
1

ApproxiMorph: Energy-efficient Neuromorphic
System with Layer-wise Approximation of Spiking

Neural Networks and 3D-Stacked SRAM
Ryoji Kobayashi§, Ngo-Doanh Nguyen, Graduate Student Member, IEEE,† Abderazek Ben Abdallah, Senior

Member, IEEE,§ Nguyen Anh Vu Doan‡, Khanh N. Dang, Member, IEEE,§

Abstract— This paper proposes ApproxiMorph, a compre-1

hensive framework for both software and hardware co-design,2

targeting energy-efficient AI applications using 3D-IC-based3

neuromorphic systems. By leveraging parallel interconnections4

and high-bandwidth communications inherent to 3D-ICs, and5

the noise-resilience characteristics of spiking neural networks6

(SNNs), ApproxiMorph achieves significant power savings by7

exploiting (1) approximate implementation of neuron cells, (2)8

layer-wise approximation of SNNs through the heuristic explo-9

ration algorithm, (3) reduced-voltage operation in the 3D-stacked10

SRAM, and (4) incorporating a weight-tuning method. As a11

result, to search for the energy-optimal layer-wise approximation,12

ApproxiMorph explores only 0.44–0.67% of all possible combi-13

nations, achieving a 28.06% power saving for additions with14

a 0.60% accuracy loss in comparison to the baseline SNN for15

MNIST. In the VGG16 for CIFAR-10, ApproxiMorph searches16

around 103 combinations from over 1017 possible solutions,17

resulting in a 29.16% power saving with slight accuracy gain.18

Furthermore, integrating all methods enhances the accuracy of19

approximate implementations and demonstrates higher error20

resilience than accurate implementations.21

Index Terms—Spiking Neural Networks, 3D-IC-based Neuro-22

morphic System, Approximate Computing, Optimization23

I. INTRODUCTION24

RAPID growth of artificial intelligence (AI) applications25

has led to a substantial increase in power consumption26

[1], [2], showing a critical challenge for sustainable or carbon-27

efficient computing [3]. However, as highlighted in [4], the28

energy efficiency of CPU/GPU-based computation for deep29

neural network (DNN) applications has only improved by ap-30

proximately an order of magnitude over the past decade. This31

limited improvement is primarily attributed to the increasing32

number of parameters and the growing complexity of models.33

Consequently, the power consumption from three key sources34

has significantly escalated: (1) arithmetic computations for35

activation functions (e.g., addition and multiplication), (2)36

memory systems required to store parameters, and (3) commu-37

nication overhead among hardware components such as CPUs,38

GPUs, and memory.39

On the other hand, Spiking Neural Networks (SNNs) or neu-40

romorphic computing offer a biologically inspired alternative41

to traditional Artificial Neural Networks (ANNs) [5]. Unlike42

§The School of Computer Science and Engineering, The Univer-
sity of Aizu, Aizu-Wakamatsu 965-8580, Fukushima, Japan. (e-mail:
k.ryoji0209@gmail.com; benab@u-aizu.ac.jp; khanh@u-aizu.ac.jp)

†Department of Electrical, Electronics and Telecommunication Engi-
neering and Naval Architecture, University of Genoa, Italy. (e-mail:
doanhnn@ieee.org)

‡Infineon Technologies AG, Germany (email: anhvu.doan@infineon.com)
(Corresponding author: Ryoji Kobayashi.)

ANNs, where neurons produce continuous outputs via activa- 43

tion functions, SNNs operate using discrete action potentials 44

or spikes. This mechanism enables simplified and low-power 45

neuron cell operations, particularly with the Integrate-and-Fire 46

model [6]. These advantages make SNNs ideal for resource- 47

constrained applications, such as Internet of Things (IoT) 48

devices and portable electronics. Additionally, SNNs exhibit 49

inherent noise resilience, allowing tolerance to computational 50

inaccuracies, which aligns well with approximate computing 51

techniques [7]–[9]. 52

To enhance the energy efficiency of arithmetic units, ap- 53

proximate computing has emerged as a promising paradigm 54

that trades a limited degree of computational precision for 55

significant energy savings [10]. Previous works, such as the 56

approximate neural network (AxNN) introduced by Venkatara- 57

mani et al. [11] and the approximate spiking neural network 58

(AxSNN) proposed by Sanchari et al. [8], have demonstrated 59

notable reductions in energy consumption for neural networks. 60

However, in neuromorphic systems, memory power consump- 61

tion remains a dominant factor, accounting for approximately 62

50–75% of total power usage, compared to 20–40% for 63

processing elements [12]. 64

Various strategies have been explored to address memory- 65

related energy consumption. For instance, Putra et al. [12] 66

utilized approximate DRAM with voltage scaling. In addition, 67

Nguyen et al. [13] introduced a novel 3D-stacked SRAM 68

memory-on-logic design leveraging partial voltage scaling 69

and power gating for energy reduction. Another promising 70

direction involves computation-in-memory (CiM) architec- 71

tures, where processing elements are integrated with memory 72

cells using memristive devices (ReRAM, FeFET, STT-RAM, 73

etc.) [14]–[16]. However, CiM architectures face challenges 74

with reliability due to their analog-based operations [17]. 75

Despite these advancements, some underexplored areas are 76

motivating us in this work: 77

1) First, a combined approach integrating approximate 78

neuron cells and memory systems holds significant po- 79

tential for achieving energy-efficient neuromorphic sys- 80

tems. However, this area remains underexplored, and to 81

the best of our knowledge, no prior work has investi- 82

gated this combination. 83

2) Second, optimizing the approximation levels for neuron 84

cells before manufacturing is crucial, as these levels 85

cannot be adjusted post-fabrication. However, determin- 86

ing the optimal trade-offs between accuracy and energy 87

savings presents a significant challenge, primarily due to 88

the computational demands of evaluating numerous con- 89

2

figurations. For instance, with layer-wise approximation1

across five layers and ten different approximate adders,2

there are 105 possible combinations to consider. Incor-3

porating additional parameters, such as voltage scaling,4

power-gating settings, or finer-granularity approxima-5

tions, further increases the number of combinations6

exponentially, complicating the exploration process.7

3) Third, existing approximation techniques typically ac-8

cept accuracy losses as a trade-off for reduced power9

consumption. However, regaining the lost accuracy after10

combining multiple approximation techniques is feasi-11

ble, as the computational and storage distortions can12

complement each other. This synergy enables the design13

of systems with significantly lower power consumption14

while maintaining comparable accuracy.15

Building on these motivations, this paper presents Approx-16

iMorph, a comprehensive framework that reduces the energy17

consumption of Spiking Neural Networks through approxi-18

mate computing and approximate 3D stacking SRAM. The19

main contributions of this work are as follows:20

• A novel framework integrating approximate neuron cells21

and 3D-IC-based stacking memory to achieve energy-22

efficient neuromorphic systems.23

• Implementation of memory approximation using partial24

voltage scaling and power-gating techniques, combined25

with approximate adders for neuron cells due to their26

multiplier-less design.27

• Development of a time-efficient heuristic exploration28

methodology to determine optimal approximation levels29

for each layer in the target SNNs, targeting low-power30

solutions while compensating for quality.31

• Comprehensive evaluations demonstrating the benefits32

of combining approximate neuron cells and memory33

systems, with detailed quality-energy trade-off analyses.34

The rest of this paper is organized as follows. Section II35

reviews related works. Section III describes the implemen-36

tation of the 3D-IC-based architecture with the proposed37

approximate design approach. The exploration methodology38

is detailed in Section IV. Section V presents performance39

analyses and assessments of quality-energy trade-offs. Discus-40

sions are provided in Section VI, and conclusions are drawn41

in Section VII.42

II. RELATED WORKS43

In this section, we will cover existing work on power-44

efficient AI using neuromorphic computing. Then, we discuss45

the optimization approach for the approximation flow of46

hardware design47

A. Neuromorphic Systems for low-power AI Applications48

1) 2D-IC-based design: In recent years, numerous stud-49

ies have explored low-power solutions for AI applications50

by leveraging the resource-efficient nature of spiking neural51

networks (SNNs) [18]. For example, Loihi by Intel [19] and52

TrueNorth by IBM [20] are prominent 2D-IC-based neuromor-53

phic systems that have demonstrated significant improvements54

in energy efficiency. However, in the 2D architecture, memory 55

segments for synaptic weights and processing elements are 56

located on the same layer, leading to an inherent bottleneck 57

due to the high communication cost required for data transfer 58

between them. 59

2) 3D-IC-based design: To address this challenge, 3D- 60

IC-based neuromorphic systems have been introduced. An 61

et al. [21] proposed a 3D neuromorphic system employing 62

memristive devices as synapses. Kim et al. [22] developed 63

an architecture named Neurocube, which stacks DRAM dies 64

on a logic die using Through-Silicon-Vias (TSVs) technology. 65

Similarly, Ueyoshi et al. [23] designed a DNN accelerator 66

with 3D SRAM, using Inductive Coupling (TCI) technology, 67

which offers advantages in manufacturing cost, yield rate, 68

and reliability [24]. These studies demonstrated that 3D im- 69

plementations can significantly reduce communication costs, 70

hardware footprint, and power consumption due to the vertical 71

alignment of memory architecture. 72

3) Approximate design: Another approach to enhancing the 73

energy efficiency of neuromorphic systems is the applica- 74

tion of approximation-based techniques, leveraging the noise- 75

resilient nature of SNNs. Weight quantization is a widely 76

adopted method in many studies to reduce energy consump- 77

tion and memory usage. For instance, Putra and Muham- 78

mad [25] proposed the Q-SpiNN framework, which quantizes 79

SNN parameters. This approach achieved approximately 4× 80

and 2× memory savings for unsupervised and supervised 81

SNN models, respectively, while maintaining similar accu- 82

racy. Similarly, Hasssan et al. [26] introduced SpQuant-SNN, 83

combining quantization with dynamic pruning. Their method 84

demonstrated up to 13× memory reduction and over 4.7× 85

FLOPs reduction compared to state-of-the-art baseline models. 86

Since memory is the most energy-intensive component of 87

neuromorphic systems, approximating memory using voltage 88

scaling techniques offers significant potential for reducing the 89

total power. Voltron, developed by Chang et al. [27], explored 90

the effects of reduced-voltage DRAM operation across various 91

workloads and proposed the DRAM energy reduction mech- 92

anism. This approach achieved an average energy savings of 93

10.5% while minimizing performance degradation. Similarly, 94

Minerva, introduced by Reagen et al. [28], adopted a co- 95

design approach involving algorithms, architecture, and cir- 96

cuits to optimize DNN accelerators, achieving a 2.7× energy 97

reduction by lowering SRAM voltages. Putra et al. considered 98

the reduced-voltage operation of two-layer SNN for both 99

2D-based SRAM and DRAM with fault-tolerant approaches, 100

which identifies faulty memory cells for weight mapping [29]. 101

For 3D architectures, Zhao et al. [30] applied voltage scaling 102

to processing cores and cache hierarchies, resulting in a 34% 103

total energy reduction. Additionally, an in-situ dynamic quan- 104

tization technique using a 3D-stacked SRAM architecture was 105

introduced in [31], demonstrating successful energy reductions 106

while preserving the performance quality of SNN applications. 107

After memory, computation units are the next largest con- 108

sumer of power in neuromorphic systems [12]. Given the ex- 109

tensive number of calculations performed by neuron cells, ap- 110

plying approximate arithmetic operators, such as approximate 111

adders and multipliers, emerges as a promising solution for 112

3

Ad
dr

es
s

D
ec

od
er

...

