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HotCluster: A thermal-aware defect recovery
method for Through-Silicon-Vias Towards Reliable

3-D ICs systems
Khanh N. Dang, Akram Ben Ahmed, Abderazek Ben Abdallah, and Xuan-Tu Tran

Abstract—Through Silicon Via (TSV) is considered as the
near-future solution to realize low-power and high-performance
3D-Integrated Circuits (3D-ICs) and 3D-Network-on-Chips (3D-
NoCs). However, the lifetime reliability issue of TSV due to
its fault sensitivity and the high operating temperature of
3D-ICs, which also accelerates the fault-rate, is one of the
most critical challenges. Meanwhile, most current works focus
on detecting and correcting TSV defects after manufacturing
without considering high-temperature nodes’ impact on lifetime
reliability. Besides, the recovery for defective clusters is also
challenging because of costly redundancies. In this work, we
present HotCluster: a hotspot-aware self-correction platform for
clustering defects in 3D-NoCs to help understand and tackle
this problem. We first give a method to predict normalized fault
rates and place redundant TSV groups according to each region’s
fault rate. In our particular medium fault-rate (normalized to the
coolest area), HotCluster reduces about 60% of the redundancies
in comparison to the uniformly distributed redundancies while
having a higher ratio of router working in a normal state. Fur-
thermore, HotCluster integrates both online (weight-based) and
offline (max-flow min-cut offline method) mapping algorithms to
help the system correct the faulty TSV clusters. The experimental
results show that both the max-flow min-cut offline method and
weight-based online mode with a redundancy of 0.25 exhibits less
than 1% of routers disabled under 50% defect-rates.

Index Terms—3D-NoCs, Fault-tolerance, Reliability, Architec-
ture and Design, Through Silicon Vias, Maximum flow minimal
cut.

I. INTRODUCTION

AS a result of the fusion of 3D-Integrated Circuits (3D-
ICs) [1] and the mesh-based Network-on-Chips (NoCs),

the 3D-Network-on-Chip (3D-NoC) paradigm [2] is consid-
ered as one of the most promising architectures. The Through-
Silicon Vias (TSVs) constitute one of the main inter-layer
communication mediums; therefore, the parallelism and scala-
bility of NoCs can be further enhanced in the third dimension
thanks to the short wire length and low power consumption.
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Despite having many advantages, 3D-ICs exhibit two ma-
jor drawbacks: (1) reliability and (2) difficulty in thermal
dissipation. In terms of reliability, due to the imperfection
of the manufacturing process, the yield rates of TSV-based
3D-ICs have been considered as a critical factor [3], [4].
Moreover, by stacking multiple layers of wafers, 3D-ICs suffer
from the stress issue due to the difference between thermal
expansion coefficients of the implementation materials [5]
that could create defects in TSVs. The temperature variation
between two layers has been reported to reach up to 10°C [6]
which negatively affects the Time Dependent Dielectric Break-
down, Thermal Cycling and Electromigration [7]. Here, copper
TSV lifetime expectancy can be predicted using the Black’s
model [8] where the fault rate is accelerated exponentially by
the operating temperature. As a result, TSV is one of the most
thermally critical parts in terms of reliability in 3D-ICs.

Even within a single layer, there are also temperature differ-
ences since there are hotter and cooler areas [9]. Because of
these differences in temperature, TSVs on different positions
and the layers have different lifetime expectations. As we
later investigate in Section IV-B, the fault-rate accelerates
exponentially with the operating temperature in most academic
and industry models [8], [10]. Apparently, hotspot areas must
be focused on when it comes to fault-tolerance since: (1)
the probability of having defects is higher and (2) this area
plays an important role in the operation because of the
high computation/communication utilization. Although using
advanced cooling methods such as liquid or cooling TSVs
could help reducing the operating temperature, these methods
are still immature for near-future applications.

As explained in details in Section II, existing works pre-
sented so far have dealt with the high fault-rate of TSVs in
different approaches: (1) improving the manufacturing process
to enhance the reliability of TSVs [11]; (2) accounting the
potential defects in the design stage [5] [12]; correcting
the defective TSVs by using supporting circuits [13]–[15],
redundancy [16]–[19], or Error Correction Codes [20]; and
(3) using an alternative channel to avoid the defective TSV
channel (e.g., using fault-tolerant routing [2], [21] in NoCs).
To tackle the thermal issue, hotspot/thermal aware routing [22]
is proposed; in addition, advanced cooling [9] can be another
solution.

Although these works have significantly enhanced the reli-
ability of TSV-based systems, there are two major issues that
need to be addressed:

1) Clustering distribution of TSV defects is a challenging
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problem to be addressed: While adding redundancy for
corrections works well with random defects, it is not
feasible for clustering defects since the number of de-
fects in a group is too high. Adding a high volume of
redundancies for each group is also impractical due to
the high area overhead. In [21], we propose a method for
correcting clustering TSV defects without redundancy in
3D-NoCs; however, it leads to serialized or disabled ver-
tical connections, which degrade the system performance.

2) Thermal-impact on TSV defect: where most TSV fault-
tolerant techniques focus on correcting the defects after
manufacturing, they also need to investigate the impact of
thermal distribution on lifetime reliability. Hotspots usu-
ally have higher chances of faults and could accelerate the
crack or misalignment in TSVs. This high-temperature
issue also correlates strongly with the reliability, which
leads to clustering TSV defects.

