
Scalable Design Methodology and Online
Algorithm for TSV-Cluster Defects Recovery

in Highly Reliable 3D-NoC Systems

KHANH N. DANG , (Student Member, IEEE), AKRAM BEN AHMED , (Member, IEEE),
YUICHI OKUYAMA , (Member, IEEE), AND ABDERAZEK BEN ABDALLAH , (Senior Member, IEEE)

K.N. Dang, Y. Okuyama, and A. Ben Abdallah are with Adaptive Systems Laboratory, Graduate School of Computer Science and Engineering,
The University of Aizu, Aizu-Wakamatsu Fukushima 965-8580, Japan

A. Ben Ahmed is with the Department of Information and Computer Science, Keio University, Yokohama 223-8522, Japan

CORRESPONDING AUTHOR: K. N. DANG (khanh.n.dang@ieee.org)

ABSTRACT 3D-Network-on-Chips exploit the benefits of Network-on-Chips and 3D-Integrated Circuits
allowing them to be considered as one of the most advanced and auspicious communication methodologies.
On the other hand, the reliability of 3D-NoCs, due to the vulnerability of Through Silicon Vias, remains a
major problem. Most of the existing techniques rely on correcting the TSV defects by using redundancies or
employing routing algorithms. Nevertheless, they are not suitable for TSV-cluster defects as they can either
lead to costly area and power consumption overheads, or they may result in non-minimal routing paths; thus,
posing serious threats to the system reliability and overall performance. In this work, we present a scalable
and low-overhead TSV usage and design method for 3D-NoC systems where the TSVs of a router can be uti-
lized by its neighbors to deal with the cluster open defects. An adaptive online algorithm is also introduced to
assist the proposed system to immediately work around the newly detected defects without using redundan-
cies. The experimental results show the proposal ensure less than 2 percent of the routers being disabled,
even with 50 percent of the TSV clusters defects. The performance evaluations also demonstrate unchanged
performances for real applications under 5 percent of cluster defects.

INDEX TERMS 3D-NoCs, fault-tolerance, reliability, architecture and design, TSV-cluster defects

I. INTRODUCTION

In the past few years, the 3D-Network-on-Chip (3D-NoC)
paradigm [1] is considered as one of the most promising
architectures for IC design. It is a result of the fusion of 3D-
Integrated Circuits (3D-ICs) [2] and the mesh-based Net-
work-on-Chips (NoCs) [3]. In fact, the parallelism and scal-
ability of NoCs can be further enhanced in the third
dimension thanks to the short wire length and low power
consumption of the Through-Silicon Vias (TSVs), that con-
stitute one of the main inter-layer communication mediums.
As a result, the 3D-NoC paradigm is considered to be one of
the most advanced and auspicious architectures.
As depicted in Figure 1, a TSV works as an inter-layer

wire in 3D-NoCs, as well as in 3D-ICs. By creating vias,
thinning the wafer and performing a thermo-compression [4],
TSVs are established and the two wafers can connect through
them. TSVs are usually fabricated regularly into a group or a
cluster, or irregularly in random positions. While TSVs bring

many advantages for 3D-NoCs, one of their major drawbacks
is reliability.
The yield rates of 3D-ICs using TSVs have been consid-

ered as a critical factor due to the imperfection of the
manufacturing process [5]. The TSV defect-rates have been
reported as nearly 0.63 percent [6]. Moreover, 3D-ICs suffer
from the stress issue due to the difference between thermal
expansion coefficients of the implementation materials [7].
The temperature variation between two layers has been
reported to reach up to 10�C [8] which negatively affects
the Time Dependent Dielectric Breakdown and Thermal
Cycling [9]. Not forget to mention that Electromigration [10]
can also be a major concern. As a result, TSVs in 3D-ICs
have become more fault sensitive, not only in the
manufacturing phase; but, also during the operation time.
The TSV defects can be classified into four main types:

Open (or void), Bridge, Stuck-at, and Crosstalk [5], [9], [11].
Open defects occur when TSVs are broken or misaligned,

Received 1 March 2017; revised 9 October 2017; accepted 9 October 2017.
Date of publication 18 October 2017; date of current version 8 September 2020.

Digital Object Identifier 10.1109/TETC.2017.2762407

VOLUME 8, NO. 3, JULY-SEPT. 2020

2168-6750� 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See ht _tps://www.ieee.org/publications/rights/index.html for more information. 577

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0001-6702-3870
https://orcid.org/0000-0002-1253-8620
https://orcid.org/0000-0002-1253-8620
https://orcid.org/0000-0002-1253-8620
https://orcid.org/0000-0002-1253-8620
https://orcid.org/0000-0002-1253-8620
https://orcid.org/0000-0001-8932-6477
https://orcid.org/0000-0001-8932-6477
https://orcid.org/0000-0001-8932-6477
https://orcid.org/0000-0001-8932-6477
https://orcid.org/0000-0001-8932-6477
https://orcid.org/0000-0003-3432-0718
https://orcid.org/0000-0003-3432-0718
https://orcid.org/0000-0003-3432-0718
https://orcid.org/0000-0003-3432-0718
https://orcid.org/0000-0003-3432-0718

and their terminals are electrically disconnected. Bridge
defects manifest when two or more TSVs connect together.
As a result, these TSVs are unable to transmit the different
values. Stuck-at faults short the TSV to ground or to Vdd
which makes the output to always remain at ‘0’ or ‘1’. If the
TSV is partially defected, an extra delay can occur which
may violate the timing requirements [11]. Crosstalk is the
interference inflicted by surrounding TSVs on a victim TSV
which creates unexpected values. This paper mainly focuses
on open TSV defects, and the other types are not addressed.
As explained in details in Section II, existing works pre-

sented so far have dealt with the high fault-rate of TSVs in
different approaches: improving the manufacturing process
to enhance the reliability of TSVs [12]; accounting the poten-
tial defects in the design stage [7]; correcting the defected
TSVs by using supporting circuits [13], [14], redun-
dancy [11], [15], [16], or Error Correction Codes [17]; and
using an alternative channel to avoid the defected TSV chan-
nel (e.g., using fault-tolerant routing [1] in NoCs).
Although these works have impressively enhanced the

reliability of TSV-based systems, there is still an existing
issue in the fault distribution. Most of the first conducted
works addressed the random distributions [16], [18]; how-
ever, the cluster defect distributions [5], [15], [19] are
recently considered as the most realistic ones. To deal with
the cluster TSV defect, most works aim to select a suitable
grouping configuration [19] to distribute TSVs on different
positions [5] or to enhance the redundancy correction
rate [15]. Although these methods can improve the reliability
of the system, adding extra redundancies and complex arbi-
tration modules result in penalties on area cost, wire latency,
and power consumption. Moreover, if the number of defec-
tive TSVs is larger than the number of assigned redundant
ones, the vertical connection will be corrupted. Therefore,
we observe that a better management solution can help to
deal with this issue, especially for 3D-NoCs, where the low
utilization rates of TSVs have been reported [20].
In this paper, we propose a scalable TSV utilization archi-

tecture and methodology to tackle the lack of reliability in
inter-layer links. To reduce the TSV-cluster defects, a router
corrects its defected TSV communication by choosing one of
its four neighbor TSV-clusters located on the same layer. To
avoid timing violation issues, we place the TSVs of two

nearby routers in between them and a TSV-cluster is only
shared between its two neighboring routers. Experimental
results show that the solution can help 3D-NoCs to work
around TSV-cluster defects without the need for redundancy.
Therefore, reliability at reasonable overhead is guaranteed.
Since this work only focuses on TSV fault recovery, detec-
tion is out of scope. Therefore, we assume there is an existing
detection module which helps the system to detect the occur-
rence of TSV-cluster defects.
The paper is organized as follows. Section II presents the

motivations and prior works. In Section III, we describe the
proposed TSV fault-tolerant architecture. The algorithms and
optimizations are explained in Section IV. Section V shows
our evaluations and comparison results. Finally, Section VI
concludes the paper.