Synapse Val.TS
V

TS
V

x M

1st Memory Die - m0

Mth Memory Die - mM-1(b)

Wi [0:n-1] = 110001 ... 1101

Synaptic Weight Transformation

Wi = {Wi[0], Wi[1], Wi[2], ..., Wi[M-1]}

m2 ... mM-1m1m0

110 ... 10100 1Bits

Layer

Decomposition

Composition

Logic Die
Package Substrate

3D Stacking Memory

.......

TS
V

TS
V

............

...
..

TS
V

TS
V

Mth Memory Die

2nd Memory Die

3rd Memory Die

1st Memory Die

(a)

LI
F

Ar
ra

y

D
ec

od
er

En
co

de
r

In
. S

pi
ke

Synapse Crossbar

Address Out.

d0 d1 d2 dn-1
a0

a1

a2

an-1

...

: Active
: Inactive

an : Axon
dn : Dendrite

/
n

n
/

In
pu

t S
pi

ke

O
ut

pu
t S

pi
ke

Fr
om

 O
th

er

C
lu

st
er

s

To
 O

th
er

C

lu
st

er
s

N
/

N
/

TSV TSVTSV TSVp p

/ /

(c)

ST
D

P

LIF Neuron

x N

m/

/

C
on

tr
ol

le
r

In
te

rf
ac

e

m

m
/

Integrator (+)Weight
Leak

Control

Acc. Reg.

≥Threshold

Reset

Refractory
Control

Set

LIF Neuron Implementation

Enable/Disable

Spike
(d)

Fig. 1. The overview of our 3D-IC-based neuromorphic system: (a) Overview of the 3D stacking memory with M layers; (b) Approximate Stack Memory
architecture with an example of synaptic weight transformation (decomposition/composition). (c) Block diagram of the logic component (computing core);
(d) Detail of the LIF neuron implementation.

low-power operation. Numerous studies on approximate arith-1

metic operators and their applications have demonstrated their2

effectiveness in hardware implementations [32]. However, to3

the best of the authors’ knowledge, research on employing4

approximate units in SNN applications remains limited. A5

recent study applied approximate adders and multipliers to6

the Izhikevich neuron model, achieving energy reductions with7

minimal accuracy loss in a two-layer neural network [33].8

Although computations for neurons and memory for synap-9

tic weights are the largest consumers of power, no prior10

works advocated the benefits of applying the approximation11

paradigm to both at once to facilitate further energy efficiency12

of neuromorphic systems. Therefore, this work considers13

the use of approximate arithmetic operators and 3D-stacked14

memory in multi-layer perceptrons and convolutional neural15

network models to evaluate their potential in neuromorphic16

applications.17

B. Optimization for Approximate Hardware Systems18

1) Circuit Approximation: When multiple approximation19

schemes are available, designers can select the specific com-20

bination that provides the best energy-quality trade-offs for21

the target application. However, as the number of configura-22

tions increases, the possible combinations grow exponentially,23

making exhaustive exploration of the design space infeasible.24

Numerous approaches have been proposed to address this25

challenge, spanning from the arithmetic operator level to the26

application level. Mrazek et al. [34] utilized multi-objective27

Cartesian Genetic Programming (CGP) to optimize circuits28

for approximate adders and multipliers. Zervakis et al. [35]29

introduced a systematic methodology combining multi-level30

approximation with the Voltage Over-Scaling (VOS) tech-31

nique. Furthermore, frameworks such as autoAx by Mrazek32

et al. [36] and ApproxFPGAs by Prabakaran et al. [37]33

were developed to optimize configurations of approximate34

circuits tailored to target applications. While these approaches35

achieve optimal energy-quality trade-offs for less complex36

applications, their scalability to larger design spaces remains37

limited as they rely on the bit-wise design space exploration.38

The neural network circuit typically requires embedding a39

large number of neurons to gain performance improvement,40

and thus, these fine-grained design searches are inefficient in41

most cases.42

2) System Approximation: To overcome this limitation, 43

prior studies have demonstrated the effectiveness of approx- 44

imation techniques for more complex applications through 45

coarse-grained optimization approaches. For example, Manuel 46

et al. [38] employed a GA-based process, where the search 47

space is confined to a user-defined region, for image color pro- 48

cessing applications. ALWANN by Mrazek et al. [39] utilized 49

non-uniform layer-wise approximation for the convolutional 50

layers in CNNs, showing its advantage over uniform approxi- 51

mation. Furthermore, Nguyen et al. [40] proposed a framework 52

that searches for the optimal quantization level for each 53

layer in SNNs. As demonstrated in several studies, coarse- 54

grained optimization enables designers to effectively navigate 55

the design space, achieving the best energy-quality trade- 56

offs. Building on this, we propose a time-efficient heuristic 57

exploration algorithm and a framework called ApproxiMorph 58

to derive non-uniform layer-wise approximation specifically 59

for target SNNs. 60

III. 3D-IC-BASED NEUROMORPHIC SYSTEMS 61

This section introduces the implementation of our hardware 62

architecture. First, we show the details of 3D-IC-based stack- 63

ing memory. Second, the strategy for low-power operation 64

through in-situ memory approximations. Then, we present the 65

methodology for approximating neuron cells. 66

A. Overall Neuromorphic System 67

An overview of our hardware architecture is shown in Fig. 1. 68

Fig. 1(a) presents the block diagram of the architecture. The 69

memory dies are stacked vertically on top of the logic die, and 70

the stored bits in memory are accessed and transferred to the 71

computing segments via TSV connections. This strategy effec- 72

tively reduces the data transfer distance between the memory 73

and computing segments, resulting in a decrease in the power 74

consumption and latency required for communication. 75

Fig. 1(b) shows the implementation of each memory die and 76

the methodology for synaptic weight transformation. Thanks 77

to our 3D implementation, memory words (e.g., 8-bit, 16-bit) 78

can be split into smaller subsets (e.g., 1-bit, 2-bit, 4-bit) and 79

stored in the corresponding memory dies. In this approach, 80

synaptic weights are distributed across different memory dies. 81

When the stored synaptic weight is used in the computing 82

4

............

.....

1st Memory Die

Mth Memory Die

2nd Memory Die

M-1th Memory Die

Addr.
Dec.

TSV TSV Synapse Val. ...

…
……

……

NormalUndervolting

##

"! "" …… "#$! "#

##

"! "" …… "#$! "#

#$ #$

(a)

#% #%

…… ……

#&
#&'$

#&

(b)

#&'$
: Undervolting : Normal : Bit Error : No Error : Correct Bit

Fig. 2. The example of operations with undervolting: (a) Memory layers with
undervolting. (b) Faults’ occurrence in comparison to normal operations.

............

.....

1st Memory Die

Mth Memory Die

2nd Memory Die

M-1th Memory Die

Addr.
Dec.

TSV TSV Synapse Val. ...

…
……

……

NormalUndervolting & Power-gating

##

"! "" …… "#$! "#

##

"! "" …… "#$! "#

#$ #$

(a)

#% #%

…… ……

#&
#&'$

#&

(b)

#&'$

: Bit Error : No Error : Correct Bit: Undervolting : Normal: Power-gating

Fig. 3. The example of operations with undervolting and power-gating: (a)
Memory layers with undervolting and power-gating; (b) The occurrence of
the faults with comparison to the normal operations.

segments, the subset bits are transferred and concatenated to1

form a single meaningful value.2

B. Mapping with 3D Stacking Memory3

With the stacked memory structure shown in Fig. 1, the4

SNN workload should be carefully mapped onto the hardware5

for inference. Given an n-bit weight format and M memory6

layers, several approaches exist for mapping the weights,7

assuming on-chip learning is excluded. Due to their inher-8

ent susceptibility to faults, these memories are preferred for9

storing weights rather than configuration parameters or com-10

munication data, as faulty bits in the latter can be catastrophic.11

A common strategy is to map the most significant bits12

(MSBs) of the weights to the layer closest to the logic die,13

and the least significant bits (LSBs) to the furthest layer. This14

strategy has two main advantages: First, faults may occur post-15

bonding or during runtime, and defective layers are more likely16

to appear in the furthest memory layer or in the interconnects17

(e.g., Through-Silicon Vias), leading to it. Second, this allows18

the bits-evaluating mechanism for fault-tolerance, as discussed19

in [41]. For example, assuming the bit-width of the synaptic20

weight is 8 bits (n = 8), the number of stacked memory dies is21

four (M = 4), and each memory die contains 2-bit subsets, the22

synaptic weight W [7 : 0] = 01101100 can be stored in bottom-23

up order as {m1,m2,m3,m4} = {01, 10, 11, 00}, where mi24

represents the ith memory die. In this case, m1 contains the25

most significant bits (MSBs), while m4 includes the least26

significant bits (LSBs). In the case of m4 become faulty,27

the system can read {m1,m2,m3,m
′
4} = {01, 10, 11, XX}28

where XX is the faulty bits.29

However, it is worth noting that in an ideal system, the30

mapping location of each bit can be flexible, since after31

reading from the memory layers, the bits can be reordered32

to reconstruct the correct bit positions in the final weight33

representation.34

C. Approximation with 3D Stacking Memory35

Unlike the traditional 2D memory, where the voltage control36

affects the overall memory cells at once, 3D stacked memory37

LSB

TIn
Sp

k

T

LI
F

V !!"

