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Abstract—Hardware is the foundation of trust for all real-time
applications and is especially crucial in Artificial Intelligence
(AI). The growing reliance on AI for various tasks has raised
concerns about the reliability of the hardware. Extensive research
has shown that hardware faults arising from the manufacturing
process or device variation can significantly impact the precision
and accuracy of AI applications. This also applies to 3-D IC
(Three-Dimensional Integrated Circuit)-based Spiking Neural
Networks (SNNs), despite their noise resilience, low-power, and
low memory footprint advantages. This is because, in addition to
the mentioned hardware faults, thermal dissipation on 3-D ICs
can negatively affect the memory stacked on upper dies. Hence,
this article proposes a methodology called NOMA (Network-
of-Memory Architecture) to enhance the reliability of 3-D IC-
based SNNs by replacing the defective critical synaptic weights
in high-priority layers with lower-priority ones. The method is
assessed on multiple memory-on-logic architectures with various
memory technologies such as SRAM, eDRAM, STT-RAM, and
RRAM. As a result, for the 45nm SRAM library, the accuracy
degradation improves by roughly 56% at a BER of 0.05 with a
timing overhead of 3.538µs and a power overhead of 390.796nJ .

Index Terms—Spiking Neural Networks, 3-D IC-based Neuro-
morphic System, Fault Tolerance, Network-of-Memory

I. INTRODUCTION

THE combination of Spiking Neural Networks (SNNs)
and Three-Dimensional Integrated Circuits (3-D ICs),

3-D IC-based SNNs, opens a new approach for Artificial
Intelligence (AI) with multiple benefits. For example, SNNs
introduce lightweight inferences with low-power characteris-
tics [1]–[3], while 3-D IC-based technologies guarantee high
bandwidth with high parallelism for effective computing [4],
[5]. However, one of the biggest challenges of this approach
is the low reliability caused by the 3-D ICs, such as aging,
thermal and power issues, and manufacturing defects. Fortu-
nately, SNNs can tolerate a certain number of those faults

∗ The Graduate School of Computer Science and Engineering, The
University of Aizu, Aizu-Wakamatsu 965-8580, Fukushima, Japan. (e-mail:
doanhnn@ieee.org; benab@u-aizu.ac.jp; khanh@u-aizu.ac.jp)

† The Information Technology Institute, Vietnam National University,
Hanoi, 10000, Vietnam. (e-mail: tutx@vnu.edu.vn)

‡ The Digital Architecture Research Center, National Institute of Advanced
Industrial Sciences and Technology, 2-3-26 Aomi, Koto-ku, Tokyo, Japan. (e-
mail: akram.benahmed@aist.go.jp)

This work is partly supported through the activities of VDEC, The Univer-
sity of Tokyo, in collaboration with NIHON SYNOPSYS G.K and Cadence
Design Systems, and part by the Vietnam National University, Hanoi under
Project No. QG.24.81. (Corresponding author: Ngo-Doanh Nguyen.)

0 50 100 150 200 250
Neuron Index (N)

90

95

100

Ac
cu

ra
cy

 (
%

) a) Time_step = 400, Layer 1

0 50 100 150 200 250
Neuron Index (N)

97

98

99

100

Ac
cu

ra
cy

 (
%

) b) Time_step = 400, Layer 2

2 4 6 8 10
Neuron Index (N)

0

50

100

Ac
cu

ra
cy

 (
%

) c) Time_step = 400, Layer 3

Min Avg Max

Fig. 1. The average accuracy with the faults occurring1.

because of their noise resilience characteristics. In fact, with
consideration of network topology, circuit implementation,
hardware architecture, and fault-tolerance strategy, the failure
of SNNs can be avoided when faults occur [6]–[9].

Although SNNs can tolerate faults, they are not always
resilient against them, regardless of the type and location of
the faults. To understand more about the impact of faults,
especially memory faults, we experimented with fault injec-
tion into a multi-layer perception using the MNIST dataset
classification, as depicted in Fig. 11. In summary, this SNN
model particularly has vulnerabilities when faults occur in the
network’s first and last layers, where it loses 2% ∼ 7% and
65% ∼ 70% of accuracy, respectively. In contrast, when faults
occur in the middle layer(s) (Fig. 1 (b)), the SNN shows no
considerable degradation in accuracy (0.2% ∼ 0.5% loss). In

1The faulty injection experiment covers every neuron in all layers (MLP
784 × 256 × 256 × 10, MNIST dataset, 400 time-steps). The SNN is
trained using the ANN model and converted to SNN [10]. The weights are
quantized into an 8-bit fixed point format, and faults are inserted as a flip-bit
phenomenon. In this context, a soft-error rate of 50% for each neuron per run
at multiple time steps. The accuracy of each faulty neuron is evaluated 1000
times in Monte Carlo simulations.
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summary, fault impacts for SNN are still relevant, and we need
to address them carefully.

To deal with memory faults in SNN, there are several exist-
ing works [11]–[15]. For instance, traditional fault-tolerance
techniques, such as Triple Modular Redundancy (TMR),
adding spares, and Error Correction Codes (ECCs), can be
used [11], [12]. On the other hand, different approaches are
proposed to deal with memory errors, especially non-volatile
ones. In [14], Tosson et al. introduce a framework to manage
soft errors in RRAM during the training phase of RRAM-
based neuromorphic systems. Bhattacharjee et al. [13] explore
the impact of RRAM crossbar non-idealities on the accuracy of
SNNs. Anurup et al. [15] have proposed recursive linearised
checks to detect synapse weight errors with high precision
during inference. For the DRAM technology, Putra et al. [12]
address soft error mitigation for digital SNN accelerators. It
introduces the concept of fault-aware training and mapping
(FATM) to address stuck-at-faults and low voltage-induced
errors in memory. Although there are numerous works on
addressing the reliability issue of SNN’s memories, there are
some existing challenges to be addressed:

• First, conventional approaches are effective, but they
have substantial hardware overhead. This limitation also
extends to memory-on-logic architectures, where thermal
dissipation can adversely affect the memory stacked on
upper dies farther from the heat sink [16], necessitating
more hardware resources for fault correction. Moreover,
3-D IC-based neuromorphic systems have limited fault-
tolerance solutions with low cost and power other than
ECCs and alternations to maintain their low-power char-
acteristics [17]. This underscores the pressing need for
high reliability with low-power and low-cost solutions
for 3-D IC-based neuromorphic systems.