II. MOTIVATIONS AND PRIOR WORKS

A. RELIABILITY ISSUES OF TSV-BASED 3D-ICS

Table 1 summarizes the defect-rates of TSV fabrication. The
defect-rate of TSVs is considered highwhich negatively affects
the final yield. In [6], 0.63 percent of the TSVs are reportedly
defected, and the final yield without spares is only 15 percent.
Besides the high defect-rates during the manufacturing stage,
TSVs under operation also face several challenges with stress
and thermal issues, as reported in [7]. As a result, TSVs are one
of the most vulnerable components in 3D-ICs.
One of the matters that is still under investigation is the

TSV failure distribution. In general, there are two main
assumptions for the failure distribution: Random [16], [18]
and Clustering distributions [5], [15], [19]. Random TSV
defect is efficiently dealt by adding redundancies and recov-
ery methods; but, Clustering defects still remain a consider-
able challenge. Moreover, TSV misalignment [16] also may
occur and is classified as a cluster defect. Because of the
stress and thermal issues, TSVs may also be defected after
manufacturing. In [9], the authors presented several Mean
Time To Failure equations of 3D-ICs affected by Time
Dependent Dielectric Breakdown, Thermal Cycling and
Electro-migration where the temperature values play an
important role. Because of the clustering effects on hot-spot
areas in 3D-ICs [4], the obvious result was found to be the
TSV-cluster defect.

B. TSV FAULT TOLERANCE

Numerous works have addressed the fault tolerances and reli-
ability issues in 3D-NoCs. In this paper, we focus on TSV

FIGURE 1. Structure of a conventional 3D network-on-chip

system.

TABLE 1. TSV Defect-rate Summary.

Work TSV
Pitch

Defect
Rate

TSV
Number

Yield w/o
Spare

IBM’05 [21] 0.4 mm 13.9E-6 1 k-10 k 95% 98%
IMEC’06 [22] 10 mm 40.0E-6 10 k 67%
HRI’07 [23] - 9.75E-6 100 k 68%
HRI’09 [24] - 7.95E-6 100 k �90%
SAMSUNG’09 [6] - 0.63% 300 15%

578 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

defect tolerances. The existing works have approached the
TSV fault-tolerance in three layers: Physical layer, Data-link
layer and System layer.
In Physical layer, the improvement of TSV manufacturing

can help to reduce the defect-rate [12]. Designers can opti-
mize the physical layout or use thermal-aware routing and
placement methods to improve the reliability of 3D-ICs [7].
Even when a fabricated TSV has a short defect, a correction
circuit, using a voltage comparator to gain the output voltage
of the TSV, can be employed [13]. To enhance the reliability
of TSVs, [14] proposed a method named Double TSV which
uses two TSVs, instead of one, to maintain the vertical com-
munication. If an open, short-to-substrate or bridge defect
occurs in one TSV, the communication is still performed by
the duplicate one.
In the Data-link layer, the most common method is adding

redundant TSVs to correct the defected ones [11], [15], [16].
The major concern of this method is to efficiently route from
a defected TSV to a spare one. There are four basic solutions:
(a) signal switching [6], (b) single shifting [18], (c) cross-
bar [16] and (d) network routing [15]. Because of the cluster
defect, adding redundancies becomes a costly technique with
a high number of needed spare TSVs (up to 50 percent in
[15], [19]). In [5], the authors propose a mapping method to
reduce the impact of cluster defects. TSVs in the same group
are mapped to a random position with the help of an optimi-
zation process. On the other hand, Zhao et al. [19] analyze
the grouping method to achieve the best recovery. The work
presented in [15] introduces an innovated method for TSV
mapping by creating a network and implementing an algo-
rithm for re-routing the defected TSVs. On the other hand,
Reddy et al. [25] proposed a Time Division Multiplexing
Access for TSVs which can help to correct defects with low
area overheads. Loi et al. [16] proposed a crossbar redun-
dancy structure for 3D-NoCs. A testing mechanism is also
presented to help the system detecting the defected TSVs.
Because TSVs manage the vertical connections in a 3D-
NoC, Error Correction Coding [17] is also a prominent
method for detecting and correcting the defected TSVs; how-
ever, this type of solutions requires extra bits, which signifi-
cantly increases the area cost and power consumption.
In the System layer, which mainly focuses on 3D-NoCs,

fault-tolerant routing algorithms [1], [26] are one of the most
suitable solutions. To reduce the risk of thermal and stress
issues in 3D-NoCs, thermal aware management [27] is also a
promising solution. On the other hand, the majority of works
proposed off-line testing and recovery schemes which are not
suitable for post-manufacturing. The system operation should
stop to be tested and recovered. In [11], the authors presented
an online testing solution. Because the reliability of TSVs is a
critical issue, the need for online testing recovery is primordial.
As we previously mentioned, the cluster defect is predicted

to frequently occur. The most efficient solution for correcting
random defects is grouping and adding redundancies. How-
ever, they are still inefficient for the cluster defect and require
a costly extra area for the redundancies. Therefore, fault-

tolerance for cluster defect is the main interest of this paper.
On the other hand, several works [20] have been reporting
the low utilization of the vertical connections using TSVs in
3D-NoCs. Motivated by the cluster defect issue and the low
utilization of the TSVs in 3D-NoC, we propose in this paper
a low-cost method for TSV fault-tolerance in 3D-NoCs.

III. PROPOSED TSV FAULT TOLERANCE

ARCHITECTURE

To handle the TSV-cluster defects in 3D-NoCs, our solution
is to share TSVs between neighboring routers. Therefore,
when a TSV-cluster fails, its router can borrow a healthy
cluster from one of its neighbors to maintain the connection.
Moreover, we also present several design optimization meth-
ods to improve the reliability of the system (Section IV.D).

A. FAULT ASSUMPTIONS

Before we present the system structure, this section clari-
fies the fault assumptions taken in this proposal. Because
the cluster defect [5], [15], [19] is the primary obstacle to
be dealt in this paper, we assume there are no random
defects. Here, we consider an occurred fault makes the
whole TSVs in the cluster defected. For those who might
be concerned about random defects, using redundancy [6],
[14], [16], [18] can be easily integrated into our TSV-clus-
ter design. For controlling signals using TSVs, they are
considered as a part of the TSV cluster instead of separated
TSVs, which are better dealt as random defects (e.g., [11]
uses Double TSV [14]). The detection process, which can
be handled in an online fashion using thermal-aware test-
ing [28] or in an offline approach using a Built-In-Self-Test
module [29], is assumed to be existing and connected to
the fault-tolerance module. To synchronize the configura-
tion, the existing NoC infrastructure is used instead of add-
ing TSVs. Therefore, no redundancy is required in the
proposed architecture.

B. SYSTEM STRUCTURE

A simplified layout example of 3� 3� 3 3D-NoC system
using the proposed TSV usage is depicted in Figure 2. For
each vertical connection, a router needs a set of TSVs.
Instead of grouping all TSVs together, as shown in Figure 1,

FIGURE 2. Simplified block diagram illustrating the proposed

system structure.

VOLUME 8, NO. 3, JULY-SEPT. 2020 579

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

they are divided into four groups. As a result, a router owns
four TSV-clusters and has a maximum of four nearby TSV-
clusters. If a TSV-cluster of a router defects, the router can
choose one of its four neighboring clusters as a replacement
without the need for redundancy. To satisfy the timing con-
straints, the router chooses the closest TSV-cluster among its
neighbor clusters. Taking into account further TSV-clusters
is not considered in order to avoid long wires that are needed
to establish the connection. By structuring the TSVs into
four clusters for each router, we can maintain the scalability
of 3D-NoCs and avoid long wire delay.
Figure 3 shows the placement and connection of the TSV

sharing area between R(1,1,1) and R(1,0,1). Because each
router has two ports (up and down) and two directions (in
and out), the number of TSV clusters is eight. Each TSV
cluster handles a quarter of the vertical connection. By using
tri-state gates, the system can control which router has access
to the TSV clusters.