O
ut
Sp

k

T

MSB

…

"#
"$
"%…

"&
"&'$

Approximate Operation

$(

$'

$&

$′'

$′&

T

S

T

S

T

S

T

S

Spiking Neural Network
with Approximation

T

S

$′(

$′%

T

S

T

S

LSB

TIn
Sp

k

T

LI
F

V !!"

O
ut
Sp

k

T

MSB

…

"#
"$
"%…

"&
"&'$

Normal Operation

"('$

"(

TIn
Sp

k

T

LI
F

V !!"

O
ut
Sp

k

T

MSB LSB

…

"#
"$
"%…

"&
"&'$

Approximate Operation

")* ")

TIn
Sp

k

T

LI
F

V !!"

O
ut
Sp

k

T

MSB

…
"#
"$
"%…
"&
"&'$

Normal Operation

")

LSB
(a) (b)

Fig. 4. The spiking neural network (SNN) with approximate neuron cells:
(a) 3-bit approximation on LSBs; (b) 4-bit approximation on LSBs.

can enable partial voltage scaling. By exploiting this unique 38

advantage, memory can be approximated by reducing or 39

turning off the supply voltage of the different memory dies 40

independently. More specifically, since active and inactive 41

bits are stored separately, it is possible to lower the supply 42

voltage only for the memory dies containing inactive bits. 43

Consequently, bit errors arising from voltage scaling impact 44

the least significant bits (LSBs), while the most significant bits 45

(MSBs) remain unaffected. This approach minimizes quality 46

degradation while maximizing energy efficiency. 47

In our previous work, we explored the potential impact on 48

SNN applications and the bit errors induced by the reduced 49

voltage [13]. In this context, the bit error rate (BER) of SRAM 50

cells is examined, as our implementation is based on the 51

SRAM model. According to previous works [42], [43], the 52

BER of an SRAM cell can be defined as the probability that 53

the static noise margin (SNM) is approximately zero. Fig. 1 54

in Appendix A illustrates the relationship between the BER of 55

a 45-nm 6T SRAM cell and the supply voltage in the near- 56

threshold region (0.7V to 0.85V), which is obtained using 57

PrimeSim HSPICE and mathematical equations [42]–[44]. 58

Examples of approximate operations are shown in Fig. 2 59

and Fig. 3, where the bit errors resulting from voltage scaling 60

and power-gating techniques are illustrated. In these figures, 61

the red-square areas indicate flip-bit errors due to reduced- 62

voltage operations (undervolting), the grey-square areas show 63

the quantized bits resulting from power gating, and the blue- 64

square areas represent the bits affected by either undervolting 65

or power gating. 66

To handle approximation adaptively, we apply different 67

power supply modes based on the activity of memory regions 68

and the error tolerance of the stored data. The normal mode is 69

used for critical data that requires full accuracy, undervolting 70

is applied to regions where minor bit flips are tolerable, 71

and power-gating is employed for inactive regions to achieve 72

maximum energy savings. For example, in an SNN inference 73

task, synaptic weights can be split into different subsets (from 74

MSB to LSB), as discussed in Section III-C. Our strategy 75

prioritizes lowering the voltage of the LSB region first and then 76

progressively moving toward the MSB. When undervolting 77

reaches its limit and the bit error rate (BER) becomes exces- 78

sively high, maintaining power for the layer containing these 79

bits becomes inefficient, leading to the application of power 80

gating. This approach allows energy reduction while tolerating 81

a small accuracy degradation. Moreover, quantization using 82

power gating can result in significant energy savings. 83

5

In this work, we analyzed the trade-off between power1

saving and accuracy of the SNN before mapping. In other2

words, our system currently does not support on-chip (dy-3

namic) decision-making regarding the supply voltage and4

power gating. Therefore, we need off-chip support for the5

voltage controller to employ undervolting and power gating6

during operation based on the pre-mapping analysis about the7

expected trade-off.8

By exploiting this voltage-mode flexibility and understand-9

ing the impact of approximation on SNN behavior, we can10

maximize the energy efficiency of the memory system while11

maintaining acceptable inference accuracy.12

D. Approximation in Neuron Cells13

To achieve further energy efficiency of neuromorphic sys-14

tems, the computation unit, especially the neuron cell, is also15

the subject of approximation.16

Fig. 1(c) illustrates the overview architecture of the logic17

component, and Fig. 1(d) shows the detailed implementation18

of the neuron cell. In this work, we used the Leaky integrate-19

and-fire (LIF) neuron as a component of SNN due to its20

potential for hardware-friendly implementation. Since the neu-21

ron cell operates in an accumulation and firing manner, it22

comprises an accumulation register and an adder, as shown in23

Fig. 1(d). At each time step, the synaptic weights are summed24

based on the input spikes from the pre-synaptic neuron cells,25

and the output spike from one neuron can be transferred to26

either the same cluster or other clusters. In summary, the27

behavior of the LIF neuron can be represented mathematically28

as follows:29

Vi(t) = Vi(t− 1) +
∑
j

wijxj(t− 1)− λ (1)

30

xi(t) =

{
1 if Vi(t) ≥ Vth.
0 otherwise.

(2)

where Vi(t) is the membrane potential of the neuron i at time31

step t, wij is the synaptic weight between neuron i and j,32

xi(t) is the spike at time step t, and λ is the leakage value.33

The approximation methodology for neuron cells is straight-34

forward; an adder in the neuron cell is replaced with an35

approximate adder. While the computation errors are induced36

by approximate implementation, they are usually limited to37

the LSBs. Fig. 4 shows an example of SNN operation with38

approximate neuron cells. Here, the red-square areas indicate39

bits under the influence of the approximation. For instance,40

Fig. 4(a) and (b) present the approximate operation of neuron41

cells in comparison to the normal one. In the case of (a), even42

if the input spike train is the same, the time the output spike43

is emitted is delayed by a single time step. In (b), there is one44

undesired input spike (red bar) and one missing input spike45

(red dashed bar), which is because of the computation errors46

in the previous layer. As a result, one undesired output spike is47

emitted, but another output spike is the exact timing as normal48

operation. Since output spike errors are propagated from one49

layer to another, careful selection of an approximate adder is50

needed to maximize energy savings.51

SNN model

Design
constraints

Memory
configurations

Uniform
approximation

Layer-wise
approximation

Optimization

Extract weights

Adjust weights
based on (Eq. 6)

Input Weight-tuning

Fault
rate

Fault
model

Generate fault
positions

Fault injection
analysis

Fault Injection
& Analysis Evaluation

Evaluate the
quality of SNN

Evaluate energy
of hardware

Configs of
approx. adders

Configs of
supply voltage

Output

Approximate
adders

Reduced set of
approx. adders

Fig. 5. The proposed ApproxiMorph framework’s flow.

E. Raising Question About Approximation Selection 52

In general, the approximate stacking memory architecture 53

offers the ability to update its strategy on the fly by tuning the 54

supply voltages. However, the primary challenge is selecting 55

an appropriate approximate circuit for the neuron, as this 56

choice significantly impacts performance and cannot be altered 57

post-fabrication. Selecting these circuits is essential, as the 58

complexity increases with the number of available adders and 59

the granularity of the selection process. 60

Here, let’s consider a system with N neurons divided into 61

B subsets (e.g. layers), where subset i contains ni neurons: 62

N =

B−1∑
i=0

ni (3)

Additionally, let A be the number of adder types available 63

for selection. For simplicity, we assume that all neurons in 64

a given subset (e.g., a layer) use the same type of adder, 65

regardless of granularity. Under this assumption, the total 66

number of combinations C to be validated for the approximate 67

neurons is: 68

Capx neuron = AB (4)

If we extend this to include memory approximations, con- 69

sider a memory system with L silicon layers and V different 70

voltage levels, where VDD = 0V is considered power-gating. 71

The total number of combinations, including both neuron and 72

memory approximations, is then given by: 73

Cfinal = V L ·AB (5)

