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Abstract—While conventional hardware neuromorphic systems usually consist of multiple clusters of neurons that communicate via an
interconnect infrastructure, scaling up them confronts the reliability issue when faults in the neuron circuits and synaptic weight
memories can cause faulty outputs. This work presents a method named MigSpike that allows placing spare neurons for repairing with
the support of enhanced migrating methods and the built-in hardware architecture for migrating neurons between nodes (clusters of
neurons). MigSpike architecture supports migrating the unmapped neurons from their nodes to suitable ones within the system by
creating chains of migrations. Furthermore, a max-flow min-cut adaptation and a genetic algorithm approach are presented to solve the
aforementioned problem. The evaluation results show that the proposed methods support recovery up to 100% of spare neurons.
While the max-flow min-cut adaption can execute milliseconds, the genetic algorithm can help reduce the migration cost with a graceful
degradation on communication cost. With a system of 256 neurons per node and a 20% fault rate, our approach minimizes the
migration cost from remapping by 10.19× and 96.13× under Networks-on-Chip of 4× 4 (smallest) and 16× 16× 16 (largest),
respectively. The Mean-Time-to-Failure evaluation also shows an approximate 10× of lifetime expectancy by having a 20% spare rate.

Index Terms—Fault-tolerance, Spiking Neural Network, Neuromorphic System, Network-on-Chip, Max Flow, Migration.
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1 INTRODUCTION

Brain-inspired computing or neuromorphic computing is
the next generation of artificial intelligence to extend to
areas of human-like cognition. Spiking neural network
(SNN) [1], which is considered the third generation of Neu-
ral Network, is a novel model for arranging the replicated
neurons to emulate natural neural networks existing in
biological brains. The computational building blocks are the
replicated version of neurons that receive, process, and send
possible output spikes. Recently, several works have been
done to integrate a large number of neurons on a single
chip while providing efficient and accurate learning [2], [3],
[4], [5], [6], [7], [8], [9]. While software implementations of
SNNs [7], [8] have demonstrated the ability to emulate the
operation of biological brains, several works [2], [3], [4], [5],
[6] on implementing SNNs hardware have been proposed to
accelerate the performance and to gain energy and memory
efficiency. Conventionally, the system usually consists of
multiple nodes (or clusters) of neurons connected via an
on-chip communication infrastructure [3], [9]. Expansion
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using a multi-chip system and off-chip interconnects is also
a viable solution for scaling up SNNs [2], [3].

By integrating a large-scale spiking neural network, we
also encounter the reliability issue due to the accumulating
probability of faults [10]. Mathematically, the possibility of
having defective neurons and memory blocks is increased
when we upscale the system. Naturally, an SNN is resilient
against spike and weight faults; however, accumulating
the faults over a long period could lead to undesirable
inaccuracy outputs.

Fig. 1: Impact of faults on accuracy of MNIST dataset with
unsupervised STDP based SNN size 784:100 and CIFAR-10
with spiking VGG-16.

To understand the impact on SNN, we randomly in-
serted several faults and tested with the test images in the
MNIST and CIFAR10 datasets. For the MNIST dataset, the
SNN model is 784:100 with lateral inhibitory connections
adopted from [11] and run on BindsNet [8] simulator. This
network follows the winner-take-all principle, where a firing
neuron inhibits other neurons. The weights are pre-trained
using STDP as in [11]. For the CIFAR10 dataset, we adopt
the VGG-16 model with the conversion in [12]. Figure 1
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illustrates the accuracy drop when inserting faults into the
weight SRAM and thresholds. Once we inserted stuck-at-0
or stuck-at-1 faults into the weight memory of the MNIST
model, as shown in Figure 1, we can notice that the accuracy
drops are ineligible for a small number of faulty weights
thanks to the natural fault-resilience of SNNs. However,
when the number of faults increases, the accuracy starts
dropping significantly. We can observe a similar behavior
with stuck at-0 in VGG-16 for CIFAR10. However, the
stuck-at-1 is critical for VGG-16 as higher weight leads to
the domination of some features in the convolution. Once
the error rate reaches above 0.0064, the accuracy stuck at
0.1, which means the VGG-16 only outputs one label. On
the other hand, a defect in a computation unit is more
critical in the MNIST model. A single stuck-at-0 (which
is 1% in 100-neurons) on a threshold register can easily
make a constant firing neuron, which drops the accuracy
significantly to around 10%. This is equal to assigning one
label for all testing images of MNIST. Once two or more
neurons have stuck-at-0 faults at their threshold registers,
two or more neurons start to compete, which increases the
overall accuracy; however, the accuracy is still much lower
than the non-faulty results. On VGG-16, the stuck-at-0 is
a critical problem. The spike can explain this is generated
by comparing the membrane potential with a threshold.
As the membrane potential accumulates weighted spikes,
stuck-at-0 in threshold has similar behaviors as stuck-at-
1 in weights. While stuck-at-1 seems not so critical as the
accuracy maintained with the error rate in the threshold
lesser than 0.16, stuck at-0 in thresholds constantly reduces
overall accuracy.

In summary, although SNNs are resilient against faults in
some certain levels, as we demonstrated, protecting them is
still necessary for critical applications or lifetime reliability
where the number of faults can be accumulated. To help
recover from neuron failures, adding redundant neurons
for replacements can be a viable solution. However, the
following problems should be addressed:

1) First, adding redundancies to have spare modules
to correct can be helpful but not always optimal. A
clustering fault distribution [13] could make some
nodes not repairable, and other nodes even have
unused spare modules.

2) Second, it lacks algorithmic methods to protect the
SNN at the system level. Mapping for multi-core
systems is already challenging and can be more
difficult with faulty cores and communication con-
straints [14].

3) Third, even if we can adopt a mapping algorithm
from multi-core systems [14], its complexity is ex-
ceptionally critical. For instance, heuristic search
complexity is factorial, and Integer Linear Program-
ming is an NP-complete problem.

4) Fourth, most of the existing mapping algorithms for
multi-core systems consider the communication cost
as their major goal [14]. Meanwhile, mapping for
SNNs mainly considers the connection on the cross-
bar or the distortion on spike intervals. However, as
Neural Networks usually have a massive amount of
parameters (i.e., AlexNet [15] has 60 million param-

eters and 650,000 neurons), the migrating time of
the recovery task should also be considered. Down-
loading the whole parameters could be challenging
with low-power nodes.

As motivated by the above challenges, this work pro-
poses a method named MigSpike to deal with both fine-grain
recoveries at node-level and across nodes at the system-
level. First, we use redundant nodes and neurons to deal
with the failures of neurons. The unbalancing fault rates can
be solved by using system level migration to move faulty
neurons to different nodes. Moreover, we take the migration
cost as our system’s target to reduce the number of updated
weights and parameters for recovery. Our method can re-
duce the migration cost by conserving the existing memory
of neurons in the system and only moving the migrating
neurons. Our contributions are summarized as follows:

• A design of Network-on-Chip based Spiking Neural
Network based on a neuron migration approach.
With the support of AER (Address Event Represen-
tation) and node address Look-Up Tables, the system
can remap a neuron to another.

• A node-level recovery mechanism for neuron failures
by placing spare neurons into each node (neuron’s
cluster) and a system-level recovery mechanism for
neuron failures when the node-level approach fails to
correct faulty neurons. Here, the faulty neurons are
migrated by M hops from their origin to reduce the
migration cost.