C. SHARING CIRCUIT DESIGN

To borrow a TSV-cluster from a neighbor, the router needs
supporting modules. Figure 4(a) shows the wrapper of a 3D-
Router with the additional supporting modules that perform
the sharing algorithm, later explained in Section IV. There are
two identical sharing modules (S-UP and S-DOWN) for the
two vertical up and down connections and each connection has
two configuration registers (CR) for the input and output ports.
As previously depicted in Figure 2, R(1,1,1) shares the TSV-
clusters with its four neighbors: R(1,1,0), R(1,1,2), R(1,0,1),
and R(1,2,1). Figure 4(b) shows the sharing circuit for one
TSV-cluster. The input of this TSV-cluster is shared between
R(2,1,0) and R(2,1,1) on layer2. The output of this TSV-cluster
is shared between R(1,1,1) and R(1,1,0) on layer1. In the case
where this TSV-cluster is defected, or borrowed, the data can
be sent by using one of the four neighboring clusters.
Based on the value of the 6-bit CR, the input, and output

ports can select the data from: (1) its original TSV-cluster (first
bit), (2) one of its four neighboring clusters (second bit) or (3)
being disconnected (a replacement cluster is indicated in one
of last four bits). As shown in Figure 4(b), the least significant
bit decides whether R(2,1,1) can access its own TSV-cluster.
The second least significant bit allows the neighboring router
(R(2,1,0)) takes the access to this cluster. The last one-hot 4-
bit of CR helps R(2,1,1) accessing one of its four nearby clus-
ters. At the receiving router (R(1,1,1)), a similar CR with a
synchronized value is used to establish the connection.
Because the CR only manages the connectivity, its value

has to be set carefully to avoid the possible conflict of TSV-
cluster usage and to optimize the performance. To this aim,
an adaptive sharing algorithm is needed.

IV. ADAPTIVE ONLINE SHARING ALGORITHM

In the previous section, we presented how a router can use its
nearby TSV-clusters to maintain the connection and the

FIGURE 3. TSV sharing area placement and connectivity between

two neighboring routers.

FIGURE 4. The TSV fault-tolerance architecture: (a) Router wrapper; (b) Connection between two layers. Red rectangles represent TSVs.

S-UP and S-DOWN are the sharing arbitrators which manage the proposed mechanism. CR stands for configuration register and W is

the flit width.

580 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

operation on a layer. The CR values need to be configured to
deal with the TSV defects. The simplest way for this process
is to perform it offline, and the configuration fuses the TSV
group [15]. However, fixing the connections has two main
drawbacks: (1) recovering a newly defected TSV needs to
halt the system and re-perform the mapping, and (2) each
application has a different distribution in the vertical connec-
tions and variations depending on the running task which is
not optimized by offline mappings. Consequently, we aim to
perform the mapping online so that the system can react
immediately to the newly defected TSV-clusters and can
consider the connectivity of the 3D-NoC system. Thus, this
section provides an online algorithm for sharing TSVs which
can be implemented into the system.

Algorithm 1. TSV Sharing Algorithm

// Weight values of the current router and its N neighbors
Input:Weightcurrent;Weightneighbor½1 : N�
// Status of current and neighboring TSV-clusters
Input: TSV Statuscurrent½1 : N�, TSV Statusneighbor½1 : N�
// Request to link TSV-clusters to neighbors
Output: RQ link½1 : N�
// Current router status
Output: Router Status
1 foreach TSV Statuscurrent½i� do
2 if TSV Statuscurrent½i� ¼¼ “NORMAL” then

// It is a healthy TSV-cluster
3 RQ link½i� ¼ “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor½c� < Weightcurrent
7 Weightneighbor½c� isminimal
8 and TSV Statusneighbor½c� ¼¼ “NORMAL”;
9 if(c = = NULL) then
10 return RQ link½i� ¼ “NULL”
11 return Router Status ¼ “DISABLE”
12 else
13 return RQ link½i� ¼ c
14 return Router Status ¼ “NORMAL”

Algorithm 1 shows the proposed algorithm for our sharing
mechanism. Each router is assigned a weight for each of the
vertical connections. This weight decides its priority in shar-
ing/borrowing. The weights can be assigned at the design
process or can be updated by a dedicated module. Changing
the weights of routers can create different mappings. At the
initial stage, all routers in the network exchange their weights
and their TSV-clusters status with their neighbors. In the next
step, the algorithm performs the mapping process. If a TSV-
cluster is defected, its corresponding router should find from
its neighbors a possible candidate by relying on the following
conditions:

� The weight of the candidate has to be smaller than the
current router.

� The candidate TSV-cluster has to be healthy and not
borrowed.

� The weight of the final candidate is the least among all
the possible candidates.

At the end of the algorithm, the router finds out a possible
candidate for borrowing. If no candidates were found, the
router’s vertical connection is disabled. If there is a candi-
date, the router sends a request to the borrowing router to use
its TSV-cluster as a replacement for the defected one. The
routers having borrowed TSV-clusters also look for replace-
ments among their neighbors. By using a weighted system,
the disabled TSV-clusters focus on smaller weight routers.
Figure 5 shows an example of how the sharing algorithm

works on a 4� 4 layer with ten defected TSV-clusters. Ini-
tially, the routers in the center, which are predefined to have
higher TSV utilization rates, have higher weights than those at
the edges of the network, as depicted in Figure 5(a). The shar-
ing algorithm selects the best candidates, shown in Figure 5
(b), by following the rules previously explained in Algo-
rithm 1. Figure 5(c) shows that this selection must be further
refined by disabling the router having less than four functional
(or not borrowed) TSV-clusters and canceling their borrow-
ing. Moreover, we also observe the case in Figure 5(d) where
two routers R(1,3,2) and R(1,3,3) are disabled; but, R(1,3,3)
can borrow a TSV-cluster from R(1,3,2) to obtain full four
TSV clusters. However, the borrowing is prohibited due to the
higher weight of router R(1,3,2). In order to optimize this case,
we use a technique namedWeight adjustment in Section IV.B.
As shown in the above example, the chains of sharing lead

to disabling the routers on the edges. Instead of having ten
defected TSV-clusters, the algorithm only disables six
routers having the lowest weights (40 percent of reduction).
Consequently, maintaining the connections of the center
routers, which have higher weights and utilize more vertical
communications, can reduce the impact of TSV defects
regarding overall performance.

A. WEIGHT GENERATION

One of the most important parameters in the sharing algorithm
is the weight values of the routers. The weights help the algo-
rithm deciding what router is suitable to be borrowed. As
shown in Figure 5, the routers having smaller weights are dis-
abled after the chains of sharing are established.
Because the weights of routers play important roles in the

sharing process, they need to be optimized to obtain optimal
system performance and defect-resiliency. One possible solu-
tion is using a statistic-based solution where the priority of
the vertical connections depends on the communication traf-
fic [30]. In other words, the vertical connections having more
data transmissions are assigned higher weights; otherwise,
smaller weights are assigned.
Because the application mapping is out of the scope of this

paper, we adopt a simple method where the routers in the mid-
dle of the layer have the highest weights. This priority rule is
based on the observations made on network traffic during our
evaluations where the middle routers usually have to handle
more data than the ones located on the layer edges. Moreover,
the middle routers have more diversity in the routing path

VOLUME 8, NO. 3, JULY-SEPT. 2020 581

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

which can enhance the ability to route packets inside the net-
work. This assignment also helps to shift the disablement of
vertical connections and the serialization processes to be more
likely executed on the edges of the network. In such locations,
the proposed algorithm can avoid the congestion by serializ-
ing or using virtual TSVs (Section IV.C). The router’s weights
are decreased and become the lowest at the edges of the layer.
Equation (1) shows the used weight value assignment.

Weightrouterðx; yÞ
¼ minðx; cols� x� 1Þ þminðy; rows� y� 1Þ þ 1:

(1)

Where cols and rows are the number of columns and rows
within a layer, respectively.
The output of this weight assignment on a layer of 4� 4

can be seen in Figure 5 where, for instance, the weights of
routers R(1,0,0), R(1,1,0), and R(1,1,1) are 1, 2, and 3,
respectively.

B. WEIGHT ADJUSTMENT

After applying the sharing mechanism, the disabled TSV-
clusters are shifted to the regions which consist of low
weighted routers. Figure 6(a) shows a case of three routers

FIGURE 5. An example of the sharing algorithm on a 4� 4 layer: (a) Initial state with ten defected TSV-clusters; (b) Best candidates

selection; (c) Borrowing chain creating and selection refining. (d) Final result with six disabled routers.