74For instance, if we have B = 5 subsets, A = 10 adder types, 75

V = 7 voltage levels, and L = 2 memory layers, the total 76

number of combinations to evaluate would be approximately 77

4.9 × 106. Even with fixed supply voltages, we end up 78

with 105 combinations. It is important to note that for each 79

combination, not just one inference is performed; instead, a 80

Monte Carlo simulation (typically with 1,000 ∼ 10,000 tests) 81

is required to analyze the impact of flip-bit errors at different 82

memory locations. This emphasizes the significant challenge 83

of efficiently selecting optimal approximation techniques, a 84

topic that will be addressed in the following section. 85

IV. PROPOSED APPROXIMATION SELECTION 86

METHODOLOGY 87

This section introduces our proposed ApproxiMorph, a 88

methodology for optimizing the configuration of the approx- 89

imate SNN implementation. We present an overview of the 90

proposed framework, followed by a detailed discussion of the 91

optimization process and weight-tuning method. 92

6

A. Proposed Framework1

Fig. 5 shows the proposed ApproxiMorph framework. The2

inputs consist of the set of approximate adders (used for3

the approximate implementation of neurons), the target SNN4

model, design constraints, and memory configuration. In the5

optimization phase, we explore the optimal approximate con-6

figurations based on the quality constraint (Section IV-B).7

Then, the weight-tuning method is applied to fit the synaptic8

weights to the approximated SNN model (Section IV-C). To9

evaluate the effectiveness of this phase, we also examine the10

quality without the weight-tuning method.11

Next, the fault scenarios on reduced voltage operation12

are emulated. The fault position is determined based on the13

fault characteristic (e.g., fault rate, fault model) and memory14

configuration. Here, the Monte Carlo simulation is used to15

analyze the impacts of faults on the model’s quality.16

Finally, the quality of approximate SNN and the energy17

consumption of the hardware system are evaluated, and the18

framework outputs the resulting hardware configurations.19

B. Optimization Process for Approximation Selection20

We consider a heuristic exploration approach to search for21

combinations of approximate adders used in different layers of22

the SNN model that provide optimal design choices. However,23

the naive GA-based approach consumes a lot of time because24

it starts from random states. Thus, in this work, we initiate25

the optimization process from a specific initial state instead26

of random states. However, this approach sacrifices some27

variety in the final solutions to some extent. Furthermore,28

the proposed algorithm is designed to focus on lowering the29

power consumption as much as possible while maintaining30

accuracy. To this end, we also proposed the uni-directional31

generation algorithm instead of GA-based crossover/mutation32

operations. The proposed optimization algorithm is described33

in Algorithm 1, and a detailed description is provided in34

Appendix B of the supplemental document.35

In summary, the proposed method has the following four36

key steps:37

• Step 1: We investigate the quality-power trade-offs in38

the case of uniform approximation using the candidate39

approximate adders (lines 1-4). The quality is evaluated40

by executing the approximated SNN using the validation41

dataset D, and power is obtained by borrowing estimated42

power from EvoApprox library [34]. Since ApproxiMorph43

and the process of generating the approximate circuits are44

independent, arbitrary approximate adders can be used.45

• Step 2: Based on the quality and power evaluation of46

uniform selection obtained in Step 1, the list of approx-47

imate adders A is reorganized such that the approxi-48

mations resulting in lower quality always correspond to49

lower power (lines 5-6). This is because the approximate50

adder leading to lower quality does not always result in51

lower power consumption [7]. This process eliminates52

certain candidate approximate adders from the initial list53

and generates a new list with reduced candidates. As a54

consequence, this helps reduce the search space of the55

optimization process. Although some useful adders may56

Algorithm 1 - The Proposed Optimization Algorithm for
Multi-level Layer-wise Approximation of SNN
Require: modelsnn = The pre-trained SNN model;

L = The number of layers in SNN model;
N = The number of approximate adders;
D = Validation dataset;
A = [A0, A1, ..., AN−1] The list of approximate adders;
Qinit = Quality constraint for initial state;
Qsol = Quality constraint for solutions;
Mpop = Maximum number of solutions;

Ensure: P ⊆ {A0 ×A1 × ...×AN−1} The set of solutions;
1: for (Ai: i = 0 −→ (N − 1)) do
2: modelapprox ←− uniform approx(modelsnn, Ai);
3: Aquality

i , Apower
i ←− evaluate(modelapprox, D);

4: end for
5: Apply non-dominated sorting to A and extract top-rank;
6: Sort A in descending order of quality;
7: if Aquality

0 < Qsol then
8: return ϕ; // fails to find
9: else if Aquality

size(A)−1 ≥ Qsol then
10: return [A

(0)
size(A)−1, A

(1)
size(A)−1, ..., A

(L−1)
size(A)−1];

11: end if
12: Find index k s.t. Aquality

k ≥ Qinit > Aquality
k+1 ;

13: // initialize population

14: P ←− Duplicate [A
(0)
k , A

(1)
k , ..., A

(L−1)
k] by L;

15: while (¬TerminationCondition) do
16: P ←− generate population(P,L); // Algorithm2
17: for (Pi: i = 0 −→ (size(P)− 1)) do
18: if Pi is already evaluated then
19: continue; // skip evaluation
20: end if
21: modelapprox ←− layerwise approx(modelsnn, Pi);
22: P quality

i , P power
i ←− evaluate(modelapprox, D);

23: end for
24: P ←− nondominated sort select(P,Qsol,Mpop);
25: end while

be removed from candidates, our proposal tolerates this 57

concern for the sake of efficient search. 58

• Step 3: Before entering the primary optimization process, 59

the algorithm checks if the approximate implementation 60

is possible (line 7) and if further exploration is needed 61

(line 9). Next, the algorithm determines the boundary 62

index k, which is the maximum index satisfying the 63

initial quality requirement Qinit (line 12). In other words, 64

the SNN with the uniform approximation with Ak is an 65

optimal solution when only Qinit is considered. 66

• Step 4: The heuristic exploration loop is executed. The 67

difference from the naive GA approach is that Approxi- 68

Morph specifies the initial state, which is initialized by 69

the uniform approximate configuration with Ak derived 70

in Step 3 (line 14). The new approximate configurations 71

are generated (line 16) by randomly selecting a layer 72

and increasing its approximation level, as presented in 73

Algorithm 2. Their quality and power are then evaluated 74

for each solution. Then, the population is sorted and se- 75

7

1 2 3 4

Approx. Adders Population (input)

1 1 3 2

(a)
Chose one layer
(e.g. #0)

1 1 3 2

Possible to degrade it?
Yes

2 1 3 2

1 1 3 2(a) 4 1 12(b)

Increment by one

(b)

4 1 12

Chose one layer
(e.g. #0)

4 1 12

Possible to degrade it?
No

Repeat

4 1 12

Chose one layer
(e.g. #2)

4 1 12

Possible to degrade it?
Yes

4 1 13

Increment by one

Population (output)

1 1 3 2(a) 4 1 12(b) 2 1 3 2 4 1 13

Inserted

Fig. 6. The process flow of population generation (Algorithm 2). (a) and (b)
are the examples of input solutions.

lected based on the evaluation result and solution quality1

Qsol at each step (line 24). The termination condition can2

be defined by setting the maximum number of iterations3

and/or the user-defined constraint.4

Algorithm 2 - Population Generation Algorithm
Require: P = The current population;

L = The number of layers in SNN model;
Ensure: Pnew = The new population;

1: Pnew = ϕ;
2: for (Pi: i = 0 −→ (size(P)− 1)) do
3: Insert Pi to Pnew; // before increment
4: repeat
5: l←− random layer(0, L− 1, Pi);
6: until valid l is found
7: Increment approximate adder’s index of P (l)

i by one;
8: Insert Pi to Pnew; // after increment
9: end for

As stated in Step 4, new approximate configurations are5

generated based on Algorithm 2. The example of Algorithm 26

is illustrated in Fig. 6. Here, the approximate adders are7

represented by (encoded into) the integer (1 to 4), and the8

input population has two solutions (a) and (b), assuming the9

target neural network is a five-layer network including the10

input layer. Please note that the input layer is not approx-11

imated. For the solution (a), the first layer (#0) is selected12

for approximation. Since further degradation is available in13

this case, the corresponding value is incremented by one (114

−→ 2), and the new solution is generated. On the other hand,15

for solution (b), although the first layer (#0) is selected, it is16

already saturated and is not possible to approximate further.17

Thus, the algorithm chooses other layers. The third layer (#2)18

is selected in the example, and since it can be degraded more,19

the value is incremented by one (2 −→ 3). Finally, the generated20

solution is added to the output population. Here, the original21

solutions (a) and (b) are added to the output to preserve the22

possibility of different variations that can be obtained from23

them.24

Although the step-by-step approximation method (incre-25

ment by one) is adopted in the Algorithm 2, the designer can26

use other strategies, such as incrementing by two, probabilisti-27

cally choosing the number of steps, or integrating a crossover- 28

and mutation-based approach. However, this work uses the 29

one-by-one increment method at each iteration for simplicity. 30

C. Weight-Tuning for Post-Approximation Models 31

ApproxiMorph evaluates the accuracy of approximate mod- 32

els without changing the synaptic weights from the original 33

values. Therefore, the weight tuning method can be used to 34

fit the synaptic weights to the post-approximation model for 35

better accuracy. Although this problem is not trivial in general, 36

the new weights can be decided based on the characteristics 37

of each approximate adder type. 38

To this end, we assume that the weight value that mini- 39

mizes the arithmetic error against all possible combinations 40

of operands (two input values to the adder) can contribute to 41

better accuracy of the approximate model. The weight-tuning 42

method is based on the previous work [39] and is represented 43

as follows: 44

wij ←− w′ s.t. argmin
w′∈W,v∈V

MRE(wij , w
′, v) (6)

where wij is the synaptic weight between neuron i and j, 45

V is the set of possible values that the accumulation register 46

holds, W is the set of weights from the possible range, and 47

w′ is an element in W . This means that wij is adjusted to 48

w′, which minimizes the mean-relative-error (MRE) between 49

the calculation of the approximate and accurate adder against 50

all values v ∈ V . In this work, all synaptic weights in the 51

post-approximation spiking neural network (SNN) model are 52

updated using this method. 53

V. EVALUATION 54

A. Evaluation Methodology 55

To evaluate our approximation methodology, we utilize a 56

multi-layer perceptron for the MNIST dataset and a con- 57

volutional neural network with the VGG16 model for the 58

CIFAR-10 dataset. Both models are trained using the ANN- 59

to-SNN conversion method. The neural network is trained on 60

the software, and its synaptic weights are quantized to 9- 61

bit signed fixed-point values (the sign bit + 8-bit fractional) 62

for MNIST and 13-bit signed fixed-point values (the sign 63

bit + 12-bit fractional) for CIFAR-10. In addition, we select 64

all 12-bit signed approximate adders for MNIST and 16- 65

bit signed approximate adders for CIFAR-10 from the open- 66

source EvoApprox library [34] based on the error metrics and 67

hardware parameters. In this case, we consider power and area 68

efficiency to be the key evaluation metrics. Since these setups 69

were experimentally decided, designers can consider different 70

implementation schemes depending on the requirements. 71

The hardware architecture is developed in Verilog-HDL, 72

synthesized using Synopsys Design Compiler, and evaluated 73

with PrimeTime. The physical design of our hardware is im- 74

plemented using the NANGATE 45-nm library [45] and NCSU 75

FreePDK3D45 TSV [46]. The memory is constructed with 6T 76

SRAM generated from OpenRAM [47]. Its BER characteristic 77

is obtained by examining the static noise margin (SNM) 78

of SRAM cells at near-threshold supply voltages through 79

the Monte Carlo simulation with PrimeSim HSPICE, and 80

8

0.5 0.6 0.7 0.8 0.9 1.0
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
In

fe
re

nc
e

Er
ro

r

Qsol = 0.9

0.5 0.6 0.7 0.8 0.9 1.0
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fe

re
nc

e
Er

ro
r

Qsol = 0.8

0.5 0.6 0.7 0.8 0.9 1.0
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fe

re
nc

e
Er

ro
r

Qsol = 0.7
Optimal (Brute-Force) ApproxiMorph Uniform Combination Quality Constraint (Qsol)