• A max-flow min-cut using Ford-Fulkerson imple-
mentation to solve the graph-flow provides a map-
ping method for defective neurons. By lowering the
M to 1, the Ford-Fulkerson implementation’s time
complexity is polynomial as O(N3) (N: number of
nodes).

• An augmented algorithm to deal with the unsolvable
problems of M = 1 hop is also solved by recursively
increasing the migration distance (M).

• A genetic algorithm (GA) approach to solve the
mapping problem to optimize the migration costs in
conjunction with other cost functions. We here design
the new crossover and two mutation functions to
allow the solutions to evolve and converge.

This paper is organized as follows: Section 2 presents the
existing literature on protecting neuromorphic systems. Sec-
tion 3 gives the baseline SNN architecture to provide an
overview of the proposed platform. Section 4 presents our
proposal on the neuromorphic mapping method using a
graph-based algorithm. Section 5 evaluates the proposed
methods and finally Section 6 concludes this work.

2 RELATED WORKS

This section summarizes the related works on protecting
neuromorphic systems in three significant aspects: commu-
nication, computation, and memory. Moreover, mapping
methods for SNN to recover from faults are also summa-
rized.
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2.1 Memory Protection

Since memories are vulnerable to permanent and transient
faults, protecting them is needed for highly reliable systems.
One of the most popular methods is to use Error Correction
Codes, such as Hamming or its extended version [16], which
can correct one flipped bit in the codeword. For multiple bits
upset, multi-bit correction such as Orthogonal Latin Square
Code [17] or Triple Adjacent Error Correction [18] can be
used. Another recovery method for memory is to add a
spare row or column and use the spare one as a replacement
for the faulty one [19].

On the other hand, memory errors can be tolerated in
neural network applications by accepting a specific loss
of accuracy. As analyzed in [20], a CNN application lost
5.7% in terms of accuracy with an error rate of 0.0065. Our
analysis in Figure 1 also shows an acceptable loss while
inserting a similar error rate. In summary, we can either
protect the memory using error correction code or accept
accuracy loss under a certain noise level.

2.2 Communication Protection

Since spikes, neurons’ parameters, or weights could be
transmitted within the system or external memories, cor-
ruption in these values could lead to inaccurate results.
Therefore, protecting their integrity is an important prob-
lem. Apparently, inheriting Error Correction Codes [16],
[17], [18] from memory protection could be helpful. Here,
the data is protected under a certain number of flipped bits.

Another type of error in communication is the misrout-
ing or arbitration failures [21]. In these cases, recovery using
an alternative routing path or redundancy could be used. By
avoiding the failure point and providing a viable routing, a
fault-tolerant routing algorithm [10], [22] can help overcome
these types of errors. On the other hand, by providing
redundant modules [23], the system can replace a faulty
module with a healthy one for recovery.

2.3 Computation Protection

Faults in a computation module could be critical to SNNs,
as we previously demonstrated. Therefore, protecting com-
putation units is substantially vital. In [24], the authors pro-
posed a method to protect the systolic array by bypassing
and retraining. By pruning the faulty part of computation
and retraining the model, the system can accept a certain
fault level. Johnson et al. [25] also presented a method to re-
tune the spiking model with variable thresholds and oper-
ating frequencies for allowing fault tolerance. A traditional
method such as N-modular redundancies with a majority
voting [26] could also be used to ensure the correctness in
this case. However, it leads to high area costs and power
consumption.

As large-scale SNN systems usually utilize Network-on-
Chip as the communication infrastructure, the computation
protection method can use extra cores and remapping algo-
rithms. The fault-tolerance NoC system with homogeneous
cores can be solved by using Integer Linear Programming
(ILP) as in [14], where the authors tried to optimize the
communication cost (summary of the traveling distances).
However, the ILP problem is NP-complete, which cannot

deal with larger scales. The works in [14], [27] also present
a Particle Swarm Optimisation (PSO) solution to reduce the
complexity of the mapping algorithm. Although the PSO-
based approach can significantly reduce the run-time, it
cannot guarantee the optimized result.
Moreover, PSO has a high space complexity for storing all
particles. For reliability aware mapping, Namazi et al. [28]
presented an approach to map tasks to homogeneous
NoC architecture using a Mixed Non-Linear Programming
model. Despite providing promising results, the mentioned
approaches only target conventional multi-core systems. For
our large-scale SNN system, since each node can have mul-
tiple computing units itself, internal node recovery is also
possible instead of requiring external spare cores. Also, the
recovery methods do not take the migrating time between
cores into account.

2.4 SNN Mapping
Since the targeted system is an NoC-based multi-cores one,
we can use both the SNN mapping methods [3], [29], [30],
[31], [32], [33] and conventional multi-core NoC mapping
methods [14] for placing neurons. While the conventional
multi-core mapping solutions such as ILP or PSO prove
their efficiency, mapping for NN is highly complicated due
to a large number of neurons. The conventional SNN map-
ping method has two phases [32]: (1) Partitioning: cluster
the NN into groups of neurons; (2) Mapping: map the
groups of neurons to hardware. However, there are some
problems: (1) both graph partitioning and mapping are NP-
hard, which might not be solved optimally in polynomial
time; therefore, a non-optimal solution can be justified;
(2)the layered SNN applications have the node as the layers
itself; and (3) the conventional methods do not take into
account the multi-casting manner in communication. La-
grange multipliers [29] can reduce the run-time complexity;
however, we still observe the long execution time. Since
mapping for each neuron is not feasible, partitioning then
the mapping is a potential approach [30]. We have to note
that partitioning is an NP-hard problem. In [32], the au-
thors adopted the Kernighan-Lin (KL) partitioning method
for reducing the complexity despite not providing optimal
results.

3 BASELINE NEUROMORPHIC SYSTEM

This section presents our baseline SNN architecture [34]. We
first give an overview of the SNN architecture. Then, the
communication infrastructure is shown as the backbone of
the inter-neural transmission. We then briefly present the
design of the cluster (or node) and the neuron itself.

3.1 SNN Architecture
The overall architecture of our neuromorphic system is
shown in Figure 2(a), which is designed on a 3D-IC (Three
Dimensional Integrated Circuits) infrastructure to model the
three-dimensional structure of the brain. Here, the neu-
rons and their synapses are clustered in neuron clusters
or nodes. Instead of using point to point connection be-
tween neurons in a biological brain, we use a Network-
on-Chip infrastructure to support communication. The 3D-
Mesh topology is used where each node is attached with a
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Fig. 2: Baseline SNN architecture.

router of six communicating directions. Combining with the
packet-switching mechanism, we can replicate the commu-
nication between neurons via synapses. While a 3D-Mesh
NoC handles the communication, the computation is done
by a neuron cluster (node) where its architecture is shown in
Figure 2(b). Here, the controller manages the computation
by time step, where the synchronization is done via NoC
communication. The incoming spikes in AER (Address-
Event-Representation) protocol are stored in memory and
decoded to obtain the address and the read enable signal for
the weight memory. By taking the weights from memory, the
system emulates the weighed spikes for LIF neuron inputs.