• Second, most of the aforementioned works only address
the reliability problem in 2-D hardware architecture and
are specific to particular memory technologies. Mean-
while, 3-D hardware architectures and heterogeneous
memory technologies are not addressed. Unlike 2-D ICs,
3-D ICs face much more significant reliability challenges
due to manufacturing imperfections and high operating
temperatures, which result in accelerated fault rates and
mechanical failure.

• Third, the existing approaches can be efficient in specific
scenarios; however, they did not provide a comprehensive
framework to adapt to different scenarios. For instance,
different SNN models have different fault impacts in
different locations. On the other hand, different types of
memory also have different area costs, read/write latency,
and dynamic/static power consumption.

To tackle the challenges above, this article introduces
NOMA (Network-of-Memory Architecture), a framework to
enhance memory reliability in 3-D IC-based SNNs. The main
contributions of this article are summarized as follows:

1) A novel methodology, called Network-of-Memory Ar-
chitecture (NOMA), to tolerate the faults by reallocating
synaptic weights between 3-D IC-based memories.

2) A comprehensive framework for priority-based reallo-

cating synaptic weight of SNN that covers different
fault models, fault rates, fault characteristics, and SNN
architectures. Here, we classify synaptic weight mem-
ories into several categories based on the impact on
overall performance during the occurrence of faults. Our
framework focuses on reallocating the fault from critical
locations into non-critical locations.

3) A trade-off evaluation between reliability and the hard-
ware overhead across various memory technologies such
as SRAM, eDRAM, STT-SRAM, and RRAM.

The rest of this article is organized as follows. Section
II presents the background and related works for the fault
tolerance of 3-D IC-based SNNs. Next, Section III introduces
the challenges for the reliability of 3-D IC-based SNNs.
Section IV explains the methodology and algorithm to improve
the reliability. Section V evaluates the trade-off between the
reliability improvement and the overhead in each memory
technology and architecture. After that, Section VI discusses
this work’s challenges, remaining issues, and potential so-
lutions. Finally, the article is concluded with summaries in
Section VII.

II. RELATED WORKS

A. Fault Characterization for Neuromorphic Systems

The resilience of SNNs to faults varies depending on the
specific training algorithms, and datasets used which have
been reported in [8]. Contrary to popular belief, SNNs are
not fully inherently resilient, and their ability to tolerate faults
decreases significantly as fault rates rise. For example, Liu
et al. [18] work on the fault-injection effect in memristor
crossbars, showing that inference accuracy dropped by more
than 50% with a stuck-at error rate of 20%.

On the other hand, Spyrou et al. [6] propose a method to ac-
celerate fault injection in deep SNNs with a reused behavioral-
level fault model [19]. The fault injection framework is built
on SLAYER [20] and PyTorch [21] frameworks, where we can
easily customize the faulty SNNs and map them onto a GPU.
The overall conclusion of this experiment is that saturation
neuron faults are the most detrimental and can significantly
impact inference, regardless of the neuron’s location in the
network.

In [8], Schuman et al. investigated the impact of dead
synapse faults in feed-forward SNNs trained using different al-
gorithms. They found that the resilience of the SNNs depends
primarily on the training algorithm. Another study by Zhu et
al. [22] incorporated process variations and noise as random
variables in neural network weights. At the same time, Gaol
et al. [23] introduced a framework using a Bayesian neural
network to train considering variations and defects, both for
memristor crossbar-based architectures.

B. Fault Tolerance for Neuromorphic Systems

Putra et al. [12], [24] studied the fault tolerance of a Python-
based SNN model using the flip-bit fault model, proposing
fault-tolerance schemes (FAM and FATM) to mitigate memory
failures. FAM identifies memory segments with non-faulty
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cells, prioritizing the Most Significant Bits (MSBs) placement
through circular shifting. FATM incorporates re-training to
adapt accuracy to different bit-flip probabilities. On the other
hand, our previous work [25] leverages 3-D neuromorphic
systems to identify faults at multiple-bit levels and enhance
operational resilience.

In 3-D Network-on-Chip (NoC) neuromorphic systems,
potential faults may arise due to thermal imbalances resulting
from neuron mapping. For example, the NASH system utilizes
layer-to-layer mapping [26], leveraging the hardware’s routing
algorithm and the 3-D mesh topology. Dang et al. proposed
migration methods named MigSpike [27], which utilize max-
flow min-cut and genetic algorithms in response to these
challenges. This strategy addresses the limitations of the
previous proposal by introducing a fault-tolerant framework
during neuron mapping. Despite the notable advantages of the
MigSpike mapping framework, it does not support remapping
if the number of faulty neurons exceeds the number of spare
neurons.

III. RELIABILITY CHALLENGES FOR 3-D IC-BASED
NEUROMORPHIC SYSTEMS

This section outlines the challenges of implementing 3-D
IC-based SNNs, including reliability issues related to thermal
and electrical concerns, fault characterization, and locations.
Although we do not address all of these challenges in the
proposed methodology, it is important to highlight how 3D-
IC adds another layer of complexity when implementing fault-
tolerant methods to enhance the reliability in SNNs.

A. Thermal Issues in 3-D ICs

Thermal issues are the primary challenge encountered in
3-D ICs [28]. The increased integration leads to a more
concentrated power supply for a given area, resulting in
higher heat dissipation per unit footprint [29]. Consequently,
the overall temperature of 3-D chips surpasses that of 2-
D chips, potentially compromising system performance and
reliability while introducing variability in circuit behavior. In
this context, faults manifest as transient faults, where the
elevated temperature alters a gate’s Single Event Transient
(SET) current, potentially causing pMOS transistors to activate
and change the state of the gate output logic. This phenomenon
is commonly referred to as a soft error in the circuits. The
frequency of soft errors in the circuit, or soft error rate (SER),
depends on the SET generation rate due to particle strikes
and various masking probabilities along propagation paths.
For example, Dang et al. [30] showed that the SER in 3D-
NoCs at 80◦C is much greater than the SER at 30◦C (220×)
and at 70◦C (2.6×). Additionally, elevated temperature can
induce instability in the threshold voltage, resulting in reduced
transistor conductance and saturation current. This occurrence
is called Negative Bias Temperature Instability (NBTI) [29].
For example, Lin et al. [31] showed that the difference in
circuit delay (NBTI degradation) is larger than 3% when the
temperature increases by 25◦C (from 100◦C to 125◦C). In
the case of memory-on-logic architecture, where memories
are vertically stacked, memory reliability is compromised.