Fig. 7. The final result of the proposed algorithm for the four-layer neural network [784:256:128:10] using the MNIST dataset.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fe

re
nc

e
Er

ro
r

Qsol = 0.9

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fe

re
nc

e
Er

ro
r

Qsol = 0.8

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Relative Power of Adder

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
fe

re
nc

e
Er

ro
r

Qsol = 0.7
Optimal (Brute-Force) ApproxiMorph Uniform Combination Quality Constraint (Qsol)

Fig. 8. The final result of the proposed algorithm for the five-layer neural network [784:512:256:128:10] using the MNIST dataset.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Relative Power of Adder

0.05

0.10

0.15

0.20

0.25

0.30

In
fe

re
nc

e
Er

ro
r

Qsol = 0.7

Random ApproxiMorph Uniform Combination Constraint (Qsol)

Fig. 9. The final result of the proposed algorithm for the VGG16 model using
the CIFAR-10 dataset.

calculating the mathematical equation presented in previous1

works [42]–[44].2

First, we examine the performance of the proposed opti-3

mization algorithm for MNIST and CIFAR-10, focusing on4

its validity and time efficiency. To prove the validity, we5

execute the brute-force search for MNIST, which provides6

ground truth results, and compare it with the solutions obtained7

from ApproxiMorph. For CIFAR-10, we select random com-8

binations to compare the results with the obtained solutions,9

as the brute-force search is unavailable due to the size of10

the feasible decision space. (For instance, since we use 1211

approximate adders for VGG16 model, 1216 ∼ 1.8 × 101712

combination is possible in total. In our machine, since a single13

evaluation for the VGG16 model requires about 8.38 min (8.3814

min/combination), even with only 100 validation data, it will15

be over 1.07× 1015 days, which is over 2.9× 1012 years.) In16

addition, the number of execution times of the target neural17

network model is measured and compared with all possible18

combinations to evaluate the time efficiency of ApproxiMorph.19

This is because executing the neural network is the most time-20

consuming part of the algorithm.21

Second, the transformation of power consumption and accu-22

racy for different voltage scaling scenarios is evaluated using23

the derived configurations for layer-wise approximation from24

TABLE I
THE COMPARISON OF THE NUMBER OF NEURAL NETWORK EXECUTIONS

Dataset Configuration
Quality Constraint (Qsol)

= 90% = 80% = 70%

MNIST

Four-layer, This work ≤ 66 ≤ 78 ≤ 101

Four-layer, Brute-force 2197

Five-layer, This work ≤ 127 ≤ 172 ≤ 192

Five-layer, Brute-force 28561

CIFAR-10
VGG16, This work N/A N/A 13921

VGG16, Brute-force 1.85 × 1017

1 The value is the maximum number obtained by 10 times independent executions.

Algorithm 1. Since there is no available hardware design for 25

the VGG16 model in this work, we evaluate only the case 26

of MNIST. To this end, we implemented the memory system 27

with five stacked layers (M = 5), where one layer is dedicated 28

solely for the sign bit, and the other four layers are committed 29

to the 8-bit fractional part. In addition, we investigate two 30

network models, the four-layer model [784:256:128:10] and 31

the five-layer model [784:512:256:128:10]. To simulate the 32

influence of memory approximation under the approximate 33

neuron implementation, we insert faults into synaptic weights 34

of the trained network model based on the SRAM’s bit error 35

rate (BER) characteristic and evaluate the impact on the 36

quality. The fault positions are distributed randomly using 37

a Monte Carlo simulation, following a uniform distribution. 38

After that, the power consumption of our hardware system is 39

evaluated using Synopsys PrimeTime. 40

B. Performance of Optimization Algorithm 41

This subsection presents the proposed algorithm’s perfor- 42

mance in terms of 1) validity and 2) execution time. Here, the 43

approximation is only applied to neuron cells, so memory is 44

assumed to be in normal operation. 45

1) Validity of solutions: Fig. 7 and Fig. 8 show the com- 46

parison results of the proposed algorithm for the MNIST. In 47

the experiment, we evaluate the accuracy of the approximate 48

model using reduced datasets. The power is assessed by 49

calculating the relative power consumption of the approximate 50

9

0.7 0.725 0.75 0.775 0.8 0.825 0.85

1.80

1.85

1.90
En

er
gy

 (
J)

1e 5 UV1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
1.5

1.6

1.7

En
er

gy
 (

J)

1e 5 UV2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
1.2

1.4

1.6

En
er

gy
 (

J)

1e 5 UV3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

S3 S2 S1 Accurate

Fig. 10. Evaluation of energy and accuracy before weight-tuning with undervolting for the four-layer neural network.

0.7 0.725 0.75 0.775 0.8 0.825 0.85

4.1

4.2

4.3

4.4

En
er

gy
 (

J)

1e 5 UV1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
3.4

3.6

3.8

4.0
En

er
gy

 (
J)

1e 5 UV2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
2.75

3.00

3.25

3.50

En
er

gy
 (

J)

1e 5 UV3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

T3 T2 T1 Accurate

Fig. 11. Evaluation of energy and accuracy before weight-tuning with undervolting for the five-layer neural network.

TABLE II
ACCURACY (%) AND POWER SAVING (%) OF APPROXIMATE ADDERS

Model Metric Accurate Approximated Version

MNIST: four-layer
Version fixed S1 / S2 / S3

Accuracy (%) 97.74 97.14 / 91.92 / 70.60
Power Save (%) 0.00 28.06 / 31.85 / 40.56

MNIST: five-layer
Version fixed T1 / T2 / T3

Accuracy (%) 97.30 94.28 / 87.43 / 71.45
Power Save (%) 0.00 25.64 / 27.18 / 30.87

CIFAR10-VGG16
Version fixed U1 / U2 / U3

Accuracy (%) 87.46 89.63 / 89.15 / 84.90
Power Save (%) 0.00 29.16 / 30.11 / 30.83