Starting from the facts mentioned above, in this paper, we
propose HotCluster: a thermal-aware correction framework for
clustering defects in 3D-NoCs. Based on our previous de-
sign [21], each router has four clusters around it and could use
its neighbors’ clusters to establish communication. Here, we
first add redundant clusters within the layer to allow a better
recovery rate. Moreover, we design an algorithm that considers
the operating temperature to support certain specifications and
layouts. Experimental results show that the proposed solution
can help 3D-NoCs to work around TSV-cluster defects without
degradation at a certain fault-rate. Therefore, the reliability
at a reasonable overhead is guaranteed and improved thanks
to the thermal-aware design. We also solve the problem of
reducing the amount of redundancy while still ensuring the
same reliability. Compared to our previous work [21], the
followings are the new main contributions:

• Four options are presented to address the placement of
redundant TSV clusters. They are: (1) int. red.: each
router has one redundant TSV cluster, (2) ext. red.: adding
redundant clusters at the border of the layer, (3) hyb. red.:
combination of int. red. and ext. red., and (4) irr. red.:
use our HotCluster framework to place redundant TSV
clusters.

• When addressing the solution for irr. red., a thermal aware
spare TSV cluster placement is introduced to reduce the
number of needed redundancies while still maintaining
the same reliability as uniform placement (int. red., ext.
red., and hyb. red.).

• Online and offline algorithms are provided to help the
recovery of defective TSV clusters. We first present SAWI
(Spare Availability Weight Initialization) to generate the
first weight for online recovery. We offer a method to
build, adapt, and solve the issue using the Ford-Fulkerson
method for offline recovery. The Ford-Fulkerson method
is considered as the optimal method for offline mapping
without considering the priority of the router.

In summary, the HotCluster platform combines the pro-
posed techniques, architectures, and algorithms for tackling
the thermal-induced defects in TSVs. This paper provides a
comprehensive approach for protecting TSV clustering defects

in 3D-ICs because we offer both online and offline mapping
and placement consideration, in addition to the recovery from
the thermally accelerated faults. The paper is organized as
follows. Section II presents the prior works. In Section III,
we describe the proposed TSV fault-tolerant architecture.
Section IV discusses about the thermal issues and introduces
the appropriate solutions. Section V shows our evaluation and
comparison results. Finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we cover the reliability issues of TSVs in 3D-
ICs. Then, the fault correction methods are also summarized.
We also discuss the thermal/hotspot awareness in designs and
run-time techniques.

A. Reliability Issues of TSV-based 3D-ICs

The defect-rate of TSVs is considerably high which nega-
tively affects the final yield. In [4], 0.63% of the TSVs are
reportedly defective and the final yield without spare is only
15%. Besides the high defect-rate during the manufacturing
stage, TSVs under operation also face several challenges with
stress and thermal issues, as reported in [5]. As a result, TSVs
are one of the most vulnerable components in 3D-ICs.

One of the matters which is still under investigation is
the TSV failure distribution. In general, there are two main
assumptions for the failure distribution: Random [23] and
Clustering distributions [3], [16], [17], [19], [24]. Random
TSV defects are efficiently dealt with by adding redundancy
and recovery methods; but, Clustering defects still remain as
an important challenge. Because of the stress and thermal
issues, TSVs may also be defective after manufacturing. In [7],
the authors presented several Mean Time To Failure equa-
tions of 3D-ICs when affected by Time Dependent Dielectric
Breakdown, Thermal Cycling and Electro-migration where the
temperature values play an important role. Because of the
clustering thermal behavior in 3D-ICs [16], the obvious result
was found to be the TSV-cluster defect.

B. TSV Fault Tolerance

Numerous works have addressed the fault tolerances and
reliability issues in 3D-NoCs. In this paper, we focus on TSV
defect tolerance. The existing works have approached the TSV
fault-tolerance in three OSI (Open Systems Interconnection)
layers: Physical layer, Data-link layer and Network layer.

In Physical layer, an improvement of TSV manufacturing
can help reduce the defect-rate [11]. Designers can optimize
the physical layout, use thermal-aware routing and placement
methods to improve the reliability of 3D-ICs [5]. Even when
a fabricated TSV has a short defect, a correction circuit, using
a voltage comparator to gain the output voltage of the TSV
can be employed [13]. To enhance the reliability of TSVs, [14]
proposed a method named Double TSV which uses two TSVs,
instead of one, to maintain the vertical communication. If an
open, short-to-substrate or bridge defect occurs in one TSV,
the communication is still performed by the duplicate one.

In the Data-link layer, the most common method is to add
redundant TSVs to correct the defective ones [16], [18]. The
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major concern in this method is to route from a defective
TSV to a spare one efficiently. There are several solutions that
have been proposed to place and route the spare TSVs such as
signal switching [4], single shifting [23], crossbar, router [16],
ring [25], honeycomb [17] and cobweb [19]. Because of the
cluster defect, adding redundancies becomes a costly technique
with a high number of needed spare TSVs (up to 50% in
[16], [24]). In [3], the authors propose a mapping method
to reduce the impact of cluster defects. TSVs in the same
group are mapped into random positions with the help of
an optimization process. On the other hand, Zhao et al. [24]
analyzed the grouping method to achieve the best recovery.
The router method in [16] introduces a new approach for TSV
mapping by creating a network and implementing an algorithm
for re-routing the defective TSVs. Since the router or the
ring methods have limitations on the maximum flow from the
faulty TSVs to the spare ones, the works in [17] and [19]
present alternative shapes such as honeycomb or cobweb to
tackle the bottleneck on the flow, which allow more efficient
recovery. On the other hand, Ni et al. [26] proposed a Time
Division Multiplexing Access for TSVs, which can help to
correct defects with low area overheads. As defects induced
EM of TSVs is an important issue, Chen et al. [12] analyzed
and proposed a framework to balance the current flow and
provide recovery methods to enhance the system reliability.
Because TSVs manage the vertical connections in a 3D-NoC,
Error Correction Coding [20] is also a prominent method for
detecting and correcting the defective TSVs. However, this
type of solution requires extra bits, significantly increasing
the area cost and power consumption.

In the Network layer, where we mainly focus on 3D-NoCs,
using a fault-tolerant routing algorithm [2] is one of the most
suitable solutions. To reduce the risk of thermal and stress
issues in 3D-NoCs, thermal-aware management [27] is also a
promising solution. On the other hand, most of these works
proposed off-line testing and recovery schemes that are not
suitable for post-manufacturing. The system’s operation has
to be at halt in order to be tested and recovered. In [18],
the authors presented an online testing function. Because the
reliability of TSVs is a critical issue, the need for online testing
recovery is primordial.