For example, SRAMs exhibit diminished stability due to cell
flipping caused by threshold voltage variation, erratic read
operations, and increased cell access time.

B. Electrical Issues in 3-D ICs

The electrical challenges encountered within 3-D ICs pre-
dominantly stem from power delivery issues [29], particularly
related to on-chip power supply noise. The increased power
supply network (PSN) impedance, failing to keep pace with
the growing device density and operating current, has led to
heightened noise on-chip power supply. This is primarily due
to limited wire resources and a consistent RC per wire length.
The complexity is further exacerbated in 3-D ICs as the system
necessitates a power supply network capable of delivering
current through the power supply pins several times more than
in 2-D chips. This is attributed to the reduced footprint of a 3-
D die in comparison to a 2-D die, resulting in a significantly
reduced number of power pins for the same circuit models,
approximately one-third of the 2-D case. Moreover, Through-
Silicon Vias (TSVs) compound the power supply problem
by introducing additional resistance to the supply network.
Consequently, the amplified supply noise yields a more pro-
nounced operating speed variation, leading to increased timing
violations in 3-D ICs. Furthermore, supply noise overshooting
due to inductive parasitism may exacerbate reliability issues
such as Time Dependent Dielectric Breakdown (TDDB), Hot
Carrier Injection (HCI), and NBTI [29]. In the memory-on-
logic architecture, the power supply to memory cells could
significantly decrease to sub-threshold voltage levels based on
the application’s power budget. Consequently, the heightened
DC supply noise induces variations in bit cells during read
and write operations.

C. Challenges for Synapse Memory in 3-D IC-based SNNs

With the thermal and electrical issues, the 3-D IC-based
neuromorphic systems become more vulnerable when faults
occur [32], especially the memory-on-logic architectures.
Since the synapse memories are stacked on top layers, the
synapse weights for inference are then affected. This leads
to a wrong classification or prediction of SNN, where the
pre-trained weights are modified unexpectedly. For example,
in the case of thermal hotspots, the values stored in SRAM
memory cells around these regions can be modified because
the NBTI effect shifts the threshold voltage of their transistors.
In the case of non-volatile memory, thermal and electrical
problems can cause a drifting effect, which also changes the
stored values. On the other hand, the hotspots can also delay
the path between memory blocks and processing elements
because it increases the resistance of TSVs. This violates the
timing constraints. Hence, the processing elements proceed to
calculate with the wrong values. As a result, SNN has errors,
which affects its final decision. However, depending on the
location of faults, there are two types of errors, dormant errors
and critical errors (explained in the following section). The
dormant errors are the type of fault occurring in the system,
but they do not change the system’s outcomes. The critical
erros, however, will cause the system’s failure when they
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Fig. 2. An illustration of normal spiking neural network operations.

N00
90 1 3

S

T

45 7

N01
80 1

S

T

4 6

N03
0 3

S

T

4 65

N10

N11

N12

N13

VT

H

T

V

VT

H

T

V

0 9

0 9

VT

H

T

V

0 9

VT

H

T

V

0 9

0

S

T

4 7

0

S

T

5 82

0

S

T

72

0

S

T

64

Nk0

Nk1

VT

H

T

V

0 9

VT

H

T

V

0 9

0

S

T

4 7

0

S

T

5

⁰ 
⁰ 

⁰
⁰ 

⁰ 
⁰

⁰ 
⁰ 

⁰

Fault Occurs

4

Dormant Error

12 A1 E234 C8AB D356 E8

03 AA 100B EE0A 1111 EF

09 8F 8D38 5D86 8E7A 5E

CC D2 D1C8 C9C2 D7C5 CD

D2 C2 D8C2 D6D7 CFC6 D5

AA AD B3A6 A6A3 B0A0 A7

: Faulty synapse operation

: Normal synapse operation

Fig. 3. An example of dormant error in spiking neural network operations.

appear in the system. The illustration of those affections is
explained in the following section.

D. Different Effects of Faults in 3-D IC-based SNN

In this article, we focus on two main fault models: random
flip bits and stuck-at faults caused by thermal and electrical
issues.

• Stuck-at: This model demonstrates a data or control line
stuck at either a high (stuck-at-1) or a low (stuck-at-0)
state.

• Random flip bits: This model illustrates a data or memory
element with an unpredictable and incorrect value.

Here, we select these two popular fault models for the
evaluation; however, we would like to note that with different
fault models, they can be easily integrated into the framework
as in Section IV-B.

As shown previously in the Introduction section, the per-
formance of a neural network is significantly impacted by the
location of faults. For illustrative purposes, we here show two
possible behaviors of the SNNs under faults. The SNN model
is converted from an Artificial Neural Network (ANN-to-SNN
conversion methodology) as a fully connected feed-forward
neural network with RELU activation function. In the normal
situation, the neuron operation using the Leaky Integrate-and-
Fire (LIF) model [33] and rate coding is depicted in Fig. 2.
Subsequently, Fig. 3 and 4 present the alternative operational
outcomes of the SNN in the event of a fault.
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Fig. 4. An example of critical error in spiking neural network operations.

In the first case (Fig. 3), faulty bits occur in the neuron
N12; however, the SNN’s performance remains unaffected as
the number of output spikes of the SNN and their timing stay
unchanged. This is because the fault occurs in the inactive
neurons or the mostly zero-ed weight neurons. We call this
type of fault dormant errors since the fault has an insignificant
impact on the overall performance. Here, we could further
relax the definition of dormant errors to some certain level of
accuracy losses (i.e., 0.2-0.5% for the middle layer in Fig. 1)
for better fault swapping performance.

In the second case (Fig. 4), the fault now occurs in the
neuron Nk1. of the last layer, where the final decision is
dependent on the number of output spikes. Here, we can
observe that the output neuron Nk1 fires three times, which
outnumbers the expected firing neuron. In the rate coding
method, this could lead to incorrect classification/prediction.
Here, we call this type critical errors.

Accordingly, this article exploits this aspect (dormant er-
rors) to enhance the neuromorphic system’s fault tolerance
by reordering synapse memories between the weights in the
non-critical location. Our framework will analyze the charac-
teristics of faults under Monte-Carlo simulation to decide what
locations/neurons give dormant errors or critical errors.