adder to the non-approximate circuit. We experimentally set1

the quality constraint for the initial state to Qinit = 90%2

accuracy, observing the quality of the uniform approximation,3

and the maximum number of solutions to Mpop = 30. The4

exploration loop is iterated 30 times regardless of constraints.5

Here, we also consider three cases for solution quality con-6

straints: Qsol = 70%, 80%, and 90% accuracy. As shown in7

Fig. 7 and Fig. 8, the proposed algorithm can derive solutions8

on the Pareto-front or its neighbor below the quality threshold9

(red-dashed line). Thus, we conclude that the algorithm can10

find the optimal solutions for the multi-layer neural networks.11

Fig. 9 presents the result of the proposed algorithm for12

CIFAR-10 with the VGG16 model. We set the quality con-13

straint for the initial state to Qinit = 90% accuracy, and14

the maximum number of solutions to Mpop = 30. The15

exploration loop is iterated 50 times regardless of constraints.16

Here, we examine only one case of solution quality constraints,17

Qsol = 70% accuracy. As a result of the random selection, we18

cannot find a combination of approximate adders that results19

in better quality-energy trade-offs than the obtained solutions. 20

Therefore, although our approach assumes that optimal or 21

near-optimal solutions can be obtained from a reduced de- 22

cision space (i.e., reduced set of approximate adders), these 23

results indicate that such an approach is available, at least in 24

the SNN applications discussed in this work. 25

From the Pareto front of the obtained final solutions in the 26

case of Qsol = 70% accuracy, we select six (S1 to S3, T1 27

to T3) and three (U1 to U3) configurations for MNIST and 28

CIFAR-10, respectively, as examples. Here, S1 to S3, T1 to 29

T3, and U1 to U3 are optimal approximate configurations of 30

the four-layer, five-layer, and VGG16 models, respectively. 31

Table II shows the accuracy against all test data and power 32

savings on adder circuits for selected samples. For instance, 33

S1 achieves 28.06% power savings with 97.14% accuracy, and 34

U1 saves 29.16% of power consumption while having 89.63% 35

accuracy, which is a slightly better result than an accurate 36

implementation. 37

By choosing different Qsol values, the impact of this hyper- 38

parameter becomes evident. However, selecting an appropriate 39

Qsol remains an open problem, as designers must adjust it 40

according to the neural network models, datasets, and other 41

constraints such as power and accuracy. 42

2) Time efficiency of algorithm: Table I summarizes the 43

number of execution times of neural networks with Approxi- 44

Morph and the brute-force search. In our experiment, since the 45

type of approximate adders for MNIST is 13 (A = 13) and 46

is 12 (A = 12) for CIFAR-10, the possible combinations are 47

133 = 2197 for the four-layer model (B = 3), 134 = 28561 48

for the five-layer model (B = 4), and about 1.85 × 1017 for 49

the VGG16 model. However, ApproxiMorph requires at most 50

10

101 executions for the four-layer model and 192 times for1

the five-layer model in the case of Qsol = 70%. The value2

decreases to 66 and 127 for the four-layer and five-layer mod-3

els, respectively, when the quality constraint is Qsol = 90%.4

Thus, in cases of MNIST, the total number of executions was5

significantly reduced, and the required number is only 3.00-6

4.59% and 0.44-0.67% of total combinations for the four-7

and five-layer models, respectively. We can reasonably expect8

the number to decrease further as the possible combinations9

increase, as indicated by the VGG16 result, where the required10

number is only 1392 out of over 1017 at Qsol = 70%.11

In summary, ApproxiMorph provide a reasonable number12

of excution time (i.e., 192 executions on five layers MNIST13

for Qsol = 70% took 17.71 min to run or 1391 executions14

on VGG-16 for CIFAR-10 requires 194.47 hrs of execution15

time in our program and machine), therefore, designers can16

opt to run our approach in parallel to other designing phases17

as approximate adders can be swapped out without significant18

modification to the source code. In case execution time be-19

comes problematic, our uniform approximation (all adders in20

all layers are the same type) design on [7] can be a viable and21

alternative solution.22

C. Operation with Approximate Memory23

So far, we have applied the approximation technique only24

to neuron cells. In this subsection, the impact of the combined25

use of approximate neurons and memory on quality and energy26

consumption is evaluated using the voltage scaling strategy.27

The experimental setup of the memory for the evaluation28

is shown in Appendix C. Our hardware operates with a29

supply voltage of 1.1V in normal operation. When driving30

the memory layer in the undervolting condition, we reduce31

the supply voltage to the near-threshold voltage in the 0.7V to32

0.85V range. To apply the power-gating technique, the supply33

voltage is turned off, and all bits inside of the memory layer34

become zero. In this work, we fix the supply voltage of m135

to VDD = 1.1V to keep the sign bit unchanged.36

Fig. 10 summarizes the energy and accuracy transformation37

for selected samples with undervolting (UV1 to UV3) in38

the four-layer neural network. In UV1 mode, at the supply39

voltage VDD = 0.7V , S1, S2, and S3 save 13.18%, 13.33%,40

and 13.97% of energy consumption compared to the non-41

approximate implementation, while reducing 0.12%, 0.17%,42

and 0.35% accuracy from the values in Table II (baseline),43

respectively. Similarly, in UV2 mode, power savings of up44

to 25.37% for S1, 25.40% for S2, and 25.57% for S3 can be45

achieved at the cost of slightly greater accuracy loss. Although46

S2 originally shows better accuracy than S3 in UV3 mode,47

S2 results in significant accuracy degradation from VDD =48

0.775V and finally shows worse results than S3. Considering49

the configuration having above 70% accuracy, for example, S1,50

S2, and S3 achieve 38.05%|VDD=0.7V , 32.25%|VDD=0.775V ,51

and 38.36%|VDD=0.7V energy savings, respectively, in UV352

mode. This example indicates that noise resilience varies53

depending on the approximate implementation, which implies54

that detailed investigations must be needed for practical uses.55

Fig. 11 shows the transformation of energy and accuracy56

with undervolting (UV1 to UV3) in the five-layer neural57

network. At the supply voltage VDD = 0.7V in the UV1 58

mode, approximate implementations can reduce energy by 59

13.33-14.12% while restricting accuracy loss within 1% from 60

their baseline. In UV2 mode, the accuracy of T1 and T2 61

is maintained up to around VDD = 0.8V and decreases 62

thereafter, while the accuracy of T3 is maintained. Moreover, 63

T1, T2, and T3 can save 30.11%, 30.13%, and 30.35% of 64

energy consumption at VDD = 0.8V in the UV3 mode, while 65

having about 1% accuracy loss from their baseline. 66

On the other hand, as shown in Fig. 12 and Fig. 13, 67

applying the power-gating to the top memory layer (m5) 68

greatly influences the accuracy of selected samples, while 69

the non-approximate model still maintains the accuracy. This 70

result indicates that 6-bit quantization of the fractional parts 71

is available in the non-approximate model but not in the 72

approximate implementation without weight-tuning. In this 73

case, the benefit of energy savings from the approximate 74

implementation of neuron cells will disappear since the energy 75

consumption of the logic segment is only about 5.7% of the 76

total. To address this drawback, we examine the impact of the 77

weight-tuning method on the approximate implementation in 78

the following subsection. 79

D. Impact of Weight-Tuning 80

We have used the synaptic weights without changing their 81

values to evaluate the accuracy under the reduced voltage 82

conditions. In this subsection, we discuss the impact of the 83

weight adjustment method and evaluate it using approximate 84

neurons and memory. Fig. 14 and Fig. 15 show the effect 85

on the classification accuracy after the weight-tuning with 86

different supply voltages. In both cases, we observed an 87

improvement in accuracy and the capability of the operation 88

combining undervolting and power-gating strategies, which 89

is not available without weight-tuning as described in the 90

previous subsection. For instance, with the use of the under- 91

volting and power-gating methods, S1, S2, and S3 achieve 92

96.7%, 88.54%, and 69.12% accuracy, which are similar to 93

the original accuracy, at the supply voltage VDD = 0.8V in 94

the UV-PG2 mode. Furthermore, T1, T2, and T3 in UV3 mode 95

contribute to 95.09%, 91.25%, and 90.44% accuracy, which 96

are 1.95%, 4.72%, and 19.36% higher accuracy, respectively, 97

compared to that without weight-tuning. 98

In the operation using undervolting and power-gating (UV- 99

PG1 to UV-PG3), the selected samples show the error tol- 100

erance trends compared to the accurate implementation. For 101

example, S1 achieves 82.19% accuracy at the supply voltage 102

VDD = 0.7V in UV-PG2, which is over 50% higher accuracy 103

than an accurate implementation. In addition, T3 in UV-PG1 104

to UV-PG3 mode shows outstanding fault tolerance after the 105

weight-tuning. For instance, it provides 90.30% accuracy at 106

VDD = 0.7V in UV-PG1 mode and 86.38% accuracy at 107

VDD = 0.8V in UV-PG3 mode. These results indicate that 108

the approximate implementation of the SNN application is a 109

promising solution for low-power hardware systems. 110

E. Comparison 111

Table III shows the comparison results between our work 112

and other previous works [19], [20], [48], [49]. In all cases, 113

11

0.7 0.725 0.75 0.775 0.8 0.825 0.85

1.35

1.40

1.45

En
er

gy
 (

J)

1e 5 UV-PG1

0.7 0.725 0.75 0.775 0.8 0.825 0.85

1.1

1.2

1.3

En
er

gy
 (

J)

1e 5 UV-PG2

0.7 0.725 0.75 0.775 0.8 0.825 0.85

0.8

1.0

En
er

gy
 (

J)

1e 5 UV-PG3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

S3 S2 S1 Accurate

Fig. 12. Evaluation of energy and accuracy before weight-tuning with undervolting and power-gating for the four-layer neural network.

0.7 0.725 0.75 0.775 0.8 0.825 0.85

3.1

3.2

3.3

3.4

En
er

gy
 (

J)

1e 5 UV-PG1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
2.4

2.6

2.8

3.0

En
er

gy
 (

J)

1e 5 UV-PG2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
1.75

2.00

2.25

2.50

En
er

gy
 (

J)

1e 5 UV-PG3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

T3 T2 T1 Accurate

Fig. 13. Evaluation of energy and accuracy before weight-tuning with undervolting and power-gating for the five-layer neural network.

accuracy is based on the MNIST benchmark after weight tun-1

ing. Besides the accurate implementation (case 1), we selected2

four approximate configurations (cases 2 to 5) for comparison.3

As shown in Table III, our system has competitive accuracy4

compared to the prior works, even with the approximate5

implementation.6

In terms of energy consumption, we compare our work with7

others using the energy per Synaptic Operation (SOP). For8

a fair comparison, we use the well-known scaling equation9

presented in [50] to scale down to the 14-nm technology10

node. As a result, our hardware consumes 8.797pJ with the11

accurate implementation (case 1), and the value decreases to12

5.163pJ and 3.057pJ with 0.63% (case 2) and 3.17% (case 3)13

accuracy loss. After scaling down to the 14-nm technology14

node, their energy per SOP achieves 0.504pJ, 0.296pJ, and15

0.175pJ accordingly. In the five-layer model (case 4 and case16

5), the energy per SOP is 0.338pJ and 0.223pJ, which is17

achieved by 7.00% and 10.92% accuracy loss, respectively,18

compared to the baseline result. Here, please note that the19

value of energy per SOP is based on the amount of synaptic20

activities and thus differs depending on the implementation21

and algorithm of SNNs. In conclusion, these results prove22

that our system can achieve competitive implementation of23

the existing works.24

VI. DISCUSSION25

In this section, the limitations of this work and their26

potential solutions are discussed.27

First, 3D-IC-based implementation offers network-on-chip28

(NoC) scalability and high-bandwidth communication capabil-29

ities with a three-dimensional architecture, but reliability and30

thermal issues are major concerns [51], [52]. To address relia-31

bility issues, many previous works have added redundancies to32

mitigate the defects of TSV connections in conjunction with 33

the routing algorithm. The thermal-aware design and algorithm 34

also contribute to dealing with dissipation issues. Therefore, 35

although we did not consider these problems in this paper, the 36

methods above can be implemented in our hardware system 37

to cover the architectural concerns. 38

Second, although we examine only the case of uniform 39

approximation for memory systems to keep evaluation simple, 40

there are many choices regarding the supply voltage and 41

memory splitting patterns. For instance, the hardware designer 42

can consider non-uniform voltage scaling schemes (e.g. {m1, 43

m2, m3, m4} = {1.1V , 0.8V , 0.75V , 0.7V }) and the different 44

number of memory layers (e.g. M = 2, 4, 8, or more). Since 45

examining all possible configurations is mostly infeasible, 46

we only covered the cases summarized in Table I of the 47

supplemental document. 48

Third, although we utilized the SRAM to store the synaptic 49

weights in this work, other advanced memory technologies, 50

such as ReRAM, FeFET, and STT-RAM, can also be inte- 51

grated into the memory. They have near-zero leakage power 52

consumption and can retain their values even after applying the 53

power-gating method. Thanks to the die-stacking implementa- 54

tion, it is possible to use them only for LSBs, which mitigates 55

the negative impact of signal noise resulting from their analog 56

operation, considering the noise-resilient nature of SNNs. In 57

addition, since the SRAM’s internal power dominates the total 58

power in our implementation, using non-volatile memory can 59

significantly reduce the total energy consumption. 60

Fourth, our work employed the ANN-to-SNN conversion 61

method, utilizing floating-point values and subsequently quan- 62

tizing the trained weights to fixed-point values. However, 63

quantization-aware or approximation-aware training can also 64

12

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG3

S3 S2 S1 Accurate

Fig. 14. Evaluation of accuracy after weight-tuning in the four-layer neural network.