582 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

(R(1,0,0), R(1,0,1) and R(1,0,2)) which are disabled after the
sharing process. However, there still are chances of optimiz-
ing these routers to obtain a better mapping. In fact, R(1,0,2)
can borrow a TSV-cluster from R(1,0,1). Therefore, the num-
ber of TSV-clusters of R(1,0,2) can be maintained to four.
To perform this optimization, the disabled router, after the

sharing process by Algorithm 1, is brought to a new process.
First, the router counts the number of possible TSV-clusters
that it can borrow. Since three routers (R(1,0,0), R(1,0,1) and
R(1,0,2)) are disabled, their TSV-clusters are free to be taken.
At the end of this stage, R(1,0,0), R(1,0,1) and R(1,0,2) have
1, 3, and 1 borrowed/defected TSV-clusters and are able to
take 0, 1 and 1 TSV-cluster from their disabled neighbors,
respectively. At the second stage, the router checks whether it
can take the disabled router’s cluster to obtain a full connec-
tion. Because R(1,0,2) has one borrowed cluster and is able to
borrow another one from R(1,0,1), its weight is kept. The
weights of other routers (R(1,0,1) and R(1,0,0)) are reduced to
zero. As a result, R(1,0,2) can borrow a TSV cluster from R
(1,0,1) despite the fact that it originally has a lower weight.
The result is shown in Figure 6(b) where R(1,0,2) vertical con-
nection is re-enabled. If the system wants to restart the sharing
mechanism, the weights of all routers need to be reinitialized.
Algorithm 2 shows the weight adjustment algorithm. It

first calculates the total number of healthy TSVs that are pos-
sible for use. If the total number of healthy TSV-clusters is
larger or equal than four, which is enough to maintain the
vertical connection, the neighboring routers’ weights are
reduced. After that, the TSV sharing algorithm (Algorithm 1)
is performed, where the router now can take TSV-clusters
from the routers having higher weights, but is disabled.

C. DESIGN OPTIMIZATION

Without adding redundancy, borrowing TSV-clusters to
work around the defected ones makes some routers to have
less than four accessible clusters (e.g., R(1,0,0) in Figure 5
(d)). As a result, the communications of these routers have
been disabled. To tackle this problem, the naive solution is
using a fault-tolerant routing algorithm to re-route the pack-
ets to a neighboring router. As we mentioned in Section II,
this solution may lead to non-minimal routing and conges-
tion in the network. Therefore, we propose Virtual TSV to
help these routers maintaining the connection without using
any fault-tolerant routing algorithm. In the case where the
Virtual TSV is unable to be performed, we also implement

the Serialization technique which helps the vertical connec-
tion establishing only one or two TSV-clusters.

Algorithm 2.Weight Adjustment Algorithm

// Status of current and neighboring TSV-clusters
Input: TSV Statuscurrent½1 : N�, TSV Statusneighbor½1 : N�
// Current and neighboring routers status
Input: Curr Status;Neighbor Status½1 : N�
// Request to link TSV-clusters to neighbors
Output:Weightcurrent
1 CurrTSVs ¼ 0;
2 foreach TSV Statuscurrent½i� do
3 if TSV Statuscurrent½i� ¼¼ “NORMAL ” then
4 CurrTSVs þþ;
5 NeighborTSVs ¼ 0;
6 foreach TSV Statusneighbor½i� do
7 if TSV Statusneighbor½i� ¼¼ “NORMAL ” and

Neighbor Status½i� ¼¼ “DISABLED ” then
8 NeighborTSVs þþ;
// If there is at least 4 cluster, run the sharing algorithm

9 if NeighborTSVs þ CurrTSVs >¼ 4 then
10 call TSV_Sharing()
11 else

// Reduce the current weight to allow the neighbors
borrow

12 Weightcurrent ¼ 0;

1) VIRTUAL TSV

When a router is not granted the access to four TSV-clusters, it
is disabled. However, if the number of nearby TSVs is larger
or equal than four they can be utilized to establish a connec-
tion. A possible connection, which requires four TSV-clus-
ters, may need clusters belonging to the neighboring routers.
If these routers do not use these clusters, the disabled router
can borrow them for a short period to establish communica-
tion. The process of Virtual TSV can be seen in Algorithm 3.
Figure 7(a) shows an example of how Virtual TSV works

where R(1,0,1) has a defective cluster (T(N)) and borrows a
cluster from disabled R(1,0,0). When R(1,0,0) needs to estab-
lish an inter-layer communication, it requests to return the
borrowed cluster T(E). When the packet is completely trans-
mitted, the borrowing cluster is taken back by R(1,0,1) again.

FIGURE 6. Example of the weight adjustment performed to disable

routers’ sharing: (a) Beforeweight update; (b) After weight update.

FIGURE 7. Examples of virtual TSV: (a) Return the TSV-cluster to

the original router; (b) borrow a cluster from ahigherweight router.

VOLUME 8, NO. 3, JULY-SEPT. 2020 583

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

On the other hand, Figure 7(b) shows the case where a dis-
abled router R(1,0,0) temporarily borrows a TSV-cluster
from a higher weight router R(1,0,1) to establish an inter-
layer connection. For selecting a suitable candidate to tempo-
rarily borrow, Algorithm 1 is utilized.

Algorithm 3. Virtual TSV

// Status of current and neighboring TSV-clusters
Input: TSV Statuscurrent½1 : N�, TSV Statusneighbor½1 : N�
// Allowing signals from the neighbors
Input: Allow2Borrow½1 : N�, Allow2Return½1 : N�
// Current and neighboring routers status
Input: Curr Status;Neighbor Status½1 : N�
// Request to link TSV-clusters to neighbors
Output: Req2Borrow;Req2Return, RunMode
1 CurrTSVs ¼ number of healthy and owning TSV clusters;
2 BorrowedTSVs ¼ number of borrowed TSV clusters;
3 if CurrTSVs þ BorrowedTSVs ¼¼ 4 then

// Request to return the borrowed TSV clusters
4 Req2Return ¼ True;
5 else

// Perform the sharing algorithm to find suitable clusters
6 find (4� CurrTSVs þ BorrowedTSVs) TSV clusters.

// Request to return the borrowed TSV clusters
7 Req2Return ¼ True;

// Request to borrow new TSV clusters
8 Req2Borrow ¼ True;
9 AllowTSVs ¼ number of allowed to return/borrow TSV

clusters;
10 If CurrTSVs þ AllowTSVs ¼¼ 4 then
11 RunMode = “VIRTUAL”
12 else
13 Req2Return ¼ False;
14 Req2Borrow ¼ False;
15 if CurrTSVs � 1 then
16 RunMode = “SERIALIZATION”
17 else
18 RunMode = “FAULT-TOLERANT ROUTING”

Because there is a case where R(1,0,1), which has the
higher priority, occupies the TSV for a long transmission
time, R(1,0,0) is unable to access the TSV to establish a con-
nection. Moreover, at a high defect-rates, R(1,0,0) may not
find any suitable candidate for Virtual TSV. In order to
address these cases, we adopt the Serialization [31] tech-
nique to maintain the connection.
Algorithm 3 shows how a router can request clusters for

Virtual TSV. It first checks its original TSV clusters. If it has
clusters lending to its neighbors, it requests to take them
back. If the total number of available clusters is less than
four, it must find suitable nearby clusters to have the neces-
sary four clusters. This is achieved by using a similar process
to the sharing algorithm (Algorithm 1). After the returning
and borrowing requests are granted, the router can transmit
its data. If the router fails to have four clusters, it enables
Serialization mode (if it has a least one current cluster) or use
fault-tolerant routing (if it has no cluster).

For a TSV-owning router receiving a “borrow-request” sig-
nal, it first checks whether it can temporarily let the requesting
router use its clusters. If the clusters are not used, it sends a
“borrow-grant” signal to the requesting router. At the same
time, the TSV-owner router stops sending any grant signals to
its routing units to prevent them from using the borrowed clus-
ters. As a result, the TSV-owner router is unable to route its
packets in the vertical connection, and the requesting router
can use the clusters. If the requesting router succeeds to find
the necessary amount of four clusters, it transmits data and
returns the borrowed TSV clusters back to their owners once
the communication is over. However, if the requesting router
fails to find the necessary four clusters, it turns off the “bor-
row-request” signal which cancels the borrowing process and
returns the borrowed clusters to their owners.