IV. RELIABILITY-IMPROVEMENT METHODOLOGY FOR
NETWORK-OF-MEMORY ARCHITECTURE

This section introduces our proposed approach for achieving
fault tolerance in NOMA. This work mainly focuses on the
faults in synapse memories that occupy the major part of the
neuromorphic chip.

A. The Network-of-Memory Architecture (NOMA)

The 3-D network-of-memory architecture (NOMA) extends
our prior research efforts [34]. This architectural framework
capitalizes on 3-D ICs, enabling the segmentation of synaptic
weight memories into multiple bit levels across distinct dies.
The hardware architecture in Fig. 5 delineates the logic and
memory components into distinct layers. The logic compo-
nents employ L = 16 LIF neurons [33] with a rate coding
scheme chosen for their energy efficiency and bio-plausibility.
Each memory layer comprises a subset of n-bit synaptic
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weights ({m0, m1,..., mM−1}), denoted as mi for the ith

subset and M for the total number of subsets or stacked
layers. These numerical parameters remain configurable during
the design phase. Moreover, the output of a neuron can be
transmitted to other neurons within the same cluster or to those
in different clusters. Its input triggers the crossbar to access
the corresponding synaptic weight from the memory layers via
TSV for LIF computations.

To support fault tolerance, our architecture relies on swap-
ping the synaptic weight to shift critical errors into dormant
errors. To do so, the address-reorder module is the alteration
from our previous work designed to ensure accurate address
extraction even in system faults, as shown in Fig. 5 (d).

This paper mainly considers the above stacking memory-
based SNN architecture. However, there are other SNN ar-
chitectures, such as pure 3D-IC or 2D-IC. Adapting to these
topologies only requires modifications to memory architec-
tures, resulting in different converted graphs and solutions.
Nevertheless, the central principle of NOMA is still the same
and could be widely applied.

B. Proposed framework

Fig. 6 shows the proposed NOMA framework. First, the
SNN model, design constraints, and memory architecture are
inputted into the framework. At this stage, the fault model
and the fault rate are selected. Hence, the feasible fault
positions in the network model based on design constraints and
architecture are generated. Moreover, since dormant faults are

essential in this work, fault position characterization is done
by Monte-Carlo simulation to understand the impact of faults
in the SNN models.

Then, the memory network is converted into a correspond-
ing graph with those fault positions to find the relocating
solutions for reliability improvement. Here, we solve the graph
with the max-flow min-cut problem and detail the swapping
path with shortest path solving.

The performance of the fixed and non-fix networks is
then evaluated. Finally, this framework’s output includes new
memory reconstruction, resource overhead, and reliability im-
provement.

The following subsections explain how to formulate and
solve the problem using graph theory.

C. Problem Formulation and Fault Injection

First, we define the problems based on the given design
constraints, memory architectures, and the network’s configu-
ration, as shown in Fig. 6. We assume that the neuromorphic
system consists of N nodes (or neuron clusters), each contain-
ing pi processing elements (neurons) and mi memory blocks.
It is important to note that the number of processing elements
and memory blocks can vary between nodes and clusters
in heterogeneous systems. Consequently, the total number of
processing elements is denoted as P =

∑N−1
i=0 pi, and the total

number of memory blocks is denoted as M =
∑N−1

i=0 mi.
Hence, a specific SNN application requires P ′ processing ele-
ments and M ′ memory blocks, where P ′ ⩽ P and M ′ ⩽ M .
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Fig. 6. The proposed NOMA framework’s flow.

1) Definition of Faults: Next, we define the faults (F ) that
appeared in the neuromorphic system. Here, we denote Fsa as
the number of stuck-at faults and Ffb as the number of flip-bit
faults. The total number of faults is as follows:

F = Fsa + Ffb =

M ′−1∑
i=0

fsai
+

M ′−1∑
i=0

ffbi (1)

where fsai
is the average number of stuck-at faults in the

ith memory block, and ffbi is the average number of flip-bit
faults in the ith memory block. Next, these faults could be
divided into k different levels of importance:

F =

M ′−1∑
i=0

k−1∑
j=0

fsai,j
+

M ′−1∑
i=0

k−1∑
j=0

ffbi,j (2)

As we analyzed earlier in Fig. 1, SNNs’ noise resilience can
be stronger in some layers, and weaker in others. Therefore,
we consider that the first x level(s) in k levels will not strongly
impact the network’s results, where x ⩽ k. To decide the value
of k, the NOMA framework goes through the phases of fault
injection analysis, where we insert faults into the software
model of SNN using Monte Carlo simulations.

With an appropriate value of k, we assume that the total
number of faults that degrade SNNs’ performance is formu-
lated as follows:

F ′ =

M ′−1∑
i=0

k−1∑
j=x

fsai,j
+

M ′−1∑
i=0

k−1∑
j=x

ffbi,j (3)

Hence, the methodology for fault tolerance in our approach
is to maximize the number of faults in the middle layer(s)
(
∑x−1

j=0 fsaj +
∑x−1

j=0 ffbj ) and to minimize the number of
faults in the critical layer(s) (

∑k−1
j=x fsaj +

∑k−1
j=x ffbj ) by

swapping their positions.
2) The Limitation of Dormant Faults: Since adding spare

neurons or memory blocks is expensive, we mainly aim to
avoid doing so in the scope of this work. However, one
consequence is that we do not have spares to replace the faulty
area, which leads to the point of accepting faults that occur
inside the system.

Therefore, in this particular problem, the main priority is
maximizing the faults in non-critical layer(s) (dormant faults)

to minimize the impact on the overall performance. However,
the research literature [6]–[9], [17] shows that SNNs can only
tolerate faults to a certain level of Bit Error Rate (BER). We
define the following equation to represent this BER:

BER =
F∑M ′−1

i=0 wi

=

∑M ′−1
i=0 fsai

+
∑M ′−1

i=0 ffbi∑M ′−1
i=0 wi

(4)

where wi is the number of bits used in the corresponding
mi memory blocks. It is assumed that each synaptic-weight
memory block has its maximal BER and can tolerate faults
within this range. This maximal number depends on the critical
levels of synaptic weights stored inside the memory blocks.
Hence, the total maximal faults in every memory block or
system’s fault-tolerance capability, CBER, can be represented
as follows:

CBER = α · F ′
max =

M ′−1∑
i=0

ai · fsai + bi · ffbi (5)

3) Final formulation: Since fsai and ffbi represent the
average number of stuck-at and flip-bit faults at the ith

memory block, the ratios of the maximal faults to those two
faults are the coefficients of ai and bi, respectively. Hence,
if the faults are within the range of the maximal numbers,
the performance degradation of the system is acceptable, as
shown in Fig. 1. Otherwise, the system performance degrades
significantly, proportioning to the increase in BER.