3.2 Inter-neural Communication
The inter-neural interconnect consists of multiple routers
(R) to handle the communication between the neuron clus-
ters [34]. Here, to support the 3D-Mesh topology, we adopt
our present works on 3D-NoC [35]. The adopted 3D-NoC
supports several fault-tolerance features on input buffers,
crossbar, fault-tolerant routing, transient faults in routing
logic and data. We embrace the unicast-based multicast from
our previous work in [36]. The packet in the inter-neural is
a single flit where two types of flit are supported. The first
type is the spike between neurons in AER format. The AER
format flit is converted to the address of the weight SRAM
to feed to the SRAM. The second type of flit is memory
access. To read and write the memory cells and registers in
the neuron cluster, a flit should provide the instruction and
the required argument (address). Here, the memory access
flits are issued by a master (or external host) processor in
the system. We support two types of read/write commands:

single and burst. The individual read/write only provides
access to one element per request, while an argument of
length must follow the burst ones. The Network Interface
(NI) converts the requested address to the local address at
each weight memory or LIF array. Figure 2(c) shows the
block diagram of the Network Interface. The input spikes
are categorized into either input spikes or memory accesses.
With the memory accesses, the NI provides an interface to
read and write the data in all registers and memory blocks
of the node. The read instruction makes the NI returns the
master processor the value of the requested address. With
the input spike from the network, the NI decode phase
gets the weight SRAM address and feeds it to the weight
memory. For multi-layer SNNs or sparsity connections, the
Flit Extractor provides the read-enable signal for different
layers or different links, which are used in the weight
memory. As a result, a node can have multiple AERs at the
same address but for other neurons. The LIF array’s output
spike is fed into the AER decoder, which extracts the address
of bit one (firing neuron). This address is then serially sent
to the remap Look-Up-Table (LUT) to obtain the AER value
in the receiving nodes.

3.3 Spiking Neuro-processing Core (node)

After receiving the address of the corresponding weight and
the enable signal, the series of weighted inputs will be sent
to the dedicated LIF neuron, which accumulates the value,
subtracts the leak, and check the firing condition. The output
spike is stored in a post-synaptic SRAM and sent to the
Network-on-Chip. The computation of the neuron is done
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with our hardware LIF array. In this work, we select Leaky-
Integrate-and-Fire as the neuron model. We have to note
that most hardware-friendly neural architecture focuses on
either Leaky-Integrate-and-Fire (LIF) or Integrate-and-Fire
(IF) model due to their simplicity. Figure 2(d) shows the
architecture of a LIF neuron. The weighted input (i wspike)
is fed into an adder+register structure to accumulate the
value. At the end of each time step, the leak’s inverted value
is fed to reduce the membrane potential. The membrane
potential is compared with the threshold to check the firing
condition. If the neuron fire sets the count down refac cnt
to keep the neuron stops working for several time steps (as
refractory).

4 PROPOSED RECOVERY METHOD FOR SNNS

In this section, we first formulate the problem of remapping
the faulty neuromorphic system. We then present the pro-
posed algorithm for migrating the unmapped neurons.

4.1 Problem Formulation

Here, we assume that the working system S hasN nodes (or
neuron clusters) where each node has Ei (i = 0, 1, . . . , N −
1) neurons. In serial systems [3], [37], the number of neurons
is equivalent to the number of memory slots a node can
stores. Note that the value of E can vary up to design and
can be different between clusters in heterogeneous systems.
In short, the total number of neurons in the system S is
X =

∑N−1
i=0 Ei. Here, we also assume that the desired SNN

application requires W neurons. A possible application
must have W ≤ X .

4.1.1 Fault-tolerance
Because we support fault-tolerance in our system architec-
ture, we considerR spare neurons, whichR = X−W as the
repairing source. Once k ≤ R neurons are faulty and must
be removed from the system, our problem formulation is to
remap these k neurons to R spare neurons. If k > R, the
system S cannot correct, and an off-chip migration should
be considered (i.e., plugging a new chip and migrate to it). If
the system can remap the function of k neurons, parameters,
and weight of k neurons, we archive k−fault tolerance. In
term of repair-ability, we divide it into two levels:

• Node-level recovery: If the node has enough spare
neurons to correct its failed ones, it corrects internally
by remapping. If it fails, the system-level recovery is
used. A copy of the weights and parameters stored
externally is read and written to the spare neuron.

• System-level recovery: If there are not enough spare
neurons in a node for its internal recovery, the migra-
tion of neurons happens across nodes of the system.
A migrating neuron can move from its original node
to a new one. The corresponding weight, mapping
LUT elements, and neuron status are copied to the
new neuron. If a node happens to have more neurons
to be mapped than Ei as designed, the unmapped
neurons will migrate.

In node-level recovery, the number of spare neurons in
each cluster is an important parameter. Here, we assume

the fault rates of all clusters are similar; therefore, we will
plan to add the same number of spare neurons in each node.
Non-uniform fault rates (for example, central nodes have
more faults) will need system-level recovery more frequently
as the nodes lack spares for recovery. On the other hand, if
the fault-rate can be predicted, we can distribute the spares
based on the predicted fault rates.

In system-level recovery, if the communication is guaran-
teed as reliable, the system must support up to R fault-
tolerance (k = R). Figure 3 shows the system model of S
with N = 9 nodes of Ei = 256 neurons (X = 2, 304) and
a possible solution. The system requires W = 2000 neurons
to perform the application and maps the neuron uniformly,
as shown in Figure 3(a). In this mapping example, there are
33 or 34 spares neurons per node, which allows the node to
correct up to 33 or 34 faulty neurons. Figure 3(b) illustrates
the case of node (0,0) has 10 defective neurons and they
are internally corrected using node-level recovery. However,
Figure 3(c) shows the case of 100 defective neurons in the
node (0, 0), which it fails to recover using node-level repair.
Figure 3(d) shows a mapping flow that maps the faulty neu-
ron to the node (0,0), (0,1) and (1,0), which are the current
node and its neighbors. In serial systems [3], [37], designers
might need to treat memory units and computation units
independently. For memory units, it is similar to the above
formulation. For faults in computing units, as the physical
neuron can be one per node, adding redundancies is in
memory and biological neurons.

4.1.2 Remapping problem
One of the major issues is how to remap the SNN to recover
from faulty neurons. Traditionally, one of the optimization
goals for remapping is to minimize the following communi-
cation cost [14]:

Fcost =
W∑

i=0,j=0

dij × cij (1)

where dij and cij are the distance and the connection status
between node i and j. If we use cij as binary (0/1), Fcost
is the sum of traveling distance between neurons. With this
kind of optimization, we only need to rerun the mapping
algorithm with faulty information. However, in large-scale
systems, migrating neurons require an enormous amount of
memory access. Therefore, this work optimizes the migra-
tion cost, which is the cost of migrating neurons of the new
mapping method:

Mcost =
W∑

i=0,j=0

dij ×mij (2)

where mij is the number of migrating neurons between
node i and j. Since the data (weight memory, threshold,
etc..) within the faulty neurons can be corrupted, the system
should write back from its host CPU. The moving distance
is d0j , where node 0 is the node attach to I/O module.
This optimization considers high availability for the system
where it needs as least as repairing time as possible.

4.2 Proposed Max-Flow Min-cut based Algorithm
In this part, we present our proposed algorithm to enhance
the reliability of the SNN system. Our main target is to
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Fig. 3: System model for fault tolerance SNN: (a) Designed SNN system using nodes of neurons with an initial mapping;
(b) node-level recovery; (c) The case node-level recovery fails to correct; (d) System-level recovery: a mapping flow of 100 faulty
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utilized; gray: healthy and spared; red: faulty; purple: migrating).

optimize the Mcost in Equation 2. We first present the
max-flow min-cut theorem for the optimal flow. Then, the
augmented versions multi-layers design and tackling the
limitation of the max-flow min-cut theorem are discussed.