2) SERIALIZATION TECHNIQUE

Although the Virtual TSV can help the disabled router main-
taining its vertical connection, there are still two situations
where Virtual TSV cannot be performed: (a) there are less
than four healthy TSV-clusters, (b) the candidate TSV-clus-
ter is occupied continuously by a higher priority router. In
order to solve these cases, we use the Serialization tech-
nique [31] to keep the connectivity. If a cluster in this router
is defected, Serialization is utilized to maintain the connec-
tion. Besides the serialization technique, Time Division Mul-
tiplexing Access for TSVs [25] is also promising solution to
maintain the connection with a limited number of TSVs.
Since the Serialization technique demands extra buffer slots
and multiple cycles to handle a single flit, it may result in a
considerable area cost overhead and performance degrada-
tion. However, the Serialization technique ensures the avail-
ability of a connection in high defect rates. Depending on the
reliability requirements, designers can switch between the
Serialization and fault-tolerant routing in the design phase or
during the system operation.
For the serialization, the router needs at least one TSV-

cluster to maintain its connection. If there is one available
cluster, the 1:4 serialization is used, if there are two avail-
able clusters, the 1:2 serialization is established. The up and
down directions’ output of the crossbar is stored in a regis-
ter, and the serialization module transmits flits over the
remained clusters. Figure 8 shows the vertical interface
between two routers using 1:4 serialization. Two serial
counters are used to synchronize the order of data. A flit is
divided into four segments and transmitted in four clock
cycles. For 1:2 serialization, the similar principle is used for
two TSV clusters instead of one in 1:4.

D. PARTIALLY CONNECTED 3D-NOCS

Besides the uniformTSV distributed NoCs, shown in Figure 2,
there is a case where TSVs are not found in every router which
creates a partially connected 3D-NoC. Such systems are
sometimes preferred for custom 3D-NoC designs, due to their
low area cost and power overhead. Therefore, the efficiency
of the proposed methodology with such 3D-NoC systems

584 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

should be clarified. In partially connected 3D-NoCs, the TSV
placing process should favor the case where routers with
TSVs are placed close to each other to maintain the timing
constraints. By placing these routers in a region, the sharing
algorithm, presented in Section IV, can be performed in the
same way as fully-connected networks without any modifica-
tions. The TSV clusters status of the router without TSVs is
considered as defected and its corresponded vertical connec-
tion is disabled. In the case where routers with TSVs are
placed distantly, the Serialization technique explained in
Section 4.3.2, or a fault-tolerant routing algorithm can be uti-
lized to maintain the connectivity of the standalone routers.

V. EVALUATION RESULTS

A. EVALUATION METHODOLOGY

The proposed system was designed in Verilog-HDL, synthe-
sized and prototyped with commercial CAD tools. We use

NANGATE 45nm library [32] and NCSU FreePDK TSV
[33]. The TSV size, pitch and Keep-out Zone are 4:06 mm �
4:06 mm, 10 mm, and 15 mm, respectively. The proposed
technique is implemented into a 3DMesh NoC system having
four as the input buffers depth and 44-bit flit size. The flow-
control is Stall-Go and the forwarding mechanism is Worm-
hole. First, we evalute the defect-rate by inserting faults
(defects) into TSV-clusters and assess the reliability of the
proposed 3D-NoC system. Second, we use both synthetic and
realistic traffic patterns as benchmarks to study the perfor-
mance of the proposed system in comparison to the baseline
model [34]. Third, we evaluate the hardware complexity of a
single 3D router and compare our system with other proposed
approaches [15], [19].

B. DEFECT-RATE EVALUATION

In this section, we demonstrate the efficiency of the proposed
technique under different defect-rates, as shown in Figure 9.
To prove the scalability of our proposal, we evaluated several
layer sizes: 2� 2, 4� 4, 8� 8, 16� 16, 32� 32, and
64� 64. TSVs are grouped into clusters, as presented in
Section 3 and the defect-rates vary from 5 to 50 percent. We
perform the Monte-Carlo simulation for the proposed algo-
rithms with 100,000 different samples and calculate the aver-
age results. We measure the ratio of four types routers in the
layer: Normal (healthy or corrected), Virtual (router with vir-
tual TSV), Serial (router using serialization) and Disabled
(routers with disabled vertical connections). We also compare
the obtained results with “Normal w/o FT” (Normal without
Fault-Tolerance), where no fault-tolerant methods are used
and routers with defected vertical connections are disabled.
As shown in Figure 9, the system mostly operates without

disabling any vertical connections with fault-rates under
50 percent. Thanks to the Virtual TSV and Serialization

FIGURE 8. Circuit of 1:4 Serialization.

FIGURE 9. Defect-rate evaluation: (a) Layer size: 2� 2 (4 routers, 16 TSV clusters); (b) Layer size: 4� 4 (16 routers, 64 TSV clusters);

(c) Layer size: 8� 8 (64 routers, 256 TSV clusters); (d) Layer size: 16� 16 (256 routers, 1,024 TSV clusters); (e) Layer size: 32� 32 (1,024

routers, 4,096 TSV clusters); (f) Layer size: 64� 64 (4,096 routers, 16,384 TSV clusters).

VOLUME 8, NO. 3, JULY-SEPT. 2020 585

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

techniques, the routers having less than four clusters are still
able to work. Even at less than 20 percent of defect-rate, there
are less than 10 percent of serialization connections in all sim-
ulated layer sizes. With 50 percent of defect-rate and a 2� 2
layer size, the disabled router rate is negligible with about
1.565 percent. This can be easily dealt using a light-weight
fault-tolerant routing algorithm. When the layer size increases
to be larger than 8� 8, the number of disabled connections is
mostly insubstantial. At 50 percent defect-rate, the disabled
router ratios are nearly 0.63, 0.50, 0.44 and 0.42 percent with
8� 8, 16� 16, 32� 32, and 64� 64 layer sizes, respec-
tively. However, these defect-rates are extremely high; thus,
our proposed mechanism can be considered as highly reliable.
In comparison to the system without fault-tolerant methods,

there are significant improvements concerning healthy con-
nections, especially at large layer sizes. In Figure 9, the per-
centage of routers having four healthy TSV-clusters is
represented by the “Normal w/o FT” curve. At 50 percent
defect-rate, the average ratio of normal routers has been
improved by 29.83, 186.26, 280.76, 324.42, 346.74, and
257.79 percent for 2� 2, 4� 4, 8� 8, 16� 16, 32� 32, and
64� 64 layer sizes, respectively. The improvements are
lesser with the small layer sizes such as 2� 2 or 4� 4. How-
ever, thanks to the Virtual TSV and Serialization, the workable
connection rates have nearly reached 100 percent. As shown
in Figure 9, the Serialization technique is utilized under 10
percent in the low defect rate cases (� 20 percent). Therefore,
if the defect rates are expectedly low, designers can remove
the Serialization technique from the proposed approach in
order to save the overall area cost and power consumption
without any significant impact on the system reliability.
In summary, this evaluation has shown a significant

improvement in terms of reliability provided by our proposed
mechanism. Thanks to the efficiency of the proposed architec-
ture and algorithms, the system can mostly maintain all verti-
cal connections, even at an extremely high defect-rate (50
percent). Although the defect rates are extremely high in com-
parison to the other works [15], [19] (maximum 1 percent),
this evaluation aims to show the limitations of the proposed
work when employing a significant amount of TSV defects.
This evaluation also shows the proposed mechanism ability to
remain efficiently scalable. The proposal can be applied from
a small layer size (e.g., 2� 2) to a larger one (e.g., 64� 64).
The evaluation is also performed with a solid number of tests
(100,000) which powerfully demonstrates the efficiency of
the proposed approach. There were some cases where some
routers were disabled; however, they can be recovered by sim-
ple and light-weight fault-tolerant routing algorithms.

C. PERFORMANCE EVALUATION

The previous section has proved the reliability of the proposed
solution. In this section, we evaluate the system performance
under TSV-cluster defects. As we previously mentioned,
works in [20] have demonstrated the low utilization rates of
the vertical connections; nevertheless, the performance degra-
dation on highly stressed networks has to be investigated. To

evaluate the performance of the proposed system and keep
fair comparisons to the baseline, we adopted both synthetic
and realistic traffic patterns as benchmarks. We selected
Transpose, Uniform, Matrix-multiplication, and Hotspot 10
percent [35] as the synthetic benchmarks. For realistic bench-
marks, we chose H.264 video encoding system, Video Object
Plane Decoder (VOPD), Picture In Picture (PIP) and Multiple
Window Display (MWD) [35]. The configurations of these
benchmarks are shown in Table 2. The packets are injected
until the saturation point of the network is reached. In order to
keep a fair comparison, only TSV defects are injected. This
means that the other fault-tolerant mechanisms [35] are dis-
abled to not affect the performance.