On the other hand, because each synaptic neuron has its own
critical level in the network, the coefficients for the ratio bring
different weights to the maximal fault-tolerance capability.
Hence, Equation 5 can be rewritten as follows.

CBER =

M ′−1∑
i=0

k−1∑
j=0

ai,j · fsai,j
+ bi,j · ffbi,j (6)

where, ai,j << ai,(j+1) and bi,j << bi,(j+1). Therefore, the
problem of system reliability can be solved by minimizing the
faults leading to system failure or maximizing the dormant
faults. Combining Equations 3 and 6, the equation for this
problem is formulated as follows:
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Max(C ′
BER) =

M ′−1∑
i=0

x−1∑
j=0

a′i,j · fsai,j
+ b′i,j · ffbi,j (7)

D. Problem Conversion and Solution

In the second stage, as shown in Fig. 6, we convert the
problem defined in the first stage into a max-flow problem in
a corresponding graph. The problem conversion and how to
solve it are illustrated by Algorithm 1.

Algorithm 1 - The Proposed Max-Flow Min-Cut with Mini-
mal Neural Replacement Algorithm
Require: N = The total number of memory nodes;

F = The number of faulty memory nodes;
Dmax = The critical path of the system;
D = The distance between two nodes;
Dmin = The minimal distance between two nodes;
K = The important level of each node;

Ensure: Gf = The feasible flow of fault-tolerance graph;
1: Initalise the graph G;
2: Add source S and sink T ;
3: for (node: i = 0 −→ (N − 1)) do
4: for each node nj ∈ Adj[ni] do
5: di,j = distance[ni, nj ]; {Based on the memory

structure.}
6: if (di,j ⩽ Dmax −Dni

) and (Knj
< Kni

) then
7: Add an edge from the node ni to node nj ;
8: Add weight of the edge Ei,j = di,j/Dmin;

{Based on the memory structure.}
9: Add an edge from the node nj to the sink T ;

10: Add weight of the edge Ej,T = Knj
;

11: end if
12: end for
13: end for
14: for (faulty node: i = 0 −→ (F − 1)) do
15: Add edge from the source S to the node ni;
16: Add weight of the edge: ES,i = 1;
17: end for
18: Find max-flow with the push-relabel-max-flow algorithm;
19: Find Gf with the shortest path from all flows with

Dijkstra’s algorithm;
20: if (max-flow == F ) then
21: return Gf ; {Done.}
22: else
23: return Null; {Fail.}
24: end if

1) Convert the memory structure into a graph: This sub-
section discusses how the neural network’s converting graph
flows while considering the design constraint and memory
architecture.

To begin, we use the inputs, such as the memory structure,
SNN’s configuration, the number of faults, and the critical path
of the hardware system, to initialize the graph. Each neuron’s
synapse memory weights will be represented as a node in the
initialized graph G (line 1). Then, we add a virtual source S

and a virtual sink T . When connecting two nodes, we need to
ensure they are within the possible range (line 6). Additionally,
these edges must originate from a higher-priority node and
terminate at a lower-priority node. Finally, the nodes without
faults will be connected to a virtual sink T (line 9).

In terms of weight, the edge’s weight will be normalized
based on the distance between the two memories in the
given memory structure (line 8). Also, the weight of the edge
connecting the virtual and faulty nodes will always be labeled
as one unit. Notably, the weights of the edges connecting to the
virtual sink follow k levels of importance, with higher-level
nodes having larger weights (line 10).

If a fault appears in a node (neuron’s synapse memory), it
will be considered faulty and connected to a virtual source S
(line 15).

At the end of this phase, we generate the directed graph to
convert the problem into graph theory.

2) Using MFMC to re-arrange fault memory nodes: As
previously mentioned, the objective is to minimize faults in
critical synaptic weights or maximize faults in non-critical
ones (or shifting critical errors into dormant errors), as
illustrated in Equation 7. After converting the memory struc-
ture into a graph, the problem is translated into finding the
swapping candidates for the faulty memories. In other words,
we now consider solving the multi-source multi-sink max
flow min cut (MFMC) where sources are the faulty memories
and sinks are the possible swapping candidates. To solve the
multi-source, multi-sink MFMC problem, an additional virtual
source and sink are added to convert it into a single-source,
single-sink MFMC problem.

For ease of understanding, the flow graph presented in Fig.
7 illustrates some cases for the fault tolerance of NOMA. Fig.
7 (a) shows the categorization of neurons in SNNs into three
levels of importance (k = 3). The number of levels is selected
from analyzing fault injection simulations as we did in Fig. 1.

Fig. 7 (b) visually represents the faults observed in NOMA,
which typically conforms to a normal distribution pattern.
For clarity, the illustration portrays the manifestation of faults
across all levels of neurons. Henceforth, in the scenario of
faulty recovery, provided reliable communication is ensured,
NOMA can accommodate up to the number of low-priority
neurons, as evidenced in Fig. 7 (c).

Fig. 8 illustrates the flow graph derived from the Mesh-
based memory architecture. Initially, a virtual sink (T ) and
source (S) are established to facilitate the relocation of neurons
within the flow graph. Please note that edges are added only
when satisfying the design constraints (lines 7-8 of Algorithm
1). Subsequently, edges are constructed with direction from the
source (S to the faulty neurons (N31, N23, and N12). At the
same time, a similar configuration is applied for edges from
the lower-priority neurons (N33, N30, N20, N10 and N13) to
the sink (T ). The weight of each edge is calculated as in line
8 of Algorithm 1.

Fig. 9 portrays a viable solution for the graph presented in
Fig. 8. As illustrated, the red arrows show the flows between
two neurons. The final results show swapping flows between
high-priority neurons to the low-priority ones. By doing so, we
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Fig. 7. System model for fault tolerance SNN. (a) Mapping an SNN system into NOMA using nodes of neurons with initial design constraints. (b) NOMA
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Fig. 9. A solution for the max-flow min-cut problem. The chosen solution
should have the maximal flow consisting of minimal weighted edges.

shift the critical errors into dormant errors, improving overall
accuracy.