4.2.1 Max-flow min-cut theorem
One of the most common methods to find a flow between
sink and source in a graph model is to use the max-flow
min-cut theorem to optimize it. Here, we use the same
principle: the sources are the faulty neurons, and the sinks
are the spare ones. However, the multi-sink multi-source
problem is usually complicated and can be converted to the
conventional one using a virtual sink and a virtual source.

One of the main reasons to choose the max-flow min-
cut approach as the solution for the remapping problem is
a good trade-off between efficiency and execution time (or
memory footprint). Compared to a greedy search approach
from faulty neurons to spare neurons (evaluated later),
the max-flow min-cut method provides a better mapping
distance by creating a flow (chain of migrating). Meanwhile,
the max-flow min-cut complexity is smaller than meta-
heuristic methods (i.e., Genetic Algorithm or Particle Swarm
Optimization). Moreover, these meta-heuristic methods re-
quire a huge memory footprint, which might not be optimal
for a low-cost host CPU. Remapping the whole system by
reusing the mapping method is a viable solution; however,
as we previously discussed, the migration cost can be high
due to the tremendous amount of memory transactions
needed.

Figure 4 shows the flow graph for the fault tolerance
in Figure 3(c). To support moving neurons, we firstly build
a virtual source and virtual sink for the flow graph. Then,
the connection between the virtual source to the faulty node
has a capacity as the number of faulty neurons (i.e., 100 in
Figure 4(a))). From the connected node, the flow capacity
to its neighbors is the number of healthy neurons in the
neighbor. For instance, Figure 4(a) shows the capacity of the
flow between (0,0) and (0,1) is 256 since the node (0,1) has
256 neurons and all can be migrated. For each node, there
is a virtual flow to a virtual sink with the capacity of the
number of spare neurons that are available to be used. For
instance, Figure 4(a) shows the capacity of the flow between
(0,0) and t is 33 since the node (0,0) has 33 spare neurons.

As we can realize in Figure 4, the flow only comes from
one node to one of its neighbors as we limit the traveling
distance of migration to 1. In other words, Equation 2 has
dij ≤ 1, which can reduce the migration cost. After solving
using a max-flow min-cut solution, we end up having a flow
map in Figure 4(b). Here, we can convert back to the NoC-
based SNN to have the new mapping.

The max-flow min-cut theorem is applied as follows:

1) For all nodes, create a flow of migration between
them. The capacity if the maximum number of
neurons could be migrated via them.

2) Since we minimize the extra distance of migra-
tion, we use maximum migrating distance equal one
(dmax = 1; dij < dmax). Maximum migrating distance
(dmax) is the maximum number of hops that a
neuron can migrate. With this dmax = 1 value, a
neuron can only move to one of its four neighbors,
which limits the capacity down to the maximum
healthy number of neurons of the destination.

3) To allow neurons to migrate more than one hope, we
can increase the maximum migrating distance value.

4) The movable distance of a neuron could be con-
strained by the distance to its connected nodes.

5) Once we build all the nodes and the capacity of the
flow between nodes.

As shown in Figure 4, we know we can create a specific
max-flow min-cut problem by making the flow graph. To
solve this problem, we use the Edmonds–Karp algorithm to
implement the Ford-Fulkerson method.

The Edmonds-Karp algorithm has the run time com-
plexity of O(|V ||E|2) (E: number of edges, V: number of
vertices), which can be translated to O(N3) for both 2D
and 3D network (N: number of nodes). Therefore, the com-
plexity of our mapping is guaranteed as P instead of NP.
Meanwhile, heuristic search complexity is O(N !), and ILP is
NP-complete. PSO-based approach [27] has the complexity
of O(GKN2logN) (G: number of generation, K : number
of particles). Since the number of generations or particles
scale with the number of nodes, the PSO approach has a
higher complexity than ours (PSO: O(N4logN) if G and
K scales linearly to N ; ours: O(N3)). However, the PSO
approach [27] requires a massive number of particles which
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Fig. 4: Flow graph for max-flow min-cut problem: (a) Converted flow from the NoC-based SNN; (b) A solution of max-flow
min-cut problem.

makes it has a larger memory footprint than the max-flow
min-cut one. The space complexity of the PSO approach [27]
and ours is O(NK) and O(N), respectively.

4.2.2 Proposed graph-based algorithm

Algorithm 1 shows our proposed algorithm for tolerating
defective neurons. At first, it builds the flow-graph from
sources and sinks in lines 2-7. For each node ni, it adds
an edge from the source with the capacity of the number
of faulty neurons. As the flow goes out of the source, the
algorithm tries to fill the capacity as much as possible. We
also connect the node ni with a virtual sink with the number
of spare neurons’ capacity. At the end of this part, we built
the flow ready for the node-level recovery.

In the second part of the algorithm, we first repair the
system with node-level recovery. Then, we build the flow
between nodes by adding the flow from a node to a node
within the maximum distance dmax. The capacity is the
maximum flow between those nodes, which is the minimum
value of healthy neurons of the destination. For instance, the
node nj has 120 healthy neurons; the maximum capacity it
can gain is 120 since the system can only migrate at most
120 neurons to it.

After completing the flow graph, we perform the
Edmonds-Karp algorithm to find the maximum flow and
each edge’s corresponding flow between the nodes. This
number in each edge indicates the number of migrated
neurons. The flow of the edge between the nodes and sink
is the recovery using spare neurons. After completing the
process, we now compare the maximum flow with the
number of defective neurons (k). If they are equal, it means
the algorithm successfully corrects all k faulty neurons. If
they are not equal, it means the max-flow min-cut imple-
mentation fails to recover. We will discuss the problem and
how we can improve the algorithm in the next section.

Figure 5 illustrates how our algorithm works in a 3D-
NoC based neuromorphic system of N = 3 × 4 × 3 = 36
nodes. Each node consists of 256 neurons, which makes the
total number of available neurons X = 9, 216. Only 9,060
neurons are mapped, which leaves 156 neurons as spares.
The system encounters eight faulty nodes with 138 defective
neurons cases where only the node (2,2,0) with four faulty
and 4 square neurons can complete the recovery using only
node-level recovery. By migrating the unmapped neurons to
their neighboring nodes, it allows system-level recovery. The
neighboring nodes now have some unmapped neurons and

Algorithm 1: The proposed max-flow min-cut neu-
ron cluster replacement algorithm.
// Build flow graph

1 add source s and sink t;
2 for (node ni in the system) do
3 add vertex for the node ni;
4 add edge from the source s to the vertex ni ;
5 add capacity ni → s = number of defective neuron in the vertex

ni;
6 add edge from the vertex ni to the sink t;
7 add capacity ni → t = number of available redundant neurons

attached to vertex ni;

8 for (node ni in the system) do
// Node-level repair

9 if node ni has more redundancies than defects then
10 node-level recovery vertex ni;

11 for (node ni in the system) do
12 for (node nj in the system) do
13 if (dij ≤ dmax) then
14 add edge from the vertex ni to the vertex nj ;
15 add capacity ni → nj =

number of healthy neurons in nj ;

// System-level repair with Edmonds-Karp
16 while no augmenting path do
17 Breadth first search to find minimum path;
18 Augmenting the found minimum path with capacity;
19 Save the flow;

// Finish the algorithm and require re-training or
maintaince if it failed

20 if (max-flow == k ) then
// done

21 return 0;
22 else

// The approach fails to correct.
23 return 1;

look for the new nearby nodes. At the end of the algorithm,
it successfully maps the 138 faulty neurons, and there are
18 spare neurons left in the system. As shown in Figure 5,
the maximum movement of a neuron is only one hop from
its original one. For instance, 7 neurons are migrated from
(0,0,1) to (0,0,0). The node (0,0,0) also receives four neurons
from (1,0,0), which leads to 11 neurons to map. By mapping
11 neurons and having four spares, the node (0,0,0) has
seven unmapped and original neurons and migrates them to
(0,1,0). By creating chains of migrations within the system,
the proposed algorithm helps recover the faulty neuron and
minimize the traveling distance of an unmapped neuron
original node to the new node.