1) LATENCY EVALUATION

In this experiment, we evaluate the performance of the pro-
posed architecture in terms of Average packet Latency
(APL) over various benchmark programs and defect-rates.
The simulation results are shown in Figure 10(a). From this
graph, we notice that with a 0 percent of defect-rate, the
fault-tolerant system has similar performance in comparison
to the baseline system.
When we increase the defect-rates in the proposed system,

it has demonstrated additional impacts on APL. At a 1 percent
fault-rate using Matrix, Uniform, Transpose, and Hotspot 10
percent benchmarks, the system increases the APL by 83.24,
64.46, 11.30 and 66.55 percent, respectively. These high
impacts are due to the occurrences of bottleneck inside the
network. Because all vertical connections are utilized, Virtual
TSV has caused congestion by sharing the TSV between two
routers. The serialization is already a bottleneck technique.
These bottlenecks effects are even higher at a 30 percent of
defect-rate where the APL can be over three times that of the 0
percent case in the synthetic benchmarks.
With H.264, PIP, MWD and VOPD benchmarks, the APL

incrementations is significantly reduced due to the low utiliza-
tion rates of TSVs. We can observe the same performances of
VOPD benchmark from a 1 percent to a 30 percent defect-
rates. With the PIP benchmark, the system under 1 percent
defect-rate has similar performance to 0 percent thanks to the
optimization process which disables the unused clusters. With
the MWD and H.264 benchmarks, the impact on APL is grad-
ually increased when increasing the defect-rate. Even at a 30
percent of defect-rate, the APL values of MWD and H.264 are

TABLE 2. Simulation configurations.

Benchmark Matrix Transpose Uniform Hotspot

Network size (x,y,x) ð6; 6; 3Þ ð4; 4; 4Þ ð4; 4; 4Þ ð4; 4; 4Þ
#Packets 1,080 640 8,192 8,192
Packet’s Size 10 10 101 10

Benchmark H.264 VOPD MWD PIP

Network size (x,y,x) ð3; 3; 3Þ ð3; 2; 2Þ ð2; 2; 3Þ ð2; 2; 2Þ
#Packets 8,400 3,494 1,120 512
Packet’s Size 10 10 10 10

1For the hot spot nodes, there are additional 10 percent of flits.

586 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

increased by 129.91 and 60.04 percent, respectively. Because
there is no optimized routing technique for these benchmarks,
the bottleneck effect is expected to happen.

2) THROUGHPUT EVALUATION

Figure 10(b) depicts the throughput evaluation with different
benchmarks. At 0 percent defect-rate, the proposed system’s
throughput is similar to that of the baseline. When defects
are injected into the system, we can observe some degrada-
tion in throughput caused by the bottleneck effects on the
system. Similar to APL, the throughput degradation on real-
istic traffic benchmarks (VOPD, H.264, MWD, and PIP) is
significantly better than the synthetic ones. The system at a
20 percent defect-rate provides a decreased throughput by
71.17, 64.36, 67.44 and 64.37 percent for Transpose, Uni-
form, Matrix, and Hotspot 10 percent, respectively. At the
same defect-rate, VOPD, MWD, PIP and H.264 have 46.03,
50.04 28.17, and 19.79 percent of throughput degradation.
This lower impact is caused by the low utilization of vertical
connection rate and the optimization process. The throughput
values of realistic benchmarks are naturally smaller than the
synthetic ones because of the specific tasks order of execu-
tion that was observed in the task graphs [36], [37].
Although there are considerable degradations in the

throughput evaluation, the system still maintains over 0.1
flit/node/cycle in the highly stressed benchmarks, even at
extremely high defect-rates.

3) PERFORMANCE COMPARISON

Table 3 shows the comparison results of our work with two
other inter-layer fault-tolerant communication methods.
The selected two works were presented in [38] and [37] which
target fault-tolerant customized 3D-NoCs and hybrid-3D-NoC,

respectively. Both two works support a maximum of one
faulty vertical link. Since the benchmarks’ configurations
are not provided in [38], we used normalized values repre-
senting the performance ratio of the fault-tolerant works
over the baseline ones.
As shown in Table 3, our work provides better perfor-

mance when compared to the customized 3D-NoC [38]. At
the absence of defected links, the hybrid-3D-NoC [37] shows
improvements in terms of APL thanks to the efficiency of
their routing algorithms. However, it shows some degrada-
tion when a single defect is detected. On the other hand, our
work maintains the similar APL and throughput values in
the absence and presence of a single faulty TSV where the
degradation is less than 1 percent. Moreover, the proposed
technique even provides high reliability which allows
the system works with multiple defected TSV clusters, as

FIGURE 10. Evaluation result: (a) Average packet latency; (b) Throughput.

TABLE 3. Normalized average packet latency (APL) and through-

put (TP) comparison.

Benchmark #Defect [38] [37] This work

Link APL TP APL1 APL2 APL TP

H.264 0 N/A 0.92 0.83 1 1
14 N/A 1.030 0.89 1.008 0.992

PIP 0 1.351 1.012 N/A 1 1
MWD 0 1.988 0.998 N/A 1 1
VOPD 0 2.630 0.900 N/A 1 1

Average3 1 2.536 0.338 1.030 0.89 1 1

1Routing algorithm: AdaptiveZ.
2Routing algorithm: AdaptiveXYZ.
3For [38], we used their value for seven benchmarks, with three layers con-
figuration.
4In order to compare with [37], this work is inserted defect TSV clusters to
create a defected all layers link.

VOLUME 8, NO. 3, JULY-SEPT. 2020 587

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

shown in Figure 10. The customized 3D-NoC suffers from a
significant performance degradation due to the lack of rout-
ing paths and frequent occurrence of bottlenecks which
increase the APL by nearly 2.5 times and reduce the overall
throughput by nearly three times. In summary, our proposed
technique provides the similar performance as the baseline
one while providing high resiliency against TSV defects.

D. ROUTER HARDWARE COMPLEXITY

Table 4 illustrates the hardware complexity breakdown of
the proposed router in terms of area, power (static,
dynamic, and total), and speed. In comparison to the router
in which we implement the proposed techniques, the area
and power consumption have increased by 30.42 and 18.66
percent, respectively. The maximum speed has also slightly
decreased by 12.37 percent. In comparison to the baseline
model, the proposed system almost doubles the area cost and
power consumption while decreasing the maximum fre-
quency by about 50 percent. However, the TSV sharing and
Serialization modules incur reasonable area and power con-
sumption overheads which are 47.99 and 38.89 percent in
comparison to the baseline router, respectively. Here, the
TSV Sharing module handles the sharing algorithm and the
Virtual TSV process While the Serialization module helps the
router communicating in Serialization mode. Notably, the
Serialization module, which occupies 8.54 and 8.68 percent
of the total area cost and power consumption, respectively,
can be removed from the architecture. As we previously

discussed, the need of serialization is usually necessary for
high defect rates.
The layout of a layer is shown in Figure 11 where the shar-

ing TSV areas are depicted by the red boxes. As shown in
Section III.B, a TSV sharing area consists of eight clusters.
For each port, R(1,1,1) can access T(E) of R(1,1,0) and R
(1,1,0) can access T(W) of R(1,1,1). By placing the shared
cluster areas between two routers, we can ensure a small
extra wire delay for rerouting.

E. COMPARISON

In order to understand the efficiency of the proposed
approach, we compare it with existing solutions for cluster
TSV defect, as shown in Table 5. Here, we analyze our pro-
posal with a network size of 4� 4� 4. Because the router
and its TSV clusters structure are identical, similar results
can be obtained with the others network sizes. TSV Group-
ing [19] optimized the configuration of redundancy to deal
with TSV-cluster defects. TSV Network [15] established
TSVs into a network which allows routing from defected
TSVs to redundant ones. We select the best results on these
two works [15], [19] for the comparison. From this table, we
can see that the average area of our proposal is 151:47 mm2

per TSV and, for a TSV size of 10 mm� 10 mm, the area
overhead is about 51.47 percent. The TSV Network [15] has

TABLE 4. Hardware Complexity Breakdown of a Single Router.

Model Area
(mm2)

Power
(mW)

Speed
(Mhz)

Static Dynamic Total

Baseline router [34] 18,873 5.1229 0.9429 6.0658 925.28

Proposal

Router 29,780 10.017 2.2574 12.3144 613.50
Serialization 3,318 0.9877 0.2807 1.2684 -
TSV Sharing 5,740 0.7863 0.2892 1.0300 -

Total 38,838 11.7910 2.8273 14.6128 537.63

FIGURE 11. Single layer layout illustrating the TSV sharing areas

(red boxes). The layout size is 865 mm� 865 mm.