3) Finding shortest path for minimal data movement: After
solving the MFMC problem, as we showed in Fig. 9, the
flows are decided between faulty memories and the swapping
candidates. However, the flow itself does not contain the
routing path since the locations of the neurons are omitted.
To finalize the solution, we use Dijkstra’s algorithm to find
the shortest paths for all flows.

4) Complexity Analysis: In this analysis, the push-relabel
algorithm was selected for its status as one of the field’s most
efficient maximum flow algorithms. This algorithm is char-

SNN Model

Design 

constraints

Training SNNs & 

Analysing Faults

SNN Fault 

Profiles

Convert fault profiles into graph

Find solutions with proposed algo. Extract 

SNN’s 

accuracy 

with faulty 

weights

Accuracy & 

Reliability

Feasible 

Relocations

Hardware 

Overhead

Python Matlab

Hardware Behavioural 

Modeling

Hardware 

Implementation

Cadence & Synopsys

Measure energy overhead 

from multiple mem. tech. 

Open-source C++ 

NOMA 

Framework

Memory 

Structure

Fig. 10. The NOMA framework for evaluating the performance of the
proposed methodology.

acterized by a robust polynomial O(V 2E) runtime, with E
denoting the number of edges and V representing the number
of vertices. Notably, the variant employing the highest label
node selection rule exhibits a time complexity of O(V 2E),
rendering it applicable to the matter discussed in this article.
Furthermore, Dijkstra’s algorithm for determining the shortest
path based on the given edge weights operates with a time
complexity of O(V 2). Consequently, the proposed algorithm
typically operates at a time complexity of O(V 2E). This
translates to O(N3) for 2-D or 3-D IC-based neuromorphic
systems, where N designates the count of memory nodes or
blocks.

V. EVALUATION

A. Evaluation Methodology and Framework

In the third phase represented in Fig. 6, to assess the
efficiency of the proposed methodology, we implemented the
NOMA framework to enhance its accessibility, as depicted
in Fig. 10. The initial step involves defining the SNN con-
figuration and the hardware design constraints. Consistent
with the experiment outlined in the introduction, the same
SNN configuration was employed for this evaluation. Subse-
quently, these parameters were utilized as input for the NOMA
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Fig. 11. The analysis compares the accuracy of two architectures with flip-bit faults. One does not have a reliability improvement methodology, while the
other includes our proposed method. We used our previous 3-D IC-based SNN architecture with four stacked memory layers, splitting 8 bits into four pairs
of two bits. The experiment explores the impact of faults on multiple stacked layers.

framework. The NOMA framework comprises four primary
components: 1) The hardware implementation flow, which
relies on commercial CAD tools from Cadence and Synopsys
(Cadence Innovus, Synopsys Design Compiler, PrimeTime);
2) A Matlab program designed for training, generating fault
profiles, and extracting accuracy; 3) A Python program, which
implements our proposed software-based approach to identify
relocation solutions; and 4) An open-source C++ program
based on CACTI memory models [35], called Destiny [36],
used for extracting hardware overhead. Additionally, the phys-
ical design of our hardware is undertaken with the NANGATE
45-nm PDK [37] and NCSU FreePDK3D45 TSV [38].

The evaluation process comprises several sequential steps.
Initially, we executed the hardware implementation based
on our previous work and SNN configurations to extract
timing paths relevant to memory blocks. These timing paths
encompass the critical path, timing between memory blocks,
timing through TSV, and data movement timing between
memory blocks and PEs. Following this, the Matlab program
was used to generate fault profiles. As previously stated, we
focus on two common fault models: stuck-at and flip-bit faults.
Leveraging the fault profiles, the Matlab program derives the
modified SNN weights. On the other hand, timing paths were
inputted into a Python program as constraints to identify
feasible relocation solutions. Based on these solutions, the
accuracy of SNN was re-evaluated to compare the performance
between fixed and non-fixed networks. Finally, the hardware
overhead was computed using a selected solution based on
commercial CAD tools and an open-source C++ program.
In this context, the C++ program extracted information from
CACTI memory models [35].

B. Accuracy Evaluation

To assess the accuracy enhancement or reliability improve-
ment of our proposed software-based methodology, we gen-
erated two sets of faulty 8-bit SNN weights. Faults were
randomly distributed across all SNN layers in one set based
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Fig. 12. Comparing the average accuracy of non-repaired and repaired
architectures to the reference accuracy under the flip-bit-fault conditions.

on a normal distribution. Conversely, in the other set, fault
locations were shifted from the first and final layers to the
middle layers following our proposed methodology. Each set
of flawed weights underwent evaluation via Monte Carlo
simulations (1000 iterations per BER per fault type) with three
distinct BERs and two fault types (stuck-at and flip-bit faults).

1) Flip-bit fault: : For the flip-bit faults depicted in Fig. 11,
we evaluated accuracy transformation considering fault rates
of 0.00125, 0.00625, and 0.0125, respectively. Within our prior
3-D IC-based neuromorphic systems, we extensively analyzed
the impact of faults on each level of synaptic weights’ bits,
spanning from MSBs to LSBs. Notably, each stacked memory
layer comprises a pair of two bits in synaptic weights. Con-
sequently, Fig. 11 illustrates the ensuing accuracy degradation
across four distinct cases: 1) all four stacked memory layers
are affected, 2) three upper memory layers are affected, 3)
two upper memory layers are affected, and 4) solely the top
memory layer. In summary, our method enhances accuracy up
to 60%, showing strong fault-tolerance efficiency.

Fig. 12 illustrates the average performance of SNN in Monte
Carlo simulations featuring varied BERs for flip-bit faults.
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Fig. 13. The analysis compares the accuracy of two architectures with stuck-at faults. One does not have a reliability improvement methodology, while the
other includes our proposed method. We used our previous 3-D IC-based SNN architecture with four stacked memory layers, splitting 8 bits into four pairs
of two bits. The experiment explores the impact of faults on multiple stacked layers.

Our proposed algorithm demonstrates comparable outcomes
to a standard neuromorphic system unaffected by faults across
three BERs in most instances. However, when subjected to
a BER of 0.0125 affecting all bits, the system’s accuracy
diminished by approximately 5% (from 97.75% to 92.92%)
upon implementing our proposed method. In contrast, a similar
hardware system lacking fault tolerance experienced a sub-
stantial decline in accuracy, averaging only 24.32% with the
same BER. As a result, our proposal can yield a significant
fault-resilient improvement for neuromorphic systems.