4.2.3 Augmenting Migrating Distance
Although using the max-flow min-cut method can optimize
the neuron migration cost, the max-flow min-cut process is
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Fig. 5: An illustration of the proposed algorithm: (a) Faulty case; (b) Post-mapping using the proposed algorithm.

not optimal. To increase the minimum cut, we should relax
the value of dmax; however, it increases the Edmonds-Karp
algorithm’s complexity (increase number of edges). Based
on the max-flow min-cut theorem, the maximum neurons
that can be corrected can be limited by the minimal cut
of the flow network. Therefore, there is a chance that the
system cannot correct as much as neurons as its number of
redundancies.

Let us consider the node (0,0) or (0,0,0) in Figure 6. These
nodes have 200 faulty neurons and are surrounded by nodes
with 210 faulty neurons. After node-level recovery, there are
177 unmapped neurons. However, the maximum flow from
these nodes to their neighbors is 112 and 168 for 2D and 3D
mesh topology, respectively. In this case, the system fails to
recover regardless of having redundancies in other nodes.
In this fashion, we need to consider a communication cost
of two, allowing neurons to move by two hops. The flow
graph must be reconstructed for this different dmax.

Algorithm 2: Augmenting migrating distance algo-
rithm.
1 dmax = 1;
2 while (mapping success or dmax > (number of layers +number of rows +

number of columns)) do
3 run Algorithm 1;
4 dmax + +;
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Fig. 6: Examples of the minimal cut drawback: (a) 2D-Mesh;
(b) 3D-Mesh

Algorithm 2 shows our augmenting maximum migrat-
ing distance algorithm for tackling the problem of the small
minimal cut section mentioned above. If the number of
faults is larger than the number of spares, the mapping is not
successful. Here, we need to run the Algorithm 1 depending
on the single or multiple layers SNN. Later, we perform
either retraining or maintenance for fitting the SNN to the
neuromorphic system.

By gradually increasing the migrating distance, we can
find the smallest value to recover the system failure. There-
fore, we can balance the trade-off between the maximum
migrating distance (dmax) and the recovery. Once the dmax
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value increases to a maximum distance within the NoC, we
can ensure the mapping for the k ≤ R cases.

4.3 Proposed Genetic Algorithm
As we presented earlier, a significant issue of the max-flow
min-cut is it might fail to map with a maximum migrating
distance dmax = 1. As we increase the dmax value, it can
lead to mapping for the whole NoC, which can have a
considerable size. On the other hand, a metaheuristic such
as a Genetic Algorithm can be used to solve the problem in
a more holistic manner. Therefore, we also propose a genetic
algorithm (GA) for solving the mapping issue in this work.
As can be expected, the GA method has higher complexity
in time and memory footprint, so it might fail to solve
the huge NoC size in a reasonable time. However, the GA
approach considers other objectives besides the migration
cost (Mcost).

Algorithm 3: The proposed Genetic Algorithm for
finding cluster replacement.
// initialize phase

1 S1: build the unmapped and free neurons per node;
2 S2: randomize the K mapping solutions;
// evolve phase

3 for (generation gi in 1 to G) do
4 S3: calculate cost function for each solution of the population;
5 S4: select the B best out of K solutions based on the cost function;
6 S5: mutate the B best solutions to have new K solutions ;
7 S6: crossover the new K solutions to have new population ;

// finalize phase
8 S7: calculate cost function for each solution of the population;
9 S8: select the B = 1 best out of K solutions based on the cost function;

Algorithm 3 shows the proposed Genetic Algorithm. It
consists of three phases: (1) initialize, (2) evolve, and (3) fi-
nalize. The initialize phase starts with the first step S1 where
the number of unmapped and free neurons are counted
and sent from each node of the system. This one is right
after the node-level recovery phase. Based on these values, the
second step S2 generates K mapping solutions randomly.
This step randomizes a node with free neurons and a node
with unmapped neurons from the values in S1. At the end of
step S2, the algorithm generates K legal mapping solutions.
They are not optimal solutions and need to be optimized. In
the evolve phase, the GA method iterates for G generations
where each generation repeats four steps. At first, step S3
computes the cost function for each solution. Here, we can
adopt only Mcost from Eq. 2. The communication cost Fcost
is also computed for the selection step S4. In S4, it ranks the
best B solutions out of K, and if they have similar Mcost

values, their Fcost values are considered. Doing so keeps
the simplicity of a single objective optimize for GA while
still considering migration and communication costs. The
formulation of GA is shown in Appendix A.

After getting B best solutions, it goes to two steps: S5
- crossover and S6 - mutation. The crossover step S5 is
done by mixing two random mapping solutions. It takes
50% of each parent to generates offspring. By doing so, the
offspring can inherit both mappings of its two parents.

There are two types of mutations in the mutation step S6.
First, it finds an immediate randomized node between two
random nodes having a mapping flow. Here, we constrain
the immediate node having free neurons is closer to the

Fig. 7: The initialize phase of the Genetic Algorithm: (a) the
unmapped and free neurons per node; (b) A randomized
mapping solution.

source node than the destination of the flow. For instance,
Fig. 8(a) shows the case where the source node (0, 0, 0)
has 25 unmapped neurons and all are mapped to (0, 3, 2)
- the destination node. Then, it finds the immediate node
(0, 2, 2) with two conditions: (1) there are free neurons the
immediate node (0, 2, 2) and (2) the distance from the source
node (0, 0, 0) to the immediate node (0, 2, 2) is smaller
than the original flow. Here, it remaps the neuron to the
immediate node instead of the destination. The result can be
seen in Fig. 8(b). The second mutation is to swap the map-
ping to have a closer migrating distance (smaller Mcost).
If two flows can have a smaller migrating distance by
swapping the destination, the algorithm performs the swap.
For instance, Fig. 8(b) shows unmapped neurons in node
(0, 0, 0) are mapped to (0, 2, 2) and unmapped neurons in
node (0, 2, 0) are mapped to (0, 0, 2). Here, the migrating
distances are four for both flows. However, by switching
the destination, we obtain the migrating distances are two
for both flows, as shown in Fig. 8(c).

After G generations, the algorithm finalizes by selecting
the only best solution (step S7 and S8). This solution is used
to perform the mapping method. Since the GA might take a
long time to complete, we can also allow early termination
of the mapping and use the best-found solution.

In summary, this GA methodology provides an exten-
sion for the optimization problem of remapping faulty neu-
rons. While the max-flow min-cut adaptation only focuses
on the migration cost, GA allows designers to take other
cost functions for the optimization.