TABLE 5. Comparison results between the proposed approach and the existing works.

Model TSV Network [15] TSV Grouping [19] This work

Technology 65 nm N/A 45 nm
#TSV 1000 6000 8448

Configuration 4:2 8:2 4� 4 : 8 8� 8 : 16 16� 16 : 32 4:4 8:4 20:5 11 � 4 � 4:0
#Spare TSV 512 256 512 256 128 6000 3000 1500 0
45 nm Arbiter Area (mm2) 372 2 744 2 1,116 2 1,116 2 1,116 2 11,160 1 11,1601 12,5551 434,7843

Average Area/TSV (mm2) 151.572 126.244 152.316 126.716 128.03 113.916 151.86 127.09 151.47

Reliability 100% 99% 100% 100% 100% 100% 100% 98.11%

Fault Assumption (dTSV ¼ 0:01%, a ¼ 2)4 (dTSV ¼ 1%;a ¼ 2)4 (dc ¼ 1%)4 (dc ¼ 50%)4

1The authors use 2:1 multiplexers [19]. For comparison, we use the area cost of multiplexer from Nangate 45nm [32] (MUX2_X1: 0:186 mm2).
2The authors use 1-to-3 multiplexers [15] which consists of two MUX2_X1 multiplexers (2� 0:186 mm2 [32]).
3For fair comparisons, our arbiter only consists of the TSV sharing and serialization modules, as shown in Table 4.
4dTSV : TSV defect-rate. a: parameter of Poisson distribution [15], [19]. dc: TSV cluster defect rate.

588 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

a similar value for 4:2 configuration (4 original TSVs and 2
redundant TSVs). With 8:4 configuration, TSV Grouping
also obtained an average area of 151:86mm2. Because both
TSV Grouping and TSV Network use redundant TSVs for
recovery, the proposed method helps to reduce the total num-
ber of TSVs by eliminating the need for redundancy. In other
words, the proposed approach relies on the existing number
of TSVs and does not require any additional ones to maintain
correct functionality.
On the other hand, the other configurations obtained

lower area overheads. Nevertheless, we have to note that
our arbiter not only consists of the rerouting circuit (similar
to the multiplexers in TSV Network and TSV Grouping);
but, also includes an online adaptive algorithm designed in
hardware, in addition to the Virtual TSV and Serialization
techniques. Both TSV Grouping and TSV Network have to
require additional dedicated circuitries to recover from the
cluster defects.
In terms of reliability, the proposed approach has proven

its high resiliency, as previously shown in Section V.B. TSV
Grouping demonstrated a 100 percent of yield rate under a
defect-rate of 1 percent and TSV Network obtained nearly
100 percent in the most cases. However, their approaches are
different than our scheme, where they add redundancy to cor-
rect the defect TSVs. As a result, if the number of defected
TSVs is larger than the number of redundant ones, they are
unable to recover from the defected clusters. On the other
hand, our technique can significantly improve the reliability
by providing 98.11 percent of workable routers even at 50
percent of defected TSV-clusters. Moreover, at the low
defect rates (e.g., under 5 percent), which is similar to [15],
[19], our proposal also ensures 100 percent of working con-
nections and demonstrates small performance degradation in
the realistic traffic pattern benchmarks. Even with disabled
vertical connections, the reliability of our system can also be
improved by using a lightweight fault-tolerant routing.

6 CONCLUSION AND FUTURE WORK

This paper presented an adaptive and scalable sharing meth-
odology for TSVs in 3D-NoC systems to deal with the TSV-
cluster defects. The results have proven the system’s ability
to provide high reliability that can reach up to 346.74 percent
increase in functional routers. Moreover, the proposed
approach can correctly work with a reasonable degradation,
even under a 30 percent of defect-rate. The hardware com-
plexity has shown a small overhead in terms of area cost
(30.42 percent) and power consumption (18,66 percent) of
router’s logic. Since no TSV redundancy is not required in
the proposed architecture and algorithms, we show that it is
possible to provide a highly reliable system while maintain-
ing the overhead reasonable.
As future work, the random TSV-defect is also an addi-

tional challenge for our 3D-NoC system. Furthermore, degra-
dation factors on 3D-NoCs such as thermal dissipation,
stress, operating voltages should be investigated.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the qual-
ity of the paper. This work is partially supported by the
University of Aizu Competitive Research funding (CRF),
Ref. P-11-2016 and P-2-2017. This work is also supported by
VLSI Design and Education Center (VDEC), the University
of Tokyo, Japan, in Collaboration with Synopsys, Inc. and
Cadence Design Systems, Inc. The Khanh N. Dang and
Abderazek Ben Abdallah authors are the main contributors of
this work. Khanh N. Dang has moved to SISLAB, The Univer-
sity of Engineering and Technology, VietnamNational Univer-
sity Hanoi, Hanoi 123106, Vietnam since October 1st, 2017.

REFERENCES

[1] A. Ben Ahmed and A. Ben Abdallah, “Architecture and design of high-
throughput, low-latency, and fault-tolerant routing algorithm for 3D-network-
on-chip (3D-NoC),” J. Supercomput., vol. 66, no. 3, pp. 1507–1532, 2013.

[2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: A novel
chip design for improving deep-submicrometer interconnect performance
and systems-on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633,
May 2001.

[3] A. B. Abdallah and M. Sowa, “Basic network-on-chip interconnection for
future gigascale MCSoCs applications: Communication and computation
orthogonalization,” in Proc. Symp. Sci. Soc. Technol., 2006, pp. 1–7.

[4] G. Van der Plas, et al., “Design issues and considerations for low-cost 3-D
TSV IC technology,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 293–
307, Jan. 2011.

[5] F. Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits:
Characterization, test, and optimal spare allocation,” in Proc. 49th Annu.
Des. Autom. Conf., 2012, pp. 1024–1030.

[6] U. Kang, et al., “8Gb 3D DDR3 DRAM using through-silicon-via technol-
ogy,” in Proc. IEEE Int. Solid-State Circuits Conf.-Dig. Tech. Papers,
2009, pp. 130–131.

[7] T. Zhang, Y. Zhan, and S. S. Sapatnekar, “Temperature-aware routing in
3D ICs,” in Proc. Asia South Pacific Conf. Des. Autom., Jan. 2006,
pp. 309–314.

[8] Y. J. Park, M. Zeng, B.-S. Lee, J.-A. Lee, S. G. Kang, and C. H. Kim,
“Thermal analysis for 3D multi-core processors with dynamic frequency
scaling,” in Proc. IEEE/ACIS 9th Int. Conf. Comput. Inf. Sci., Aug. 2010,
pp. 69–74.

[9] A. Eghbal, P. M. Yaghini, N. Bagherzadeh, and M. Khayambashi, “Ana-
lytical fault tolerance assessment and metrics for TSV-based 3D network-
on-chip,” IEEE Trans. Comput., vol. 64, no. 12, pp. 3591–3604,
Dec. 2015.

[10] T. Frank, et al., “Resistance increase due to electromigration induced
depletion under TSV,” in Proc. IEEE Int. Rel. Physics Symp., Apr. 2011,
pp. 3F.4.1–3F.4.6.

[11] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, “Online fault tolerance
technique for TSV-based 3-D-IC,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 23, no. 8, pp. 1567–1571, Aug. 2015.

[12] J. U. Knickerbocker, et al., “Three-dimensional silicon integration,” IBM
J. Res. Develop., vol. 52, no. 6, pp. 553–569, 2008.

[13] M. Cho, C. Liu, D. H. Kim, S. K. Lim, and S. Mukhopadhyay, “Design
method and test structure to characterize and repair TSV defect induced
signal degradation in 3D system,” in Proc. Int. Conf. Comput.-Aided Des.,
2010, pp. 694–697.

[14] M. Laisne, K. Arabi, and T. Petrov, “Systems and methods utilizing redun-
dancy in semiconductor chip interconnects,” U.S. Patent 8 384 417, 2013.

[15] L. Jiang, Q. Xu, and B. Eklow, “On effective through-silicon via repair for
3-D-stacked ICs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 32, no. 4, pp. 559–571, Apr. 2013.