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV3

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG1

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG2

0.7 0.725 0.75 0.775 0.8 0.825 0.85
Supply Voltage (V)

0

25

50

75

100

Ac
cu

ra
cy

 (
%

)

UV-PG3

T3 T2 T1 Accurate

Fig. 15. Evaluation of accuracy after weight-tuning in the five-layer neural network.

be exploited. We can expect to perform with better accuracy1

and improve noise resilience during approximate operations,2

but the extent of this improvement is not clearly understood3

currently.4

Fifth, since we focus on lowering the power consumption,5

the shape of the results is an I-shape frontier rather than an6

L-shape one, as observed in the GA-based approach. This is7

especially attributed to the definition of the initial state and8

the uni-directional generation algorithm. Therefore, to explore9

the horizontal line of an L-shape frontier further, the hardware10

designer is required to use the standard GA-based approach11

in place of the proposed methodology.12

Sixth, as shown in Algorithm 1, the ApproxiMorph relies13

on a traditional flow of Genetic Algorithm; therefore, it is14

expected that the run-time complexity of this work is similar15

to traditional Genetic Algorithm or Reinforcement Learning16

under the assumption that the number of generations and17

evaluations per generation are equivalent.18

Seventh, although this work evaluates the benefits of our19

approach only on multi-layer perceptrons and the VGG1620

model, it can be readily extended to more advanced architec-21

tures, provided that the approximate operator (e.g., approxi-22

mate adder or multiplier) is defined. However, we note that23

emulating approximate circuits on a CPU is not sufficient24

for evaluating each configuration in more complex networks.25

Therefore, a strategy for leveraging GPUs to accelerate ap-26

proximate implementations is necessary. For instance, the27

work in [53] introduced a fast DNN emulation system28

that supports approximate operators using GPU computation,29

enabling agile testing of approximate networks.30

Eighth, the benefit of weight-tuning after the approximation31

is only evaluated in less-complex network architectures in this32

work. For more complex networks, a previous work [39] has 33

shown the accuracy improvement in the ResNet architecture 34

with approximate operators. Although it focuses on the ANN, 35

we can see the potential to be applied to SNNs as well, and 36

room for further exploration remains. Furthermore, the metric 37

used in weight-tuning (ours is MRE) needs more investigation 38

and analysis on its impact. 39

Ninth, when approximating the earlier layer, it is empirically 40

shown that the succeeding computation compensates for the 41

error propagated from previous layers. However, the approx- 42

imation of the deeper layer significantly affects and changes 43

the final accuracy depending on the type of approximate adder. 44

This problem necessitates further investigation, and the impact 45

of error propagation could suggest more optimal approaches 46

for design exploration for approximate design. 47

Tenth, in this work, the neural architecture deployment is 48

fixed. However, in general, large-scale SNN implementations 49

often rely on Network-on-Chip (NoC) communication among 50

clusters of neurons [19], [20]. Although this work does not ad- 51

dress issues related to large-scale on-chip networks and map- 52

ping strategies, it is reasonable to expect that ApproxiMorph 53

can be extended to such designs. One concern with NoC- 54

based systems is that the approximation of neuron circuits 55

may need to be applied on a cluster-by-cluster basis, rather 56

than the layer-by-layer approach used in this study. This shift 57

may introduce new challenges related to cluster partitioning 58

and mapping. 59

Eleventh, in this work, we did not perform weight tuning 60

for VGG-16 due to the excessive execution time (estimated at 61

7.079 × 105 minutes, or approximately 491 days). However, 62

this can be executed on the more optimized program, and 63

further exploration should be needed. Solving this limitation 64

13

TABLE III
COMPARISON RESULTS BETWEEN THE PROPOSED APPROACH AND THE

EXISTING WORKS

Model Acc.(%) Arch. Tech. Energy per
SOP (pJ)

Energy per
SOP (pJ)
(in 14nm)

TrueNorth
[20] 91.94 2D 28nm 26

(0.775V) 4.902

Loihi
[19] 96 2D 14nm

FinFET
23.6

(0.75V) 23.6

ODIN
[48] 84.5 2D 28nm

FD-SOI 8.4 1.078

NASH
[49] 79.4 3D 45nm 11.3 (1.1V) 0.648

[13]
95.35

3D 45nm
244.28 14.02

94.84 191.46 10.98
88.77 81.16 4.65

[7]
94.8

3D 45nm
20.33 1.167

93.9 13.28 0.762
77.6 8.374 0.48

This work

97.741

3D 45nm

8.7971 0.5041

97.112 5.1632 0.2962

94.573 3.0573 0.1753

90.304 5.9004 0.3384

86.385 3.8985 0.2235

1 Case 1: Accurate implementation (four-layer model).
2 Case 2: VDD = 0.8V in UV3 mode using the configuration S1.
3 Case 3: VDD = 0.8V in UV-PG3 mode using the configuration S1.
4 Case 4: VDD = 0.7V in UV-PG1 mode using the configuration T3.
5 Case 5: VDD = 0.8V in UV-PG3 mode using the configuration T3.