As we previously mentioned, the cluster defect is predicted
to occur frequently. The most efficient solution for correct-
ing random defects is the grouping and adding redundancy.
Nonetheless, they are still inefficient for the cluster defect and
require an expensive extra area for redundancy. Therefore,
fault-tolerance for cluster defect is the main interest of this
paper.

C. Thermal/Hotspot Awareness

As we previously discussed, the high temperature drives
higher fault-rates in semiconductor devices, in general. Ap-
parently, 3D-ICs also encounters heat dissipation issues that
increase their steady temperatures [28].

To solve the high temperature/hotspot issues, there are two
approaches: (1) advanced cooling such as thermal TSVs or
liquid cooling [9], [29], [30], and (2) design/algorithm aware

method [22], [31]. For advanced cooling, works in [29],
[30] explored the ability to use TSV as cooling devices.
Cuesta et al. [9] showed that liquid micro-channels could
further reduce the steady temperature. While these works show
prominent results, they are difficult to be manufactured and
maintained due to their complex structures and high area
overheads. Therefore, another method is to prevent runtime
defects by smartly lowering down the operating temperature
using design/algorithm methods.

To solve the thermal issue from a design/algorithm aspect,
most works try to limit the highest temperature by cooling
down the hotspots. Cong et al. [32] took into account the
temperature in the cell and the TSV placement while [5]
considering the position of the “thermal TSV” to cool down
the chip. On the other hand, designing hotspot-/thermal-aware
design/algorithms for 3D-NoCs is another critical challenge.
The work in [27] introduced the design for 3D-NoCs with
both thermal management and routing algorithm. Chao et
al. [22] used traffic as a measurable value for allowing lower
temperatures. In order to recover efficiently, Wang et al. [33]
showed the thermal awareness placement for spare and routing.
On the other hand, the work in [31] explored the trade-off be-
tween lowering the power consumption by allocating heavily
communicating tasks within the same vertical stack and the
resulting hotspots due to stacking these tasks. Although this
type of method could reduce the operating temperature, the
final temperature is still significantly high in their experiment,
which leads to the fact that the TSVs in hotspots have a
high defect-rate. Since TSVs in the same area have similar
temperature, it could lead to defective regions instead of
random ones. Consequently, clustering defects could happen,
making adding spares inefficiently.

III. 3D NETWORK-ON-CHIP ARCHITECTURE

In this section, we first show the system architecture of
our preliminary work [21] named TSV-Sharing which is the
baseline of this work. Then, we analyze the problems of this
preliminary work and present the architecture which consists
of additional redundancies for recovery. This architecture will
be the backbone for the HotCluster platform in Section IV.

A. TSV defect pattern
As being presented in [4], [18], [23], TSV defect can be

illustrated as a random distribution and corrected by simply
adding redundancies. In [16], the authors highlighted about
the potential clustering defects. In our preliminary work [21],
we also adopt the clustering distribution into account as our
major target.

Figure 2 illustrates both random and clustering distributions.
A typical TSV group is organized with functional and spare
TSVs as in Figure 2 (a). Once random defects are detected,
the group can recover by using spare TSVs (Figure 2 (b)).
However, a clustering defect leads to a high number of defects
per group, making the TSV group unrecoverable, as depicted
in Figure 2 (c). Finally, Figure 2 (d) illustrates our approach
by adding redundant groups for recovery. As adding redundant
clusters has high area overhead, we optimize by using our
method in Section IV.
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Fig. 1: The proposal TSV-based 3D-NoC: (a) Example of four layers with irr. redundant TSV cluster; (b) Router connection.
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Fig. 2: TSV defect distribution and recovery approach: (a)
TSV group with redundancy (16:4); (b) recovery from random
defects with redundancy; (c) failing to recover clustering
defects due to the lack of spares; (d) adding a redundant group
to recover the failing one.

B. Preliminary work

In [21], our solution is to share TSVs between neighboring
routers. The TSVs of a router are divided into four clusters.
In [21], we use tri-state gates to redirect the signal from its
original TSV to the spare one; therefore, we can support both
uni- and bi-directional TSVs and we can share the spare TSVs
between two directions (up and down). Therefore, when a
TSV-cluster fails, its router can borrow a healthy cluster from
one of its neighbors to maintain the connection. Moreover, we
also present several designs optimization methods to improve
the reliability of the system. In this previous work, we did not
add any redundancy to maintain the low area overhead.

Once there are defective TSV clusters, the higher-weighted
router borrows a cluster from a lower-weighted nearby one.
Consequently, the system creates a chain of borrowing from
the highest-weighted router to the layer’s lowest-weighted
ones. The lower-weighted routers usually have less than four
clusters to perform their communications. To maintain their
connectivity, work in [21] proposed two solutions: (1) Virtual-

TSV: temporally borrow one or more TSV clusters from a
higher weighted router to perform communication; (2) Seri-
alization: use one or two TSV clusters left to perform the
communication in a serial mode (4:1 or 2:1). The router that
cannot perform either Virtual-TSV or Serialization will use a
fault-tolerant routing algorithm to avoid the disconnected link.

Despite its efficiency in recovering defective TSVs and
maintaining communication, TSV-Sharing [21] has two signif-
icant drawbacks. The first drawback is that it does not support
redundant clusters, leading to performance degradation due
to the three fault tolerating techniques. In fact, virtual-TSV,
serialization and fault-tolerant routing can create bottlenecks
within the network. The second one is it does not consider
the impact of thermal on the reliability and assumes the center
of the layer routers as the highest weighted ones. Therefore,
in this work, we redesign the architecture and algorithm to
overcome this preliminary work’s problems.