4.4 Migration Support Architecture

As discussed in the proposed method for moving neurons,
this section illustrates the SNN chip architecture to support
these features. In the Network Interface architecture (see
Figure 2(c)), there are two paths to map input and output
spikes. First, the input spikes are fed to the flit extractor
then to the AER decoder to obtain the weight address in the
weight memory. To support neuron migration, we also need
to support different types of spikes. Second, the migrated
neurons also have different IDs than their migrating posi-
tions; therefore, remapping the output spikes is necessary.
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Fig. 8: The evolve phase of the Genetic Algorithm: (a) a solution for mutating; (b) mutating by finding a shorter distance for
a flows; (c) mutate by swapping destination of a flow.
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Fig. 9: Input sparsity implementation.

4.4.1 Sparsity Input Spike
Once a neuron migrates to another node, its input spikes
could be different from those it immigrated to. In a multi-
layer design, migrating a neuron from layer i to layer j
will lead to different inputs. Therefore, once an input spike
in AER arrives, the Network-Interface must classify into
neurons’ inputs in different layers/input-types.

We have to note that this is a needed feature with mixed-
layer neuron mapping regardless of neuron migration.

In our NoC, we have an additional 3-bit in the spike’s
flit named PE-ID, which is fed to a programmable Look-
up Table to obtain the value of neuron mask (enable signal
for weight SRAM). Figure 9 illustrates our method for
the input sparsity. The first value of the LUT is all ones;
therefore, the spike with PE-ID=0 will cause a weighted
spike to all neurons. The second and third elements show
the configuration that the last two neurons can receive
differently. By using the LUT-based approach, we can make
the connections differently for the same SRAM address. The
interference weights can be pruned and mapped separately
using the same method.

4.4.2 Sparsity Output Spike
Once the faulty neurons are migrated to a different node,
their AER value is not similar to or linear with its position.
Therefore, we encode the 256-bit output spike vector to an
array of 8-bit AER that represents each bit of the spike
vector. The output AERs are fed into two Look-up Tables.

Figure 10 illustrates our approach for remapping the out-
put of migrated neurons. By subtracting to the base address,
we can obtain the address for AER mapping. The smaller
addresses which belong to the original neurons of the node
are kept as they are. A multiplexer is used to choose between
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Fig. 10: Output mapping for migrated neurons.

the mapped AER or the original AER. Assuming we have
a spare node without any mapped neuron initially, the
programmable LUT must consist of 256 members instead
of 8, as shown in Figure 10.

5 EVALUATION

This section first provides the evaluation method for our
SNNs. Then, it shows the hardware results in 45nm technol-
ogy. In the following part, we evaluate the performance of
MigSpike for a multiple layer perceptron (MLP) network. We
then also analyze the critical minimal-cut cases and compare
the 2D and 3D topology in terms of recovery ability and
compare the proposed methods’ execution time in MigSpike
and conventional approaches. The reliability of the system
is also evaluated to highlight the benefit of MigSpike.

5.1 Evaluation methodology

For the mapping efficiency, we developed the proposed
algorithm and performed a comparison with several algo-
rithms. The first algorithm is to remap the SNN with the
information of fault. The second one is an A-hop Greedy
Search (GS), which follows the following rules:

1) Each node corrects itself first. After the self-
correction, system-level correction is used.

2) Scan through each node by order of the number of
unmapped neurons. The most unmapped neurons
node is corrected first.

3) For each correcting node, it looks for closest nodes
with a max Manhattan distance of A with spare
neurons for recovery.
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We choose A = 1, and N to show two methods: (1) A = 1
only looks for the neighbors for correction; (2) A = N (N:
number of nodes) looks for the whole network for recovery.
We use Remap to denote re-using the mapping method to
solve the fault-tolerance issue.

For the hardware implementation, we design the SNN
architecture in Verilog HDL. We synthesize and layout with
Synopsys Design Compiler and Candence Innovus using
the NANGATE 45nm library and the FreePDK3D for the
vertical Through-Silicon-Vias. The Through-Silicon-Vias size
is 4.06µm× 4.06µm.

5.2 Hardware Complexity

TABLE 1: Hardware complexity of the proposed node.

Module Area Power Max Freq.
(µm2) (mW ) (MHz)

AER LUT 16,747 - -
Network Interface Address LUT 20,768 - -

Total 72,032 30.4043 699.30
Neuron Cluster 205,608 81.682 751.87

64KB SRAM - -
3D-NoC router [35] 41,739 14.6128 537.63

Vertical TSVs (up and down) 2,901.1136 - -

Table 1 shows the hardware complexity of the proposed
architecture. The proposed NI to support the mapping
method is integrated with the neuron cluster and the 3D-
NoC router. As shown in Table 1, the additional LUT for
AER and Address are 23.35% and 28.83% of the area of
the Network Interface. The overhead of these two LUTs is
relatively tiny. On the other hand, the NI, which supports
migration techniques, only consumes 25.95% of the area cost
of the whole tile without the SRAM area (neuron cluster +
network interface).

Fig. 11: Layout of a 2x2 NoC-based SNN layer with migra-
tion support. A tile’s size is 790µm× 1580µm.

Figure 11 illustrates our sample layout for a 2×2 NoC-
based SNN layer with migration support. The cluster’s
configuration is 256 spike input in AER format, 8-bit
synapse weight, 32 physical neurons, 32 synapses crossbar
for each cluster. Here, each crossbar is implemented with
a 256-bank 8-bit dual-port SRAM using OpenRAM. We
only integrate 32 neurons per node to have a reasonable
Place&Route time and a visual layout. To support 3D-NoC
inter-layer interconnect, we use TSV from FreePDK3D45
with the size of 4.06µm2× 4.06µm2 and the Keep-out-Zone

is 15µm2 × 15µm2 for each TSV. As can be observed in the
layer’s layout, 80% of the area is for placing macro SRAM.
Since the design of the LIF neuron is lightweight, the most
complicated part is the crossbar.
On the other hand, the NI requires two dedicated SRAMs
for converting the AER from local value to a global one and
destination look-up. We can further optimize the design’s
footprint by reducing the bit-width of a synapse or using an
alternative memory approach (eDRAM, STT-RAM, or mem-
ristor). Moreover, we add more stacking layers dedicated to
memory, which allows us to have a smaller footprint.

5.3 Neuron migration algorithm evaluation

In this section, we evaluate the proposed algorithms
(MFMC: max-flow min-cut adaption and GA: Genetic Algo-
rithm), 1-hop and N-hop, and Greedy Search (GS) to under-
stand their efficiency. The Greedy Search runs each node once
and looks for a spare node within one (1) hop range or in
the entire system (N-hop) with the shortest distance. The
algorithms are implemented in Java. We insert the faults
into the system to evaluate the efficiency of the algorithms.
Here, we focus on the communication cost function Fcost in
Equation 1 and evaluate both 2D and 3D Meshes topology
in terms of the migration efficiency. Different system sizes
and fault rates are discussed. We evaluate the multi-layer
perceptron (MLP) network. The MLP is organized in layers,
and the neurons separated by one or more layers are not
connected. The input spikes are fed to the router with the
smallest indexes (i.e. (0,0) or (0,0,0)). In this evaluation, we
measure two major parameters: (1) mapping rate: the ability
to map the faulty neurons to the spare ones; (2) average spike
transmission cost (Fcost): the average distance of all connec-
tions and (3) Migration cost Mcost: the amount of read/write
neurons need to adapt the system.. The configuration of the
evaluation is shown in Table 2. Figures 12 and 13 illustrate

TABLE 2: Configuration for the evaluation1.