[16] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A low-overhead fault
tolerance scheme for TSV-based 3D network on chip links,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., 2008, pp. 598–602.

[17] D. Bertozzi, L. Benini, and G. DeMicheli, “Error control schemes for on-chip
communication links: The energy-reliability tradeoff,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 24, no. 6, pp. 818–831, Jun. 2005.

VOLUME 8, NO. 3, JULY-SEPT. 2020 589

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

[18] A.-C. Hsieh and T. Hwang, “TSV redundancy: Architecture and design
issues in 3-D IC,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20,
no. 4, pp. 711–722, Apr. 2012.

[19] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, “Cost-effective TSV
grouping for yield improvement of 3D-ICs,” in Proc. Asian Test Symp.,
2011, pp. 201–206.

[20] A. Kologeski, et al., “Combining fault tolerance and serialization effort to
improve yield in 3D networks-on-chip,” in Proc. IEEE 20th Int. Conf.
Electron. Circuits Syst., Dec. 2013, pp. 125–128.

[21] A. Topol, et al., “Enabling SOI-based assembly technology for three-
dimensional (3D) integrated circuits (ICs),” in Proc. IEEE Int. Electron
Devices Meet. Tech. Dig., 2005, pp. 352–355.

[22] B. Swinnen, et al., “3D integration by Cu-Cu thermo-compression bonding
of extremely thinned bulk-Si die containing 10 mm pitch through-Si vias,”
in Proc. Int. Electron Devices Meet., 2006, pp. 1–4.

[23] N. Miyakawa, et al., “Multilayer stacking technology using wafer-to-wafer
stacked method,” ACM J. Emerging Technol. Comput. Syst., vol. 4, no. 4,
2008, Art. no. 20.

[24] N. Miyakawa, “A 3D prototyping chip based on a wafer-level stacking
technology,” in Proc. Asia South Pacific Des. Autom. Conf., 2009,
pp. 416–420.

[25] R. P. Reddy, A. Acharyya, and S. Khursheed, “A cost-effective fault toler-
ance technique for functional TSV in 3-D ICs,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 25, no. 7, pp. 2071–2080, Jul. 2017.

[26] D. Xiang, Y. Zhang, and Y. Pan, “Practical deadlock-free fault-tolerant
routing in meshes based on the planar network fault model,” IEEE Trans.
Comput., vol. 58, no. 5, pp. 620–633, May 2009.

[27] K. C. J. Chen, C.-H. Chao, and A.-Y. A. Wu, “Thermal-aware 3D net-
work-on-chip (3D NoC) designs: Routing algorithms and thermal manage-
ments,” IEEE Circuits Syst. Mag., vol. 15, no. 4, pp. 45–69, Oct.–Dec.
2015.

[28] D. Xiang, K. Chakrabarty, and H. Fujiwara, “Multicast-based testing and
thermal-aware test scheduling for 3D ICs with a stacked network-on-
chip,” IEEE Trans. Compt., vol. 65, no. 9, pp. 2767–2779, Sep. 2016.

[29] Y.-J. Huang and J.-F. Li, “Built-in self-repair scheme for the TSVs in 3-D
ICs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31,
no. 10, pp. 1600–1613, Oct. 2012.

[30] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “Application specific
routing algorithms for networks on chip,” IEEE Trans. Parallel Distrib.
Syst., vol. 20, no. 3, pp. 316–330, Mar. 2009.

[31] Y. Ghidini, M. Moreira, L. Brahm, T. Webber, N. Calazans, and C. Mar-
con, “Lasio 3D NoC vertical links serialization: Evaluation of latency and
buffer occupancy,” in Proc. 26th Symp. Integr. Circuits Syst. Des., Sep.
2013, pp. 1–6.

[32] NanGate Inc., “Nangate open cell library 45 nm,” (2016). [Online]. Avail-
able: http://www.nangate.com/, Accessed on: Jun. 16, 2016.

[33] NCSU Electronic Design Automation, “FreePDK3D45 3D-IC process
design kit,” (2016). [Online]. Available: http://www.eda.ncsu.edu/wiki/
FreePDK3D45:Contents, Accessed on: Jun. 16, 2016.

[34] A. Ben Ahmed and A. Ben Abdallah, “LA-XYZ: Low latency, high
throughput look-ahead routing algorithm for 3D network-on-chip (3D-
NoC) architecture,” in Proc. IEEE 6th Int. Symp. Embedded Multicore
SoCs, Sep. 2012, pp. 167–174.

[35] K. N. Dang, M. Meyer, Y. Okuyama, and A. Ben Abdallah, “A low-over-
head soft–hard fault-tolerant architecture, design and management scheme
for reliable high-performance many-core 3D-NoC systems,” J. Supercom-
put., vol. 73, no. 6, pp. 2705–2729, 2017.

[36] D. Bertozzi, et al., “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst.,
vol. 16, no. 2, pp. 113–129, Feb. 2005.

[37] A.-M. Rahmani, K. R. Vaddina, K. Latif, P. Liljeberg, J. Plosila, and
H. Tenhunen, “High-performance and fault-tolerant 3D NoC-bus hybrid
architecture using ARB-NET-based adaptive monitoring platform,” IEEE
Trans. Comput., vol. 63, no. 3, pp. 734–747, Mar. 2014.

[38] K. S.-M. Li and S.-J. Wang, “Design methodology of fault-tolerant custom
3D network-on-chip,” ACM Trans. Des. Autom. Electron. Syst., vol. 22,
no. 4, 2017, Art. no. 63.

KHANH N. DANG received the BSc, MSc, and
PhD degrees from VNU University of Engineering
and Technology, the University of Paris-Sud XI, and
the University of Aizu, Japan, in 2011, 2014, and
2017, respectively. His research interests include sys-
tem-on-chips/network-on-chips, 3D-ICs, and fault-
tolerant systems. Since October 2017, he has moved
to SISLAB, the University of Engineering and Tech-
nology, Vietnam National University Hanoi, Hanoi,
Vietnam. He is a student member of the IEEE.

AKRAM BEN AHMED received the MSE and
PhD degrees in computer science and engineering
from the University of Aizu, Japan, in 2012 and
2015, respectively. He is currently a postdoctoral
researcher in the Department of Information and
Computer Science, Keio University, Japan. His cur-
rent research interests include on-chip interconnec-
tion networks, reliable and fault-tolerant systems,
and ultra-low-power embedded real-time systems.
He is a member of the IEEE.

YUICHI OKUYAMA received the master’s and
PhD degrees in computer science and engineering
from the University of Aizu, in 1999 and 2002,
respectively. He is an associate professor with the
University of Aizu. His research interests include
reconfigurable architecture design, parallel program-
ming for pattern recognition, and education of com-
puter fundamentals. He is a member of the IEEE.

ABDERAZEK BEN ABDALLAH received the
PhD degree in computer engineering from the Uni-
versity of Electro-Communications, Tokyo, Chofu,
Japan, in 2002. He was a research associate with the
Graduate School of Information Systems, Univer-
sity of Electro-Communications, Tokyo, from 2002
to 2007. He is currently a full professor of computer
science and engineering and the head of the division
of computer engineering, the University of Aizu,
Aizuwakamatsu, Japan. He has been a faculty mem-
ber with the University of Aizu since 2007. He has

authored three books, published more than 150 journal articles and conference
papers in these areas, received numerous awards, and given invited talks and
courses at several universities and conferences worldwide. His current
research interests include the area of computer system and architecture, with
an emphasis on adaptive/self-organizing systems, network-on-chip/system-
on-chip, processor microarchitecture, power and reliability-aware architec-
tures, neuro-inspired systems, and VLSI design for 3-D-ICs. He is a senior
member of the ACM and the IEEE, and a member of the IEICE. He has been a
principal investigator or a co-principal investigator of several projects for
developing next-generation high-performance reliable computing systems for
applications in general purpose and pervasive computing.

590 VOLUME 8, NO. 3, JULY-SEPT. 2020

Dang et al.: Scalable Design Methodology and Online Algorithm for TSV-Cluster Defects Recovery in Highly Reliable 3D-NoC Systems

Authorized licensed use limited to: Aizu University. Downloaded on December 06,2020 at 04:29:03 UTC from IEEE Xplore. Restrictions apply.

http://www.nangate.com/
http://www.eda.ncsu.edu/wiki/FreePDK3D45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK3D45:Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