2) Stuck-at fault: : The outcomes presented in Fig. 13
demonstrate the effects of stuck-at faults in multiple stacked
memory layers using consistent Monte Carlo iterations re-
ferred to in Fig. 11. Elevated BERs of 0.01, 0.05, and 0.10
are introduced into our 3-D IC-based neuromorphic system. As
indicated by Fig. 13, our proposed algorithm produces analo-
gous results for stuck-at faults occurring in the LSBs, which
exhibit notable fault resilience. However, the performance
does not show improvement when transitioning the weights
of higher-priority layers to lower-priority ones in the event of
faults affecting MSBs with a high BER of 0.10. Conversely,
similar BERs do not result in accuracy degradation within
the hardware system if our proposed method is implemented
in scenarios where faults manifest in three or fewer stacked
layers. Hence, this suggests incorporating additional important
levels of MSBs to enhance fault tolerance.

Fig. 14 illustrates the average accuracy degradation of the
hardware systems with and without fault tolerance methodol-
ogy. At a BER of 0.05, our proposed algorithm leads to an
accuracy reduction of approximately 20% (from 97.78% to
77.27%) compared to the reference performance. However, it
improves by roughly 56% (from 21% to 77.27%) compared
to the system’s performance without fault tolerance. When
considering a BER of 0.10, it is observed that only about 25%
of the total neurons are low-priority in the evaluated SNN. For
this BER, it is found that half of the neurons’ weights in the
middle layers are impacted by faults in the event of swapping.
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Fig. 14. Comparing the average accuracy of non-repaired and repaired
architectures to the reference accuracy under the stuck-at-fault conditions.

Consequently, the accuracy does not show improvement if our
proposed method is applied. This highlights a limitation of the
relocating strategy and the fault resilience of SNNs.

In conclusion, our proposed methodology presents two
key findings: 1) our approach can withstand a high BER
through the simple replacement of faulty weights, and 2) the
significance levels in our algorithm should encompass the
MSBs of weights to yield substantial improvement, extending
beyond the initial and final layers.

C. Performance Comparison

In this section, we compared the accuracy loss incurred by
our proposed methodology to similar approaches, as shown in
Table I. The hardware overhead information was unavailable
in the compared works, so it cannot be factored into our
evaluation. Our analysis focused on two proximate works,
ReSpawn and SoftSNN, which are pertinent to fault tolerance
in SNN. Notably, the hidden layers in our SNN are larger
than those in the compared works. As a result, our baseline
accuracy is higher. When applied to the MNIST benchmark,
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TABLE I
COMPARISON RESULTS BETWEEN THE PROPOSED METHODOLOGY AND

EXISTING WORKS.

Our work ReSpawn [9] SoftSNN [12]
Network Size 784:256:256:10 784:400 784:400

Hardware Architecture 3-D SNN 2-D SNN 2-D SNN
Benchmark MNIST MNIST MNIST

Tolerance Technique Swapping
Weights

Fault-Aware
Mapping

Bound-and-
Protect

Bit Error Rate 0.10 0.10 0.10
Baseline Accuracy 97.78% ∼ 86%1 ∼ 86%1

Accuracy Loss 0.01-0.24% ∼ 10%1 ∼ 12%1

1 We calculated the accuracy loss based on the provided images.

these methods reduced around 10 − 12% from the baseline
accuracy. In our research, aside from the BER effect on MSBs,
our strategies for bit distribution across stacked memory layers
yielded a notable range of accuracy loss, from 0.01 to 0.24%.
Notably, the significant accuracy diminution can be mitigated
by assigning additional important levels to MSBs.

Additionally, in contrast to prior research employing 2-D
hardware architecture, our proposed methodology capitalizes
on the advantages of 3-D hardware architecture. This approach
exploits the distribution of bits across multiple stacked layers
to enhance fault tolerance. The Fault-Aware Mapping protects
the MSBs by shifting the data word cyclically. However, it
introduces a notable energy overhead (6−20×) attributable to
the constraints imposed by 2-D hardware architecture preva-
lent in existing works.

In conclusion, our proposed approach delivers the same
accuracy improvement as other methods simply by redistribut-
ing weights to address faults. This also results in minimal
hardware area overhead and low energy consumption.

D. Hardware Overhead Evaluation

Table 1 assessed the hardware overhead associated with
our proposed methodology using various memory technolo-
gies (SRAM@45-nm, eDRAM@32-nm, STT-RAM@32-nm,
and ReRAM@180-nm). The initial configuration encompassed
memory die areas of 446,951.901µm2, 189,261.396µm2,
42,361.132µm2, and 875,285.979µm2 corresponding to the
respective memory technologies. Furthermore, Table II pro-
vides comprehensive insights into the energy consumption and
latency of both read and write memory operations.

In this context, hardware overhead was assessed using three
distinct BERs of 0.01, 0.05, and 0.10. The mean number
of read and write operations necessary for data relocation
upon fault occurrence was determined for each given BER.
Consequently, considering each memory technology’s respec-
tive attributes, the timing overhead and energy overhead for
reading and writing were extracted. Our findings indicate
that the ReRAM technology at the 180-nm node exhibits the
highest energy consumption (8.838µJ@BER = 0.10) for data
relocation among the four evaluated memory technologies.
Notwithstanding, the ReRAM technology evinces the lowest
leakage power (10.674mW per memory block), implying a
potentially reduced long-term power consumption. Conversely,
the eDRAM technology at the 32-nm node manifests the

TABLE II
HARDWARE COMPLEXITY OF MULTIPLE MEMORY TECHNOLOGIES WITH

THE PROPOSED METHODOLOGY.

Technology SRAM @
45-nm

eDRAM @
32-nm

STTSRAM
@ 32-nm

ReRAM @
180-nm

SNN Con-
figuration 3 Hidden Layers (784 × 256 × 256 × 10)

Memory
Size 4 Stacked Layers (4 × 256 kB)

Hardware
Area

446951.901
×4 µm2

189261.396
×4 µm2

42361.132
×4 µm2

875285.979
×4 µm2

Read
Latency 96.541 ps 85.066 ps 1.385 ns 1.6483 ns

Write
Latency 78.877 ps 66.676 ps 4.287 ns 8.885 ns

Read Dyn.
Energy 9.711 pJ 5.607 pJ 5.861 pJ 111.957

pJ
Write Dyn.