Parameter Value
# neurons per node (E) 256
# nodes (N) 2D-NoC: 4× 4 to 16× 16

3D-NoC: 4× 4× 4 to 16× 16× 16
# spare neurons (R) 0.2×X
# spare node 1
# faults (k) 0.05×X , 0.10×X, 0.15×X, and 0.20×X
SNN # layers 4
SNN configuration1 784:0.5*(W-10): 0.5*(W-10): 10

1 MLP model for MNIST. For example, the SNN configuration for
E=256 and 4× 4 is 784:1633:1633:10.

the results for the proposed system for 2D-NoC and 3D-NoC
configurations (see Table 2). As shown in Figures 12 and
13, our methods can map all faulty neurons to the spare
ones regardless of the size or topology. We have to note
that the MFMC algorithm is not optimal for communication
costs and 1-hop Greedy Search can only map around 60%
(around 80% with the worst cases) of the faulty neurons.
This is because 1-hop Greedy Search only runs for once and
looks for one mapping solution of its neighbor to fail to map
easily. Meanwhile, the N-hop Greedy Search and the Genetic
Algorithm can map all neurons.

The average Fcost (communication cost) also varies be-
tween different approaches. Since the 1-hop GS mostly fails
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to map the neurons, the average communication distance
per neuron is unchanged. For other methods, the average
Fcost fluctuates between different sizes. However, as we can
observe in Figures 12 and 13, they are reduced when we
increased the size of the NoC. This due to the fact when we
increase the size of the NoC, the impact of moving neurons
is reduced. The effects are also more negligible, with smaller
fault rates (k values). We can even notice the communication
cost maintains with remapping; however, we can observe a
slight reduction with the migration-based algorithm. Also,
GA seems to have a better average Fcost since it reduces that
value as the second factor.

Fig. 12: Output mapping for migrated neurons with random
fault patterns in 2D-NoCs. The system has 256 neurons per
node; 20% of neurons are spare with 1 redundant node
without any allocated neuron at 0% fault rate.

On the other hand, the Mcost of MFMC is better than
both GA and GS in most cases. However, under [4, 4] and
f = 0.05 instances, we observe that the Mcost of MFMC
is worse than the GA. This phenomenon can be explained
by the fact that the GA can provide an optimal result
(globally or locally) once it converges. Meanwhile, MFMC
only tries the maximize the flow between faulty neurons
and spare ones. However, once we increase the network’s
size or change to 3D-NoC, MigSpike easily dominates GA
and GS. While GS is not an optimal approach, GA might
need adjustments to find the optimal solution (i.e., different
evolving methods or more generations). However, as we
will discuss in the execution time evaluation, GA costs a
long time to execute, limiting its efficiency.

5.4 Critical minimal-cut cases
As we presented in Figure 6, one of the significant draw-
backs of the max-flow min-cut method is the case where

Fig. 13: Output mapping for migrated neurons with random
fault patterns in 3D-NoCs. The system has 256 neurons per
node; 20% of neurons are spare with 1 redundant node
without any allocated neuron at 0% fault rate.

the minimal-cut is too tiny and creates the bottle-neck. The
groups’ border can be recovered with MFMC; however, the
central node cannot make it. With typical Ford-Fulkerson
implementation, we can see that around 20% of the faulty
node cannot be remapped, as shown as MFMC in Figure 6.
By relaxing the value of dmax, the MFMC-AMD system can
map 100% of the faulty node.

We also evaluated the system with 2D and 3D-mesh
topology configurations. We set the number of nodes per
system like 16, 32, 64, 128, and 256. As illustrated in Fig. 16,
the 3D configurations provide better communication and
migration costs. Even with fault, the communication cost
of the 3D configurations is still lower than the 2D configu-
rations. This is due to the fact the 3D topology has a small
number of hops between nodes. Moreover, since it has more
path diversity, the migration cost of 3D-NoC is also better.
For instance, with 16, 32, 64, 128 and 256 nodes and 20%
fault rates, the migration costs of 3D-NoCs are only 81.64%,
75.05%, 74.32%, 71.11% and 72.24% of 2D-NoC ones.

5.5 Execution Time

Table 3 shows the execution time for different network sizes.
The evaluation was performed on Intel Xeon E5-2620v4, 16
GB, and Windows 10. The algorithms are written in Java
without thread parallelism. Table 2 shows the complete
configuration of the evaluation. The Genetic Algorithm is
the slowest method since it requires a considerable amount
of population and generations. The GA implementation
requires 200 generations and 100 parents for complete
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Fig. 14: Output mapping for migrated neurons with the
minimal-cut cases in 2D NoCs. The system has 256 neurons
per node; 20% of neurons are spare with 1 redundant node
without any allocated neuron at 0% fault rate. MigSpike-
AMD: the augmenting migrating distance dmax method.

Fig. 15: Output mapping for migrated neurons with the
minimal-cut cases in 3D NoCs. The system has 256 neurons
per node; 20% of neurons are spare with 1 redundant node
without any allocated neuron at 0% fault rate. MigSpike-
AMD: the augmenting migrating distance dmax method.

Fig. 16: Comparison between 2D and 3D NoCs.

mapping, making it slower than other approaches and not
scalable in terms of execution time.

In comparison to the two Greedy Search implementations,
our methods are slower. This is due the fact that 1-hop
GS and N-hop GS have the time complexity of O(N) and
O(N2), respectively. Meanwhile, our approaches provide
better migration costs (Mcost) than the greedy approach.
This leads to a lower repair time in our algorithms. We also
perform the same benchmark with W=1000 and E=128 to
compare with Load Balancing [32] and the greedy approach
using Kernighan-Lin graph partition [38]. The source code
is obtained from [32], which targets optimization of the
transmission between neurons instead of migration time.
As we perform in the same machine as mentioned above,
the remapping, 1-hop GS, N-hop GS, GA, and MigSpike take
14.3 µs, 44.6 µs, 65.400 µs, 3.856 s, and 310.1 µs, respectively,
to complete the migration solution.

5.6 Reliability
Figure 17 illustrates the Mean Time to Failure (MTTF) of
the MigSpike and the non-protected system under the 2D
and 3D Network-on-Chip systems, respectively. In [39], the
MTTF of both non-protected and redundancy-based sys-
tems can be modeled using the Markov-state model. We
assume that the fault rate (λneuron) of a neuron is a constant
value. The MTTF of a neuron is:

MTTFneuron =
1

λneuron
(3)

The MTTF of a non-protected system of X neurons are:

MTTFnon−protected =
1

Xλneuron
(4)

The MTTF for a k-fault tolerance system [40] is:

MTTFFT =
1

λneuron
ΣW+k
i=W

1

i
(5)
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TABLE 3: Execution time of migrations algorithm for 2D
and 3D NoCs1.