C. System design

The proposed system architecture is shown in Figure 1
where each router connects at most four neighboring intra-
layer (north, east, south, and west) and two neighboring inter-
layer (up and down) routers. Note that the number of neighbors
might be reduced at the borders/corners of the NoC topology.
Figure 1 (b) shows the router architecture which consists
of two parts: (1) normal routing logic (blue box) and (2)
sharing/borrowing logic (around blue box).

1) Routing logic: The routing logic handles the communi-
cations between routers and PEs inside the network. It receives
packets and routes them in proper directions. Since our method
could work with any 3D-Mesh NoC or even other NoC that
utilize TSV-based connections, we do not limit the routing
logic selection. Here, we adapt our previously developed 3D-
Mesh NoC [2] that has Look-Ahead-Fault-Tolerant (LAFT)
routing algorithm to re-route the packets if needed. We want
to note that other NoC designs could be easily integrated.

2) Sharing/borrowing logic: The sharing/borrowing
method is inherited from our previous work [21]. Each
TSV-based connection is divided into four clusters and placed
in four borders of the router (see white TSV cluster Figure 1).
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Fig. 3: TSV Borrowing Mechanism and Fault-tolerance cases:
(a) Repair internally using redundant cluster. (b) Repair in-
ternally and externally using redundant and nearby clusters.
(c) Virtual TSV with lower weighted (2) router temporally
borrows a cluster from a higher weighted (3) one. (d) Serial
2:1 with 2-3 normal clusters, 4:1 with 1 normal cluster and
fault tolerant routing with zero normal cluster cases.

Compared to [21], we offer an extra internal redundant
cluster within the router (yellow TSV cluster). This allows
the cluster to be separated, which avoids clustering defects
and fewer borrowing wires between routers. Based on the
clustering design, each router naturally has four original TSV
clusters, optionally one redundant cluster, and at most four
nearby clusters.

Figure 3 (a) shows the case of self-repair with an internal
TSV cluster. Figure 3 (b) represents the borrowing mechanism.
When there is a defective cluster, the router tries to correct
using a redundant cluster within the router. However, if there
are two or more defective clusters, it must borrow from its
neighbors to correct them. Figure 3 (c) shows the case of
Virtual TSV where the lower-weighted (2) router requests to
borrow a cluster from a higher weighted one temporally. After
it completes its packet transmission, it returns the cluster
to the higher-weighted router. Figure 3 (d) represents the
serialization 2:1 and 4:1 and the fault-tolerating routing case.
If there are two or three available clusters, the router can
perform 2:1 serialization. If there is one available cluster, a
4:1 serialization can be utilized. In the case of a non available
cluster, a fault-tolerant routing is used to find an alternative
path of transmission.

D. Redundancies

One of the significant problems of the work presented in
[21] is that it runs into serial (use 25% or 50% of TSV
for transmission) or virtual (sharing clusters between two
routers) mode when a defective cluster occurs due to lack
of redundancy. Adding clusters is needed to help correct
faulty clusters that improve the overall performance since the
system does not need to perform virtualization or fault-tolerant
routing. Here, we offer two options for adding redundant
clusters:

1) Adding redundant clusters at the border of a layer: as the
principle of borrowing is to find a cluster nearby, adding
redundancy at the border of the layer can inherit the
algorithm in [21], where the border can be considered as
a virtual router with the lowest weight. Here, the system
can borrow the TSV cluster outside of its layer.

Normal  TSV cluster Redundant TSV cluster Router logic

(a) (b) (c) (d)

Fig. 4: The redundant clusters: (a) int.red.: Within each router;
(b) ext.red. Outside of the layer; (c) hyb.red.: Outside of the
layer and within each router; (d) irr.red.: Irregular assignment
from the HotCluster framework.

2) Adding redundant clusters within the router: We notice
that adding redundant clusters within the router is more
efficient; especially, borrowing chains can block each
other. Because hotspot areas can be more faulty, we can
add more redundant clusters to ensure system reliability.

Figure 1 shows the proposed TSV NoC architecture. The
topology is 3D-mesh, where redundant (spare) TSV clusters
could be added to the router and outside of the layer. The
borrowing mechanism is presented in Figure 3. Figure 4
shows four examples of a 2 × 2 layer which consists of: (a)
redundancies within each router (int.red.); (b) redundancies
outside of the layer (ext.red.); (c) combination of (a) and (b)
(hyb.red.); and (d) an irregular assignment by the HotCluster
framework (irr.red.).

Besides the external, internal, and hybrid options, we also
consider the irregular cases (irr.) as it will be later designed
in Section IV. Here, naively placing the redundant cluster can
cost a large area. In [34], the authors analyzed the cost of
TSV where a 5µm TSV is around 150× of a 28nm NAND
gate, which creates a large overhead for adding redundancy.
Therefore, in this work, we consider the placement of irr. by
taking into account the thermal map of 3D-ICs. Another im-
portant issue is a potential timing violation due to the increase
of delay brought by high temperature regions. Here, we can
treat the violated timing TSVs are defective and temporarily
provide a recovery method until it cools down, or permanently
if there are spare TSVs. Another approach is to reduce the
frequency of the connection to satisfy the timing requirements.
Nevertheless, this issue should be addressed with a low-level
(for detecting timing issue) system management mechanism
(for frequency adaptation). Therefore, in this paper, we only
consider the permanent defective TSVs as the target.

IV. PROPOSED HOTCLUSTER PLATFORM

A. Platform overview

Figure 5 illustrates our proposed HotCluster platform. It
takes the system model (e.g., Verilog HDL), benchmarks or
applications, and the configurations (3D-IC structure, heatsink,
TSV technology, library) as inputs. The first phase is to assign
redundant TSV clusters. Here, the platform performs a fault
rate prediction, which is later shown in Section IV-B. By pre-
dicting the critical regions (usually the hotspot area), it inserts
redundant clusters for recovery (see Section IV-C). Obviously,
there is a case where the fault rates are undetermined (i.e.,
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Fig. 5: The proposed HotCluster platform.

unknown applications) which leaves the system to insert the
TSV clusters uniformly (i.e., int.-red., ext.-red. or hyb.-red.
in Figure 4). The redundant patterns are used in the redesign
phase. Once the system is manufactured, the detected faulty
clusters are recovered with an online mapping method (weight-
based) or an offline mapping method, which are both presented
in Section IV-D.