could be one of the potential future works.1

Although this work has several drawbacks, as being dis-2

cussed above, there are many studies that also aim to address3

them. Therefore, the proposed approach has the potential to4

realize low-power neuromorphic systems with optimal quality-5

energy trade-offs, which enables use in power-constrained6

edge devices.7

VII. CONCLUSIONS8

This work presents ApproxiMorph, a low-power neuromor-9

phic framework that combines a time-efficient heuristic de-10

sign exploration for layer-wise SNN approximation with 3D-11

stacked SRAM. The proposed algorithm significantly reduces12

search time, requiring only 0.67% of evaluations among all13

possible configurations in a five-layer SNN using 13 approx-14

imate adders. Additionally, weight tuning enables integration15

with approximate memory, demonstrating error tolerance com-16

pared to accurate implementations. Future work could involve17

extending the proposed method to support the execution of18

multiple SNN models, including larger models and more19

complex datasets. The selection of post-approximation weight-20

tuning metrics and hyperparameters for ApproxiMorph also21

needs to be explored and addressed.22

ACKNOWLEDGEMENT23

We gratefully acknowledge the reviewers for their insightful24

comments, which have helped improve the quality and clarity25

of this paper.26

This work is supported by the Competitive Research Fund-27

ing Ref. 2025-21.28

REFERENCES29

[1] D. Patterson et al., “The carbon footprint of machine learning training30

will plateau, then shrink,” Computer, vol. 55, no. 7, pp. 18–28, 2022.31

[2] C.-J. Wu et al., “Sustainable ai: Environmental implications, challenges 32

and opportunities,” Proceedings of Machine Learning and Systems, 33

vol. 4, pp. 795–813, 2022. 34

[3] B. C. Lee et al., “Carbon connect: An ecosystem for sustainable 35

computing,” arXiv preprint arXiv:2405.13858, 2024. 36

[4] R. Desislavov et al., “Trends in AI inference energy consumption: Be- 37

yond the performance-vs-parameter laws of deep learning,” Sustainable 38

Computing: Informatics and Systems, vol. 38, p. 100857, 2023. 39

[5] A. Tavanaei et al., “Deep Learning in Spiking Neural Networks,” Neural 40

networks, vol. 111, pp. 47–63, 2019. 41

[6] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. 42

Homogeneous synaptic input,” Biological cybernetics, vol. 95, pp. 1– 43

19, 2006. 44

[7] R. Kobayashi et al., “Energy-Efficient Spiking Neural Networks Using 45

Approximate Neuron Circuits and 3D Stacking Memory,” in 2024 46

IEEE 17th International Symposium on Embedded Multicore/Many-core 47

Systems-on-Chip (MCSoC). IEEE, 2024, pp. 421–425. 48

[8] S. Sen et al., “Approximate Computing for Spiking Neural Networks,” 49

in Design, Automation & Test in Europe Conference & Exhibition, 2017. 50

IEEE, 2017, pp. 193–198. 51

[9] R. Putra et al., “Sparkxd: A framework for resilient and energy-efficient 52

spiking neural network inference using approximate dram,” in 2021 58th 53

ACM/IEEE Design Automation Conference. IEEE, 2021, pp. 379–384. 54

[10] J. Han and M. Orshansky, “Approximate Computing: An Emerging 55

Paradigm For Energy-Efficient Design,” in 2013 18th IEEE European 56

Test Symposium. IEEE, 2013, pp. 1–6. 57

[11] S. Venkataramani et al., “AxNN: Energy-efficient neuromorphic systems 58

using approximate computing,” in Proceedings of the 2014 international 59

symposium on Low power electronics and design, 2014, pp. 27–32. 60

[12] R. V. W. Putra et al., “EnforceSNN: Enabling resilient and energy- 61

efficient spiking neural network inference considering approximate 62

DRAMs for embedded systems,” Frontiers in Neuroscience, vol. 16, 63

p. 937782, 2022. 64

[13] N.-D. Nguyen et al., “Power-Aware Neuromorphic Architecture With 65

Partial Voltage Scaling 3-D Stacking Synaptic Memory,” IEEE Trans. 66

VLSI Syst., vol. 31, no. 12, pp. 2016–2029, 2023. 67

[14] M. Prezioso et al., “Training and Operation of an Integrated Neuromor- 68

phic Network Based on Metal-Oxide Memristors,” Nature, vol. 521, no. 69

7550, pp. 61–64, 2015. 70

[15] B. Gao et al., “Metal oxide resistive random access memory based 71

synaptic devices for brain-inspired computing,” Japanese Journal of 72

Applied Physics, vol. 55, no. 4S, p. 04EA06, 2016. 73

[16] G. Zhong et al., “Flexible electronic synapse enabled by ferroelectric 74

field effect transistor for robust neuromorphic computing,” Applied 75

Physics Letters, vol. 117, no. 9, p. 092903, 09 2020. 76

[17] M. Hu et al., “Dot-Product Engine for Neuromorphic Computing: Pro- 77

gramming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication,” 78

in 53rd annual Design Automation Conference, 2016, pp. 1–6. 79

[18] K. Roy et al., “Towards spike-based machine intelligence with neuro- 80

morphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019. 81

[19] M. Davies et al., “Loihi: A Neuromorphic Manycore Processor with 82

On-Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018. 83

[20] F. Akopyan et al., “TrueNorth: Design and Tool Flow of a 65 mW 84

1 Million Neuron Programmable Neurosynaptic Chip,” IEEE Trans. 85

Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537– 86

1557, 2015. 87

[21] H. An et al., “Three-Dimensional Neuromorphic Computing System 88

With Two-Layer and Low-Variation Memristive Synapses,” IEEE Trans. 89

Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 3, pp. 400–409, 90

2021. 91

[22] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic Ar- 92

chitecture with High-Density 3D Memory,” ACM SIGARCH Computer 93

Architecture News, vol. 44, no. 3, pp. 380–392, 2016. 94

[23] K. Ueyoshi et al., “QUEST: Multi-Purpose Log-Quantized DNN Infer- 95

ence Engine Stacked on 96-MB 3-D SRAM Using Inductive Coupling 96

Technology in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, 97

no. 1, pp. 186–196, 2018. 98

[24] K. Shiba et al., “A 96-MB 3D-Stacked SRAM Using Inductive Coupling 99

With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-nm 100

CMOS,” IEEE Trans. Circuits Syst. I, vol. 68, no. 2, pp. 692–703, 2020. 101

[25] R. V. W. Putra and M. Shafique, “Q-SpiNN: A Framework for Quantiz- 102

ing Spiking Neural Networks,” in 2021 International Joint Conference 103

on Neural Networks. IEEE, 2021, pp. 1–8. 104

[26] A. Hasssan et al., “SpQuant-SNN: ultra-low precision membrane po- 105

tential with sparse activations unlock the potential of on-device spiking 106

neural networks applications,” Frontiers in Neuroscience, vol. 18, p. 107

1440000, 2024. 108

14

[27] K. K. Chang et al., “Understanding Reduced-Voltage Operation in1

Modern DRAM Devices: Experimental Characterization, Analysis, and2

Mechanisms,” Proceedings of the ACM on Measurement and Analysis3

of Computing Systems, vol. 1, no. 1, pp. 1–42, 2017.4

[28] B. Reagen et al., “Minerva: Enabling Low-Power, Highly-Accurate Deep5

Neural Network Accelerators,” ACM SIGARCH Computer Architecture6

News, vol. 44, no. 3, pp. 267–278, 2016.7

[29] R. V. W. Putra et al., “ReSpawn: Energy-Efficient Fault-Tolerance8

for Spiking Neural Networks considering Unreliable Memories,” in9

2021 IEEE/ACM International Conference On Computer Aided Design10

(ICCAD). IEEE, 2021, pp. 1–9.11

[30] J. Zhao et al., “An Energy-Efficient 3D CMP Design with Fine-Grained12

Voltage Scaling,” in 2011 Design, Automation & Test in Europe. IEEE,13

2011, pp. 1–4.14

[31] N.-D. Nguyen et al., “An In-Situ Dynamic Quantization With 3D Stack-15

ing Synaptic Memory for Power-Aware Neuromorphic Architecture,”16

IEEE Access, 2023.17

[32] H. Jiang et al., “Approximate Arithmetic Circuits: A Survey, Character-18

ization, and Recent Applications,” Proceedings of the IEEE, vol. 108,19

no. 12, pp. 2108–2135, 2020.20

[33] R. Kobayashi and K. N. Dang, “An Efficient Hardware Implementation21

of Spiking Neural Network Using Approximate Izhikevich Neuron,”22

in 9th International Conference on Integrated Circuits, Design, and23

Verification. IEEE, 2024, pp. 13–18.24

[34] V. Mrazek et al., “EvoApprox8b: Library of Approximate Adders and25

Multipliers for Circuit Design and Benchmarking of Approximation26

Methods,” in Design, Automation & Test in Europe Conference &27

Exhibition. IEEE, 2017, pp. 258–261.28

[35] G. Zervakis et al., “Multi-Level Approximate Accelerator Synthesis29

Under Voltage Island Constraints,” IEEE Trans. Circuits Syst. II, vol. 66,30

no. 4, pp. 607–611, 2018.31

[36] V. Mrazek et al., “autoAx: An Automatic Design Space Exploration32

and Circuit Building Methodology utilizing Libraries of Approximate33

Components,” in Proceedings of the 56th Annual Design Automation34

Conference 2019, 2019, pp. 1–6.35

[37] B. S. Prabakaran et al., “ApproxFPGAs: Embracing ASIC-Based Ap-36

proximate Arithmetic Components for FPGA-Based Systems,” in 202037

57th ACM/IEEE Design Automation Conference. IEEE, 2020, pp. 1–6.38

[38] M. Manuel et al., “Region of Interest-Based Parameter Optimization39

for Approximate Image Processing on FPGAs,” International Journal40

of Networking and Computing, vol. 11, no. 2, pp. 438–462, 2021.41

[39] V. Mrazek et al., “ALWANN: Automatic Layer-Wise Approxima-42

tion of Deep Neural Network Accelerators without Retraining,” in43

2019 IEEE/ACM International Conference on Computer-Aided Design.44

IEEE, 2019, pp. 1–8.45

[40] D.-A. Nguyen et al., “GAQ-SNN: A Genetic Algorithm based Quanti-46

zation Framework for Deep Spiking Neural Networks,” in 2022 Inter-47

national Conference on IC Design and Technology, 2022, pp. 93–96.48

[41] N.-D. Nguyen et al., “Noma: a novel reliability improvement method-49

ology for 3-d ic-based neuromorphic systems,” IEEE Trans. Compon.50

Packag. Manuf. Technol., 2024.51

[42] P. Royer et al., “Using pMOS Pass-Gates to Boost SRAM Performance52

by Exploiting Strain Effects in Sub-20-nm FinFET Technologies,” IEEE53

Trans. Nanotechnol., vol. 13, no. 6, pp. 1226–1233, 2014.54

[43] P. Reviriego et al., “Error-Tolerant Data Sketches Using Approximate55

Nanoscale Memories and Voltage Scaling,” IEEE Trans. Nanotechnol.,56

vol. 21, pp. 16–22, 2021.57

[44] E. Seevinck et al., “Static-noise margin analysis of MOS SRAM cells,”58

IEEE J. Solid-State Circuits, vol. 22, no. 5, pp. 748–754, 1987.59

[45] NanGate Inc. Nangate Open Cell Library 45 nm. [Online]. Available:60

http://www.nangate.com/61

[46] NCSU EDA. FreePDK3D45 3D-IC Process Design Kit. [Online].62

Available: https://eda.ncsu.edu/freepdk/freepdk3d4563

[47] M. R. Guthaus et al., “OpenRAM: An open-source memory compiler,”64

in 2016 IEEE/ACM International Conference on Computer-Aided De-65

sign, 2016, pp. 1–6.66

[48] C. Frenkel et al., “A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron67

Online-Learning Digital Spiking Neuromorphic Processor in 28-nm68

CMOS,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 1, pp. 145–158,69

2018.70

[49] O. M. Ikechukwu et al., “On the Design of a Fault-Tolerant Scalable71

Three Dimensional NoC-Based Digital Neuromorphic System With On-72

Chip Learning,” IEEE Access, vol. 9, pp. 64 331–64 345, 2021.73

[50] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction74

of CMOS device performance from 180 nm to 7 nm,” Integration,75

vol. 58, pp. 74–81, 2017.76

[51] F. Ye and K. Chakrabarty, “TSV Open Defects in 3D Integrated Circuits: 77

Characterization, Test, and Optimal Spare Allocation,” in Proceedings of 78

the 49th Annual Design Automation Conference, 2012, pp. 1024–1030. 79

[52] J. Cong et al., “Thermal-Aware 3D IC Placement Via Transformation,” 80

in 2007 Asia and South Pacific Design Automation Conference. IEEE, 81

2007, pp. 780–785. 82

[53] F. Vaverka et al., “TFApprox: Towards a Fast Emulation of DNN Ap- 83

proximate Hardware Accelerators on GPU,” in 2020 Design, Automation 84

& Test in Europe Conference & Exhibition. IEEE, 2020, pp. 294–297. 85

Ryoji Kobayashi is currently a Master student 86

at Graduate School of Engineering, University of 87

Tokyo, Japan. He received his B.Sc. from the Uni- 88

versity of Aizu, Aizu-Wakamatsu, Japan in 2025. 89

His work was conducted at the University of Aizu 90

under the supervision of Assoc. Prof. Khanh N. 91

Dang. His research interests include energy-efficient 92

computing, fault-tolerant/reliable systems, and 3D- 93

ICs. 94

95

Ngo-Doanh Nguyen is currently a Ph.D. candidate 96

in Electromagnetism, Electronics, and Telecommu- 97

nications at the University of Genoa, Italy. He re- 98

ceived an M.Sc. degree in Computer Science and 99

Engineering at the Graduate School of Computer 100

Science and Engineering, The University of Aizu, 101

Aizuwakamatsu, Japan, in 2024. He was a Re- 102

search Engineer with the Information Technology 103

Institute, Vietnam National University, Hanoi (2018- 104

2022), where he received a B.Sc. in Electronics and 105

Communications Engineering (ECE), in 2019. His 106

research interests include hardware/software co-design and verification, as 107

well as low-power solutions for artificial intelligence. 108

Abderazek Ben Abdallah (Senior Member, IEEE) 109

is a Full Professor at the University of Aizu, Japan, 110

serving as Regent and Dean of the School of Com- 111

puter Science and Engineering since April 2022. 112

Previously, he was Head of the Computer Engineer- 113

ing Division (2014–2022). Dr. Ben Abdallah holds 114

a Ph.D. in Computer Engineering from the Univer- 115

sity of Electro-communications (UEC), Tokyo, in 116

2002. With over 20 years of experience in academia 117

and research, his expertise encompasses computer 118

architecture, neuromorphic circuits and systems, ad- 119

vanced on-chip interconnects, fault tolerance and reliability, and embedded 120

systems. He has authored four books, published 160+ papers, secured 15 121

grants, and holds 14 patents. He is a Senior Member of IEEE and ACM, as 122

well as a member of Sigma Xi, the Scientific Research Honor Society. 123

Nguyen Anh Vu Doan is currently with Infineon 124

Technologies AG, Germany. He was previously with 125

Fraunhofer IKS as a Senior Scientist, having worked 126

as a Postdoctoral Researcher first with the Amano 127

lab at Keio University (Japan) and then with the 128

Chair of Integrated Systems at the Technical Uni- 129

versity of Munich (Germany). He received a Ph.D. 130

degree in electrical engineering from Université li- 131

bre de Bruxelles (Belgium) in 2015. His research 132

interests include design space exploration, design 133

automation, multiobjective optimization, and multi- 134

criteria decision aiding. 135

Khanh N. Dang (Member, IEEE) is currently an 136

Associate Professor at the University of Aizu. He 137

received his B.Sc., M.Sc., and Ph.D. degree from 138

Vietnam National University Hanoi, University of 139

Paris-XI, and University of Aizu, in 2011, 2014, 140

and 2017, respectively. He has co-authored two 141

books, 60+ journal and conference papers, and three 142

Japanese patents. His research interests include 3D- 143

ICs, on-chip communication, neuromorphic comput- 144

ing, low-power, and fault-tolerant systems. 145

146