Energy 9.668 pJ 5.579 pJ 7.094 pJ 106.622
pJ

Leakage
Power

540.339
×4 mW

447.426
×4 mW

93.645
×4 mW

10.674
×4 mW

Case 1: BER = 0.01

Timing
Overhead 700.97 ns 606.36 ns 22.664 µs 42.088 µs

Energy
Overhead 77.438 nJ 44.698 nJ 51.768 nJ 873.44 nJ

Case 2: BER = 0.05

Timing
Overhead 3.538 µs 3.06 µs 114.38 µs 212.408

µs
Energy

Overhead
390.796

nJ
225.576

nJ 261.35 nJ 4.406 µJ

Case 3: BER = 0.10

Timing
Overhead 7.094 µs 6.136 µs 229.386

µs
425.974

µs
Energy

Overhead
783.724

nJ
452.384

nJ
523.926

nJ 8.838 µJ

TABLE III
EXECUTION TIME OF OUR PROPOSED ALGORITHM FOR 3-D MESH-BASED

NOMA

BER 3-D Mesh-based NOMA - SNN’s Configuration
784:256:256:10 784:512:256:10 784:512:512:10

0.01 2.457 ms 3.554 ms 7.034 ms

0.05 8.286 ms 11.416 ms 23.946 ms

0.10 14.422 ms 20.581 ms 42.470 ms

most efficient energy utilization (44.698nJ@BER = 0.10)
for individual data relocations to accommodate faults. Nev-
ertheless, its conspicuous high leakage power (447.426mW
per memory block) suggests an anticipated escalation in
long-term power consumption relative to ReRAM. Regarding
timing overhead, ReRAM also has the most extended delay
(425.974µs@BER = 0.10) for relocating weights in the
event of faults, while eDRAM has the fastest response time
(6.136µs@BER = 0.10).

In summary, using the proposed methodology for fault
tolerance, a suitable memory technology can be selected based
on the budget and design constraints.

E. Execution Time

In Table III, the execution times of our proposed algorithm
for various network sizes are presented. The evaluation utilized
the 13th Gen Intel Core i-series processor, specifically the
i7-13000K with 16 cores, running Ubuntu 22.04.3 LTS. The
algorithm was developed in Python without thread parallelism.
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This study involved the introduction of faults at three distinct
BERs (0.01, 0.05, and 0.1) on three SNNs. Our analysis
indicates a direct correlation between the execution time of
the algorithm and the occurrence of faults, as well as the
magnitude of the SNN. As the network size grows or faults
become more frequent, the execution time correspondingly
increases. For example, when dealing with a network size of
784×256×256×10, the algorithm exhibited average execution
times of 2.457ms, 8.286ms, and 14.422ms for operations
under BER of 0.01, 0.05, and 0.10, respectively. With an
expansion in the scale of the SNN to 784× 512× 512× 10,
the average execution times rose to 7.034ms, 23.946ms, and
42.470ms, respectively, for the same BERs.

In summary, the execution time of the proposed method and
framework is lightweight and friendly to the co-host CPU with
a fast response.

VI. DISCUSSION

The previous section shows that NOMA offers high-
accuracy improvement with a fast execution time and low
resource overhead. However, several points need to be ad-
dressed to improve its efficiency. Therefore, we dedicate this
section to addressing the limitations of our work and proposing
potential solutions. First, our current software-based method
lacks suitable lightweight fault tolerance for hardware systems.
Thus, future efforts must develop a novel hardware approach
for migrating weights among memory blocks to ensure high
fault tolerance in neuromorphic systems. Additionally, this
method must account for the design budget and constraints.

Second, the evaluation only covers two types of faults
(stuck-at faults and flip-bit faults), and their fault rates are
provided at the early design stage, which may not fit the actual
fault models in the fabricated hardware systems. Therefore,
future works should evaluate more hardware fault behaviors
such as stuck-short, stuck-open, and bridging faults to closely
match the real hardware systems.

Third, Algorithm 1 uses distances to decide the edge in the
generated graph; however, there is a gap between the distances
and the actual latency of wires. In fact, detailed timing requires
running the place and route, so it is impossible to have it during
the problem-solving phase. Therefore, we believe having the
distance to cut off long latency repairing paths is a feasible
solution.

Fourth, given the distinct physical characteristics of 3-D ICs
compared to 2-D ICs, fault models for transient and permanent
faults must encompass these divergences. For example, the
impact of thermal dissipation on logic operations in 3-D ICs
elevates the likelihood of transient faults manifesting around
areas of heightened temperature. Consequently, developing
fault models tailored to 3-D ICs is essential to establish a
robust and effective fault tolerance framework.

Fifth, this study builds upon prior research wherein 8-bit
weights are evenly distributed across four stacked memory
layers. However, optimizing fault tolerance may be achieved
by adjusting the number of stacked layers or the bit allo-
cation within each layer. This is particularly important due
to the significance of the MSBs, which necessitate storage

in a low-noise-impact layer. Consequently, the optimization
process introduces a higher level of complexity that may only
comprehensively encompass some potential scenarios outlined
in this article.

Sixth, our evaluation is limited to a small-scale hardware
system in the present study. However, it is essential to note that
neuromorphic systems encompass a much broader scope, in-
cluding NoC-based systems and Systems-on-Chip. Therefore,
it is imperative to acknowledge that our proposed methodology
needs to be revised because it does not comprehensively
address high-complexity systems. To address this constraint,
we will focus on expanding the scale of our work to reduce
this limitation.

While this endeavor has several limitations, the proposed
methodology has demonstrated the potential to enhance system
reliability with minimal hardware and energy overhead.

VII. CONCLUSIONS

This research examines the varying impact of faults on
Spiking Neural Networks (SNNs), emphasizing that faults in
the neurons’ weights in the first and last layers of the network
result in a more significant reduction in accuracy than those
occurring in the middle layers. To address this, we present
a methodology, NOMA, for enhancing the dependability of
3-D IC-based SNNs by directly reallocating priority weights.
The efficiency of this approach is demonstrated across diverse
memory technologies, yielding accuracy improvements con-
sistent with those observed in established studies. Subsequent
research will seek to incorporate more realistic fault models
for 3-D IC-based neuromorphic systems and develop a more
suitable hardware strategy for fault tolerance.
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