B. Fault rate prediction

The model of thermal accelerated fault rate has been covered
in academic and military documents [8], [10]. In general,
the operating temperature exponentially accelerating the fault-
rates is used in most models. Here, we consider the fault-rate
following Arrherius’ Law [10] where πT is the acceleration
rate of fault as follows:

πT = A× e
− Ea

kBT (1)

Three constants A, Ea and kB are the pre-exponential factor,
activation energy and Boltzmann constant, respectively. Here,
we assume that each cluster has a base defect-rate of λb. Then,
the defect-rate is accelerated with a temperature factor of πT :

λT = λbπT = λbAe
− Ea

kBT (2)

By using a reference temperature (Tref ), we can estimate
the accelerated factor regardless of the constant value. For
example, as HDR4 [10] used 70°C as the threshold voltage,
the acceleration factor is as follows:

λT /λTref
=

λbAe
− Ea

kBT

λbAe
− Ea

kBTref

= e
Ea
kB

( 1
Tref
− 1

T ) (3)

As shown in Equation 3, the normalized fault-rate only
depends on the activation energy (Ea) and the operating
temperature (T ). Here, we would like to note that in prior
works on TSV lifetime reliability, the authors used Black’s
model [8]; however, as we normalize it based on temperature,
both models (Black’s and Arrhenius’) lead to the Equation 3.

In summary, by using a normalized value, we can illustrate
the normalized fault-rate value of a high-temperature point. By
knowing the normalized fault-rate, we can estimate the needed
redundancies and design a suitable layout and algorithm for
recovery. Please note that designers can adopt different models
for this phase.

C. TSV cluster placement
There are two situations that can be observed in the pro-

posed HotCluster: (1) unpredictable fault rate and (2) pre-
dictable fault rate. If the fault rates (or temperature map) are
unpredictable, the best is to place the ration of redundancy (or
repair rate) Reh as a certain value (i.e., Reh = 1). Depending
on designers’ analyses, the redundant clusters could be placed
at the center, uniformly, or outside of the layer. In this work,
we assume that there are three approaches that designers can
use: int.-red., ext.-red. or hyb.-red., as represented in Figure 4.
Obviously, designers can insert redundancies using different
patterns (i.e., several routers have one redundant cluster or
some routers has several redundant clusters); however, this
work focuses on the thermal-aware method where the hotspots
can be predicted. Therefore, we suggest that different patterns
should be later investigated. Even with varying patterns of
redundancy, the recovery algorithms in the later section can
also be performed.

If hotspot areas and their temperatures can be predicted,
which allows us to predict the normalized fault rates in
Eq. 3, we optionally place one redundant cluster within the
router. It allows the system to repair itself without creating an
extended borrowing chain immediately. Second, we must pre-
setup a chain of borrowing with redundancy. As previously
explained, the borrowing mechanism is already supported;
however, placing redundancy in the chain can increase the
success rate.

The TSV cluster placement and weight assignment flow for
our architecture are presented in Algorithm 1. The input of
the algorithm is the number of faulty TSV groups in each
router NFh. The algorithm’s outputs are the redundancy map,
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Algorithm 1: TSV cluster placement and weight as-
signment algorithm.

Input: NFh[rows][cols] ; // predicted faults
Output: Reh[rows][cols] ; // redundancies map
Output: W [rows][cols] ; // Weight map
Output: Un[rows][cols] ; // Uncorrected map

1 visited[rows][cols] = all false;
2 Wmax = rows*cols;
3 while (visited[rows][cols] == all true) do
4 (r,c) = find maximum NFh and unvisited router;
5 visited[r][c] = true;
6 W[r][c]=Wmax;
7 Wmax =- 1;
8 if (NFh[r][c]! = 0) then
9 Reh[r][c] = 1;

// insert redundancy
10 NFh[r][c] = NFh[r][c]− Reh[r][c];

// correct with redundancies
11 for ([x,y] in ([r-1,c], [r+1,c], [r,c+1], [r,c-1]) ) do
12 if (NFh[r][c] == 0 and early break == true ) then
13 break the for loop;

14 if (visited[x][y] == false and NFh[x][y] < 4) then
15 NFh[x][y] + +;
16 NFh[r][c]−−;

17 if (NFh[r][c] > 0) then
18 fail to correct;
19 Un[r][c] = true;

20 else
21 Un[r][c] = false;

22 return Reh,W ;

the weight of each router, and the uncorrected router map. The
algorithm performs a heuristic loop to scan through all routers
in the network. It tries to find the router with the maximum
expected fault to perform the mapping. Consequently, it always
finds the higher temperature routers first and the cooler ones
later. Once it finds the hotspot router, which is not visited yet,
it assigns the weight to this router (line 6). Note that the weight
decreases in each loop, making the hotspot router having a
higher weight than the cool ones. Then, it starts to insert
redundancy to correct the defects (line 7) if there is at least
one. If there are uncorrected defects, the algorithm distributes
the faults to its neighbors. Note that we only distribute the
defects to the neighbors that are not visited yet and have
less than four predicted defects. Due to the max-flow min-cut
theorem, a router can correct at most five defective clusters.
However, once it is given a faulty cluster function (line 7), it
cannot correct in the reverse direction. Therefore, this router
can correct at most four defective TSV clusters. Since it is
given one, this router should have at most three defective
clusters; otherwise, it cannot be corrected. From line 17 to
21 of Algorithm 1, we assess the remaining faults that are not
mapped yet. If there are unmapped defects, we return them as
the output of the algorithm.