Size Remap 1-hop GS N-hop GS GA2 MFMC

2D
N

oC
s

[4,4] 20.1 µs 90.3 µs 113 µs 5.916 s 351.4 µs
[6,6] 38.2 µs 378.2 µs 421.3 µs 53.826 s 672.9 µs
[8,8] 74.3 µs 0.640 ms 1.155 ms 140.392 s 1.202 ms

[10,10] 216.5 µs 1.526 ms 2.076 ms 327.070 s 2.640 ms
[12,12] 369 µs 3.413 ms 3.499 ms 640.914 s 5.032 ms
[14,14] 608 µs 5.438 ms 6.150 ms 1220.911 s 7.428 ms
[16,16] 932.5 µs 7.698 ms 8.713 ms 1932.054 s 11.097 ms

3D
N

oC
s

[4,4,4] 39.2 µs 780.100 µs 942.8 µs 141.509 s 1.276 ms
[6,6,6] 116.3 µs 7.349 ms 8.387 ms 1498.355 s 8.771ms
[8,8,8] 394.5 µs 13.487 ms 14.076 ms 3.178 h 24.604 ms

[10,10,10] 1.200 ms 32.151 ms 44.706 ms 15.237 h 63.545 ms
[12,12,12] 3.365 ms 101.105 ms 106.223 ms N/A 3 116.658 ms
[14,14,14] 8.333 ms 184.655 ms 204.551 ms N/A 3 208.800 ms
[16,16,16] 19.938 ms 236.766 ms 291.288 ms N/A 3 442.986 ms

0 The execution only takes into account the computation time for finding the new
mapping. Other calculations such as setting up or configuration generation are
not counted.
1 System configuration: E=256, W = 0.8*X, k = 0.2*X.
2 Genetic Algorithm configuration: 100 parents, 20 bests, 40 crossover and 40
mutations per generation, 200 generations.
3 GA in 3D-NoC with the size from [12,12,12] is infeasible to perform due to
extremely long execution time and large allocated memory.
4 Linear mapping: the neurons with lower indexes are mapped to the nodes with
lower indexes.

Fig. 17: Mean Time to Failure of the proposed system under
2D and 3D NoCs.

Where W is the number of needed neurons for the
application, and k is the maximum number of correctable
neurons. Note that 0 < k ≤ R with R is the number of
redundant neurons. We set λneuron as 1000 per 109 hours
(1 per 114.08 years), which is later scaled with the proper
technology, design, and operating condition. As shown in
Figure 17, the MigSpike design can maintain the MTTF in
different network sizes. With the spare rate of 0.2, the MTTF
values of MigSpike are larger than 2E5 hours (22.82 years).
Meanwhile, the non-protected systems fail under 2E4 hours
(2.28 years) with N ≥ 64.

5.7 Discussion

In the previous evaluations, we have presented the effi-
ciency of MigSpike. Despite the obtained advantages, some
challenges should be addressed to enhance further the re-
covery ability of MigSpike, as discussed hereafter.

If number of faulty neurons k is larger than the number
of redundancies R, the proposed algorithm is unable to
correct with either system-level or node-level recovery. To
deal with this situation, there are two possible options: (a)
retraining the system with a reduced number of neurons
(b) migrating the whole system to a new chip (i.e., [25]

varied the threshold voltage to adapt with defective weight;
or Dropout and Dropconnect [41] can make smaller neu-
rons/connections network). If the system supports multi-
chips, we have another option to plug-and-migrate a new
cluster of neurons and migrate the SNN task to this new
neuron. Once the new neurons are attached, they are at-
tached to flow, and a migration process is performed by
the proposed method. In either case, further investigation
needs to ensure the proper approach and the execution time
to retrain and reconfigure the system can be overwhelming;
therefore, we do not consider them in this work.

We can observe that the Algorithm 1 does not take into
account the layer index of the neurons in a multi-layers SNN
into its consideration. The value of Equation 1 in layer-
less models of SNN or Liquid State Machine seems not
to be affected by moving the neuron to its neighbors. To
optimize the distance of neurons among layers of SNN, we
can consider each layer as a sub-system and perform the
Algorithm 1 for each layer. After completing for each layer
of the SNN, we can move on to the rest of the network
by only performing for the system’s unmapped neurons.
The GA approach can consider the communication cost;
therefore, it can maintain the layer shape if it reduces the
communication cost.

We can undoubtedly adopt the conventional approach
for protecting the SNN system. For instance, adding ECC
to detect and correct faulty SRAM cells and using Triple
Modular Redundancy (TMR) to ensure the LIF neurons’
correctness are two viable options. However, both methods
are not cost-efficient as TMR triples the area cost, and ECC
makes a significant overhead because SRAM cells take the
major footprint of the chip.

As the proposed architecture and algorithm based on
migrating the neurons, this work might be adapted to other
domains (non-spiking NN or distributed computing). How-
ever, two key factors allow us to tailor the method for SNN.
First, neuron or computing unit of SNN is a meager cost;
therefore, adding redundant computing units is not critical
as in other computing domains. Second, SNN transmits
spikes in AER format where only the global address of the
firing neuron is sent. This allows high-flexible mapping as
the local firing neuron address is converted into a global one
using a LUT, as in Fig. 10.

We have not evaluated the convolution SNN in the
mapping solution in the evaluation section as our hardware
architecture does not support convolution and pooling lay-
ers. Despite the lack of support for hardware spiking CNNs,
the mapping method is still suitable for being applied to
CNNs as the problem formulation can be used. The details
on tolerating faults in spiking CNNs will be investigated in
the future work of MigSpike.

Despite the limitations mentioned above, we believe that
MigSpike still provides a low migration cost solution for
tolerating faults in NoC-based SNN systems. The exhibited
overhead in a 3D-NoC implementation is also reasonable,
which makes MigSpike an up-and-coming solution for inte-
gration into highly reliable 3D ICs.

6 CONCLUSION

This work presents a design and implementation for a
fault-tolerant Spiking Neural Network by adding spare
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neurons and an augmented algorithm for recovery. As we
demonstrated in the evaluation, the proposed algorithm
can help recover up to 100% spare neurons regardless of
fault distribution. At the same time, it requires reasonable
area overhead on Network Interface and execution time for
finding the proper mapping. In terms of migration, MigSpike
decreases the cost by 10.19× and 96.13× times compared
to the remapping approach. We also augmented the max-
flow min-cut approach to tackle its fundamental drawback
when multiple nearby nodes’ faults occur. Further study in
learning algorithms, advanced memory technology such as
RRAM or STT-RAM could help improve the SNN design.
Multiple chips system is another approach for future works.
Moreover, adapting the algorithm into spiking CNN and a
better dataset is another future work.

APPENDIX A
GENETIC ALGORITHM FORMULATION

The input/state for our genetic algorithm is:

State = {S(i,j,k)} (6)

where S(i,j,k) is the free/faulty state of the node indexed
((i,j,k)) in the NoC. If S(i,j,k) > 0, the node ((i,j,k)) has S(i,j,k)

free neurons. If S(i,j,k) < 0, the node ((i,j,k)) has |S(i,j,k)|
unmapped neurons. For instance, Fig. 7 (a) with a 3 × 4
NoC has the input (or initial state) of 3 × 4 = 12 elements
as follows:

Stateinit = {−25, 4,−29, 4, 4, 4, 34, 4, 34, 4, 4, 34} (7)

The goal of GA is to convert that state to a final sate
Statefinal with all non-negative elements (no unmapped
neurons). A encoding of GA is as follow:

Solution = {M(i,j,k)→(m,n,l)} (8)

where M(i,j,k)→(m,n,l) is the number of neurons migrated
from node (i,j,k) to node (m,n,l) in the NoC. For instance,
Fig. 7 (b) shows a solution for Fig. 7 (a) with the following
values:

SolutionFig.7(a) =



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, -29, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0



(9)

As can be seen in Eq. 9, the solution is an array of 12×12
for representing the mapping between 12 nodes. There are
two positive values and two negative values representing
the mapping of Fig. 7 (b). The rest of the solutions are zeros
as no more mapping existed. Here, we can calculate the
migration cost by considering the distance between nodes
and the positive value.
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