rate of the 3D-stacked chip is recently low (e.g.:
Y = 0.5904 when D = 5 and Ylayer = 0.9). On the other
hand, our architecture is able to improve this yield rate by
12.40% with the acceptance of defective memory layers. The
trade-off comes with a reduction of about 1.7% in accuracy.

F. Hardware Complexity and Comparison

As shown in Table VI, the area cost of our synthesized
hardware is about 809.98KGEs at the operating frequency
of 100MHz. In detail, the synaptic SRAM-based memory
occupies the largest part of the hardware area, which is around
97% because it is necessary to store a large number of synaptic
weights for high accuracy. For the rest, the processing elements
and control units occupy about 3% of the total area of our
hardware.

Table VII represents the comparison results between our
work and other existing works [1], [10], [23], [68], [69],
which are all based on the MNIST benchmark. In terms of
accuracy, the result shows that our system has an accuracy of
95.32% in normal conditions. Furthermore, we pick two other
configurations (case 1 and case 2), which use undervolting and
power-gating for memory layers. The configurations of supply
voltage for each memory layer are: case 1 is {Vm0 = 1.1V ;
Vm1 = 1.1V ; Vm2 = 0.8V ; Vm3 = 0.8V }, case 2 is
{Vm0

= 0.825V ; Vm1
= 0.8V ; Vm2

= 0V ; Vm3
= 0V },

and case 3 is {Vm0
= 0.825V ; Vm1

= 0.8V ; Vm2
= 0.8V ;

Vm3
= 0V }. As shown in Table VII, in case 2, with the
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TABLE VII
COMPARISON RESULTS BETWEEN THE PROPOSED ARCHITECTURE AND EXISTING WORKS.

Parameters
TrueNorth Loihi ODIN NASH Karimi et This work

[10] [1] [23] [68] al. [69] Normal
Case Case 11 Case 22 Normal

Case Case 11 Case 33

Benchmark MNIST MNIST MNIST MNIST MNIST MNIST (784:48:10) CIFAR-10 (VGG16)*

Accuracy (%) 91.94 96 84 79.4 99.2 95.35 94.84 88.77 91.38 91.26 69.50

Neuron Model IF DenMem LIF &
Izhikevicz LIF LIF LIF

Synaptic Weight
Storage

1-bit
SRAM

1-to-9-bit
SRAM

4-bit
SRAM

8-bit
SRAM

CTT
twin-cell 8-bit SRAM 16-bit SRAM

Interconnect 2D 2D 2D 3D 2D 3D

Implementation Digital Digital Digital Digital Mix-signal Digital Software simulation

Learning Rule Un-
supervised

On-chip
STDP

On-chip
Stochastic

SDSP

On-chip
STDP Off-chip Off-chip

Technology 28nm 14nm
FinFET

28nm
FD-SOI 45nm 22nm

FD-SOI 45nm

Supply Voltage 0.7-1.05V 0.5-1.2 V 0.55-1 V 1.1 V 0.8 V 0.65V - 1.1V

Energy per SOP
(pJ)

26
(0.775V)

23.6
(0.75V) 8.4 189.3 8 244.28

(1.1V) 191.461 81.162 475.20
(1.1V) 372.131 205.553

Energy per SOP
(pJ) (in 14nm) 4.902 23.6 1.078 10.86 4.32 14.02

(1.1V) 10.981 4.652 27.27
(1.1V) 21.351 11.793

1 Case 1: {Vm0
= 1.1V ; Vm1

= 1.1V ; Vm2
= 0.8V ; Vm3

= 0.8V } (Low-power Mode I)
2 Case 2: {Vm0 = 0.825V ; Vm1 = 0.8V ; Vm2 = 0V ; Vm3 = 0V } (Low-power Mode III)
3 Case 3: {Vm0

= 0.825V ; Vm1
= 0.8V ; Vm2

= 0.8V ; Vm3
= 0V } (Low-power Mode III)

operation of 4-bit synaptic weights, the accuracy drops by
6.58% compared to the normal operation (8-bit). However, this
accuracy is similar to the works of Kim et al. [24] and ODIN
[23], which also operates at 4-bit synaptic weight precision.

In terms of power, we compare our work with others using
the energy per synaptic operation parameter. Due to the gap in
technology, we use the well-known scaling equation from Still-
maker et al. [70] to scale down the 14-nm technology node.
As shown in Table VII, our hardware consumes 244.28pJ,
191.46pJ, and 81.16pJ at the 45-nm technology node in three
cases for 350 time-steps, respectively. After scaling down
to the 14-nm technology, our energy per synaptic operation
achieves the values, which accordingly are 14.02pJ, 10.98pJ,
and 4.65pJ. Furthermore, we also evaluate our methodology
with the 16-bit VGG-16 using the CIFAR-10 dataset. As
shown in Table VII, the accuracy only drops slightly by 0.12%
while the energy per SOP decreases significantly by 21.68%
in case 1. However, in the case 3, despite the energy reduction
of 56.74%, the accuracy is also reduced seriously by 21.88%.