In Algorithm 1, we also provide an option for the early
break, which stops mapping the cluster when NF is 0. This
helps to fit precisely the number of defects to the redundant
clusters. However, since the defective position may vary
among the router clusters, it may cause a smaller bottleneck
path that the mapping algorithm fails to find a redundant
cluster for correction. Therefore, we support a non-early
break that inserts redundant TSVs to all neighbors of the
current router. As a result, the number of redundancies can

be increased; however, it helps to improve the reliability of
the system.

Since Algorithm 1 visits each router once and each visit
performs a search for a maximum NFh, an unvisited router
(O(n)) and a constant calculation for each router (O(1)), the
time complexity is O(n2) where n is the number of the routers
within the layer. Here, one of the optimized approaches is
to perform a quick sort first and the calculation using the
sorted list. By doing so, we can reduce the time complexity
to O(n log(n)) (quicksort is O(n log(n)) and the placement
algorithm is O(n)).

D. Algorithm for cluster finding

With the four redundancy options in Figure 4, we need to
design a cluster finding mechanism. We first explore online
mapping. Then, we explore the ability of an offline algorithm.

1) Online mapping: In [21], we use the center priority
weight initialization (CPWI) that gives higher weights to
the central routers and lower weights to the border ones.
The weights are later optimized (adjusted) to maximize the
utilization of TSV clusters. This method could be adopted for
the Figure 4 (a) case.

Secondly, we realize that CPWI cannot work well with
routers having redundant clusters. Despite of having a higher
weight, a router still has spare clusters that could be bor-
rowed from its neighbors which is prohibited in the previous
work [21] (the weight-based borrowing mechanism). There-
fore, we propose a new initiation of weight assignment named
Spare Availability Weight Initialization (SAWI):

Weight = 4− unused-clusters (4)

Thirdly, once we have the weight from the Algorithm 1,
we can use it as the input for the cluster finding algorithm.
Depending on the assigned weights, the finding algorithm will
work differently. In the evaluation section, we will further
investigate the efficiency of these assignments.

Algorithm 2: Online TSV Cluster Finding.
Input: Re ; // number of redundancy
Input: NF ; // number of fault
Input: Borrow-success ; // Ack. for borrowing
Output: Borrow; // Borrow cluster

1 if Re[r][c] >= NF [r][c] then
2 repair NF [r][c];
3 else
4 repair Re[r][c];
5 find NF [r][c]− Re[r][c] candidates from routers ([r-1,c], [r+1,c],

[r,c+1], [r,c-1]) based on weight;
6 request to borrow the candidates;
7 if fail to borrow then
8 return borrowing clusters;

// jump to virtual/serial mode
9 if there are four accessible clusters then

// virtual mode
10 request to access everytime the router need;
11 else if there is one accessible cluster then
12 use 4:1 serial connection;
13 else
14 use fault-tolerant routing;

15 else
16 create borrowing chain;
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Algorithm 3: Ford-Fulkerson TSV Cluster Finding.
1 add source s and sink t;
2 for router ri in the layer do
3 add node for the router ri;
4 add edge from the source s to the router ri ;
5 add capacity ri → s = number of defective cluster in router ri;
6 add edge from the router ri to the sink t;
7 add capacity ri → s = number of avaiable redundant cluster attached to

router ri;

8 for router ri in the layer do
9 for router rj in the layer do

10 if routers ri could borrow a cluster from rj then
11 add edge from the router ri to the router rj ;
12 add capacity ri → rj = 1;

13 while no augmenting path do
14 Breadth first search to find minimum path

Augmenting the found minimum path with capacity Save the flow

15 if max-flow == # of defective TSV then
16 return;
17 else
18 Perform serial/borrowing assignment;
19 return;

Algorithm 2 shows the weight-based cluster finding algo-
rithm. From the detection mechanism, this one receives the
faulty information as input. Here, we can adopt an online
detection method [35] or use an error detection code for
determining the healthy status of the TSV group. It first tries
to repair defects using the current redundancy. If it can find
enough clusters, it completes the borrowing. If there are not
enough redundancies, it tries to find nearby clusters. Therefore,
it creates a borrowing chain. The nearby cluster could be
replaced by a nearby redundancy.

However, these online weight-based methods might not be
optimal for finding a cluster. Therefore, this kind of approach
makes fewer routers operate in a normal state. The main reason
for this approach is the locally optimized one. Unless we can
predict the possible fault rates, this method is not the best
option. To solve this problem, we observe that a software
mapping solution could be useful. This mapping can be solved
offline with a host CPU.

2) Offline mapping: A searching algorithm can be adopted
and performed offline with a CPU inside the system [16]. It
needs to collect the faulty information and find the optimal
solution for cluster chains. In this offline mapping, we assume
that a dedicated CPU can access this fault information and
use the proposed approach to solve it. Since the system needs
to reconfigure after mapping, which might need to defer its
operation, we consider this approach as offline even it can be
run by a dedicated CPU within the 3D-NoC, and the system
can still perform as usual during the execution of the mapping.

Here, we convert the mapping problem to a multi-source
multi-sink max flow problem and consolidate source/sink to
transform it to a typical single-source single-sink max flow and
solve it using Ford-Fulkerson method [36]. Specifically, we
use the Edmonds-Karp algorithm with the shortest augmenting
path since we want to keep the shortest borrowing chain. Also,
since the edge’s capacity is always ‘1’ for non-virtual ones, it
can be an optimal path as the shortest one. One more constraint
is to aim for full-fill most edges instead of partly-fill, as in the
Ford-Fulkerson method.

Figure 6 shows how we apply Ford-Fulkerson algorithm
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Fig. 6: Example of off-line mapping using the Max-flow Ford-
Fulkerson algorithm. The layer size is 3 × 3 and each router
(yellow circle) has one redundant TSV group (green circle).
(a) Router (1,1) has one defective TSV cluster. (b) The entire
layer has three defective clusters.

[36]. We first add a virtual source s and sink t into the flow
graph. Once there is a defective TSV cluster, the edge between
source s and the router is added with the capacity of the
number of defective clusters. For each router, there is a virtual
edge to the sink with capacity ‘1’ if there is a redundancy.
Between each router that nearby, there is also an edge with
capacity ‘1’.

The complexity of Edmonds-Karp is O(V E2) where V =
2+M ×N for a layer of M ×N routers and E = 4M ×N +
M +N . Therefore, the complexity of Edmonds-Karp for this
application is O(M2N2) = O(n2) where n is the number of
routers in a layer.

In summary, we proposed a comprehensive platform to deal
with lifetime reliability of TSV in 3D-ICs. However, there are
some drawbacks of the method: (1) it needs to predict correctly
the thermal behavior from simulation results as inaccurate
thermal behaviors lead to inaccurate fault-rates; and (2) the
borrowing chain can create long wires that potentially increase
the critical path which lead to lower operating frequencies.
Despite the above drawbacks, the result of HotCluster in
the evaluation section still proves its efficiency in terms of
reliability and performance.

V. EVALUATION RESULTS

A. Evaluation Methodology

The proposed system was designed in Verilog-HDL, syn-
thesized, and prototyped with commercial and academic CAD
tools (Synopsys Design Compiler and Primetime, Cadence
Innovus, HotSpot 6.0, gem5 with PARSEC benchmarks). For
physical design, we use NANGATE 45nm library [37] and
NCSU FreePDK3D45 TSV [38]. The TSV is designed and
exported as a macro cell with the size and the pitch of
4.06µm × 4.06µm and 10µm, respectively. In the place and
route design phase, we place the TSV macro cell as the
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output/input terminal of up and down directions of the 3D-
NoC router. The HotCluster reliability estimation platform is
built on Java in cooperation with the temperature output of
HotSpot.

The proposed technique is implemented into a 3D Mesh
NoC system with a 44-bit flit (2× SECDED (22,16)) and
four input-buffers depths. The flow-control is Stall-Go, and
the forwarding mechanism is Wormhole.

First, we evaluate the proposed architecture and algorithm
using a temperature and fault acceleration model. Here, PAR-
SEC and synthetic benchmarks’ trace files are used in our
platform to estimate the power consumption. Later, we predict
the temperature and reliability to be put into our HotCluster
platform. Second, we evaluate the mapping algorithms by
inserting faults (defects) into TSV-clusters and assessing the
proposed 3D-NoC system’s reliability. Here, we randomly
insert defective clusters from 0% to 50% to observe the
efficiency of the proposed architecture and algorithms. Al-
though faults at high rates such as 50% are not conventionally
realistic, we still considered them to understand our method’s
performance in very extreme situations. Third, we use both
synthetic and realistic traffic patterns as benchmarks to study
the performance of the proposed system in comparison to the
baseline model [39]. Last, we evaluate a single 3D router’s
hardware complexity and compare our system with other
proposed approaches [16], [24].

B. HotCluster method evaluation

1) Simulation flow: In order to evaluate the hotspot defect
tolerance of the method, we use both synthetic and real-
istic benchmarks. We selected Transpose, Uniform, Matrix-
multiplication, and Hotspot 10% [40] as the synthetic bench-
marks. For realistic benchmarks, we chose H.264 video encod-
ing system, Video Object Plane Decoder (VOPD), Picture In
Picture (PIP) and Multiple Window Display (MWD) [40]. For
each benchmark, after getting the layout, we perform power
extraction using post-layout simulation switching activities.
The temperature is predicted using Hotspot 6.0. We first
perform the power extraction using Synopsys PrimeTime to
obtain the energy per bit value for the dynamic power of
the proposed NoC. The static power of NoC is considered
independent of the switching activities. Then, from the bench-
marks, we can obtain the switching activities (number of
bit/time) and estimate the power consumption.

2) PARSEC and synthetic benchmarks: To understand the
efficiency of the proposal under realistic benchmarks, we first
built a 3-D Mesh topology for garnet2.0 under gem5 system
simulation [41]. We then perform PARSEC benchmarks [42]
and extract the switching activities of the network. We em-
ulated the activities of the PARSEC benchmark traffics (like
our realistic benchmarks) under the post-layout simulation of
our router. Then, the power consumption is estimated with
PrimeTime. The temperature is predicted using Hotspot 6.0
[43]. We do not consider the processor power/temperature
impact with all benchmark-based evaluations since it varies
between different processors (with different costs of area,
frequencies, and voltages), low power, and cooling techniques.
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Fig. 7: Evaluation results of our platform for PARSEC
and synthetic benchmarks with higher reference temperature
(medium defect-rate). int.red., ext.red., and hyb.red. use
Algorithm 3; irr.red. use HotCluster platform with reliability
prediction and weight-based mapping (Algorithm 1 and 2).
Reference temperature (Tref ): red dashed line.

Here, we want to emphasize the impact of switching activities
of the router and TSVs (inter-layer link).

We select the reference temperature (Tref ) with no redun-
dancy required in the coolest layer to normalize the reliability.
Consequently, we can observe the optimization in placing the
redundancies of HotCluster. Here, we compare with the Ford-
Fulkerson method for hyb. red., int. red., and ext. red. where
irr. red. is generated by the HotCluster platform with the
weight-based finding algorithm. Figure 7 shows the results of
our HotCluster for PARSEC and synthetic benchmarks. We
can easily observe that all regular redundancy modes (internal,
external, and hybrid) have fixed ratios regarding redundancy
ratio. On the other hand, HotCluster places the equal number
of redundancy to the number of injected faults thanks to its
prediction on reliability. As can be easily observed, HotCluster
saves the number of redundancies in all cases. For instance,
hyb. red. has a redundancy ratio of 0.5, both int. red. and ext.
red. is 0.25 while HotCluster is below 0.17 except in swaptions
(0.25).