In conclusion, these results show that our architecture with
3D stacking memory has an advantage in terms of reduc-
ing energy consumption when applying voltage-scaling and
power-gating techniques for memory layers. For the MNIST
dataset, switching from the normal mode to the low-power
mode I, the accuracy drops by 0.51% to trade-off the energy
reduction of 21.62%. When our hardware switches to the low-
power mode III, the accuracy drops by 6.58% to reduce the
energy consumption by 66.77%. In the case of the CIFAR-
10 dataset, with the software simulation, the accuracy also
drops by a small fraction (0.12%) to reduce 21.68% energy per
synaptic operation when switching from the normal mode to
the low-power mode I. Moreover, at the low-power mode III,

the accuracy decreases by 21.88% saving 56.74% of energy
consumption.

VI. DISCUSSION

In this section, we provide some discussions related to the
limitations of our work and potential solutions. First, besides
the reliability issue of stacking layers, Through-Silicon-Via’s
(TSV) reliability is also one of the major concerns. There
are numerous works on dealing with TSV defects by using
redundancies. Therefore, these techniques can be embedded
into our architecture to deal with TSV defects. Unlike TSV
defects which can be dealt with by using redundancies, defects
on stacking memory dies are mostly unrepairable; therefore,
we focus on this type of defects in this work.

Second, thermal dissipation is another critical issue of 3D-
ICs as stacking multiple layers prevents the heat transmission
to the heatsink. Although the thermal issue is still an open
problem in this work, by lowering the power consumption;
our work has the potential to alleviate this issue of 3D-ICs.

Third, as we show in the evaluation section that there are
numerous combinations of different voltages and power gating.
Also, the scaling step of the voltage can also be adjusted which
leads to more voltages being chosen. Moreover, the splitting
method of the memory can be also different between designs
(i.e., 16-bit can be 4 × 4bit or 2 × 8bit or 8 × 2bit) or can
be asymmetric (i.e., 8-bit can be two subsets of 3 + 5bit or
4+4bit or 5+3bit) to isolate the meaningful bits and to reduce
the power of inactive bits. Because of this, it is not possible
to cover all possible cases to specify the standard of faulty-
energy-accuracy trade-off. Hence, our picks of configuration in
the comparison in Table VII may be suboptimal. To solve this
issue, one of the methods is to perform an optimization process
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(i.e. Genetic Algorithm or Particle Swarm Optimization).
However, in combination with the Monte-Carlo simulation,
as we have shown in the evaluation, the number of searching
values can be overwhelming.

Fourth, although our work focuses on SRAM which is easily
accessible, there is a possibility to apply our methodology to
advanced memory technologies (eDRAM, STT-RAM, ...). In
fact, this could be even more power efficient as non-volatile
memories are more efficient in terms of power and can retain
their value after the power gating period.

Fifth, our work focuses on an array of LIF array; however,
this method can also be applied for large-scale Network-
on-Chip-based architecture [31]. As each NoC core can be
undervolted and power-gated separately, this could open a
more fine-grained control for the system. Furthermore, the
power of spike generation and spike transmission are two other
factors that can affect the power consumption of the chip and
must be considered in the future.

Sixth, our work utilizes multiple power rails through TSVs
to supply power for every memory layer, which is dependent
on an off-chip voltage regulator. However, an on-chip voltage
regulator can also be implemented into the neuromorphic sys-
tems for better scalability. In this case, the hardware overhead
is also needed to consider when applying multiple supply
voltages for every memory layer. For example, the hardware
area of the voltage regulator in [38] is around 0.375µm2

(0.111µm2 without wired area) with the UMC 1.1V 40-nm
CMOS technology. Hence, by putting this regulator into our
memory layer under 45-nm CMOS technology and ignoring
the wired area, the hardware overhead is mathematically about
27.05%, where the total area of memory blocks in one memory
layer without wired is 0.337µm2. As a result, it could add
up to a significant hardware area for voltage scaling in every
memory layer. However, the hardware footprint is unchanged
compared to the traditional 2D DVS one. It is because our
hardware architecture is implemented in 3D and every memory
layer has the same hardware area.

Although there are several drawbacks in this work, the
proposed methodology and its implemented architecture have
shown the potential to be able to reduce power consumption
with graceful performance degradation.

VII. CONCLUSIONS

In this paper, we have proposed a methodology to split
and stack the synaptic memories for low-power operation.
With the 3D technology, the memory can be isolated into
different layers, which allows the possibility to separately
control the supply voltage of each layer. As a result, the
proposed architecture can apply the voltage-scaling technique
and also further turn on/off the power supply of one or multiple
layer(s) inside it to save the overall energy consumption.
In addition, by splitting the synaptic weights into multiple
memory layers, the accuracy can be maintained by protecting
the memory layer(s) containing the MSBs while dropping the
supply voltage of the memory layer(s) containing LSBs. Our
future works will extend this work into a very large-scale
system using Network-on-Chips with an optimal power-saving
strategy.
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