Despite reducing the number of redundancies, HotCluster
still maintain the same reliability as hyb. red. and dominates
ext. red.. The hyb. red., int. red. and HotCluster maintain 100%
router working normally while ext. red. has more than 10%
routers not in the normal mode.

To illustrate the efficiency of HotCluster, we also evaluate
it with lower reference temperatures (reduced by 5 Kelvin),
as shown in Figure 8. Here, the fault injection rate becomes
higher and requires more optimized recovery. As depicted in
Figure 8, HotCluster copes with the number of faults injected
into the system. We can notice that the fault-rate is between
0.25 and 0.5 which makes both int.red. and ext.red. unable
to correct, and only hyb.red. can compete with HotCluster.
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Fig. 8: Evaluation results of our tool flow for PARSEC and
synthetic benchmarks with lower reference temperature (high
defect-rate). int.red., ext.red., and hyb.red. use Algorithm 3;
irr.red. use HotCluster platform with reliability prediction
and weight-based mapping (Algorithm 1 and 2). Reference
temperature (Tref ): red dashed line.

However, in terms of reliability, HotCluster starts to dominate
the recovery efficiency. By planing beforehand the weight of
hot and cool routers, it can correct more routers in the normal
mode than its counterparts. In all cases, hyb.red. has lower
rates in normal routers than HotCluster. This is due to the
fact that the weight assignment method is only based on the
number of redundancies of each router and fails to recognize
the hotter routers in the layer. However, Ford-Fulkerson is
only optimal to find replacements for faulty clusters and not
optimal for having a larger ratio of normal routers.

HotCluster brings more flexibility on mapping TSV cluster
redundancies and it has the lowest number of redundancies
while still maintaining a comparable reliability. However,
HotCluster is based on 3D-NoC and relies on regular TSV
placements which allow easy access to neighbor TSV clusters.
For irregular TSV placements, we can still split TSVs into
clusters and allow the repairing and borrowing mechanisms
as in 3D-NoCs. In this case, our HotCluster can still be
applied and provide a reliable solution for TSV placement
and recovery. However, it has three significant limitations in
the irregular case: (1) if some TSV regions are distant from
each others, we cannot allow neighboring borrowing due to
the induced timing violations; (2) the borrowing chain in 3D-
NoC might not be established due to the lack of diversity in
the borrowing options; and (3) it is not efficient if we cannot
predict the temperature and reliability.

C. Comparison of cluster finding algorithms

As we discussed earlier, the system can adopt either online
or offline mapping. If the predicted temperature defines the
weights as explained in the previous section, the HotCluster
platform can easily dominate the online mapping. However,

if the temperatures and the fault rates are unpredictable,
designers should consider one of the three mappings (int. red.,
ext. red. and hyb. red.). Here, we evaluate these three mapping
methods under our proposed recovery algorithms.

Instead of using the predicted hotspot, we randomized the
high fault rate areas. By randomizing the faults (or hotspots)
within the layers, we can cover the case of unpredictable fault
patterns. Moreover, it also can be implied as the case other
module have thermal impact on TSV regions. For instance,
a TSV group placed nearby a high-temperature CPU can
have a high defect rate without even being frequently used
as it is attached to a highly utilized router, as explained in
Section V-B. To prove our proposal’s scalability, we evaluated
several layer sizes: 2 × 2, 4 × 4, 8 × 8. TSVs are grouped
into clusters, as explained in Section III-B, and the defect-
rates vary from 5% to 50%. We perform the Monte-Carlo
simulation for the proposed algorithms with 10,000 different
samples and calculate the average results. We measure the
ratio of four types of routers in the layer: Normal (healthy
or corrected), Virtual (router with virtual TSV), Serial (router
using serialization) and Disabled (routers with disabled verti-
cal connections). Here, we evaluate three different algorithms:
(1) CPWI from [21], and (2) SAWI, (3) Ford-Fulkerson
implemented in HotCluster.

As depicted in Figure 9, the CPWI algorithm without
redundancy system mostly operates without disabling any
vertical connections with fault-rates under or equal to 50%.
Thanks to the Virtual TSV and Serialization techniques, the
routers having less than four clusters are still able to work.
We could notice that under 50% defect-rate, there is a small
percentage of routers having disabled connections. In this
case, a fault-tolerant routing algorithm [2] could easily fix
the communication availability. With redundancies, CPWI can
reduce the number of routers operating in bottleneck modes
(virtual/serial). This could be easily explained by the fact the
redundancies can correct defective TSV clusters. For small
size layers (2 × 2 or 4 × 4) and low defect-rates (< 10%),
CPWI with redundancies is very efficient with nearly 100%
routers operating in full mode. However, we can easily notice
that with large layer sizes and higher defect-rates, CPWI
with redundancies become inefficient. Here, the SAWI and
FF (Ford-Fulkerson) with different redundancy strategies can
be helpful.

In Figure 9, we can see that SAWI significantly improves
the availability. With both internal and external redundancy,
SAWI outperforms CPWI. With less than 20% defect-rates,
it maintains most of the router in normal mode. However, as
previously discussed, SAWI is a local optimization method;
therefore, with higher defect-rates, the FF method starts to
outperform it because of its global optimizing flow. With a
45% defect rate in a 8 × 8 layer and int. red., SAWI has
0.3% of the router having disabled TSV connections while
the FF method can reduce it to 0.11%. Compared to SAWI,
the Ford-Fulkerson (FF) method easily dominates at low error
rate where very low percentages of virtual or serial are needed
to maintain operation. With the same int.-red. at a 20% defect
rate, the FF method has in average 1.5%, 0.7%, and 0% in
virtual, serial, and disable mode, respectively while the results
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Fig. 9: Defect-rate evaluation with random defect distributions (injected to redundant TSVs): (a) Layer size: 2× 2 (4 routers,
16 TSV clusters); (b) Layer size: 4× 4 (16 routers, 64 TSV clusters); (c) Layer size: 8× 8 (64 routers, 256 TSV clusters) .

for SAWI are in average 5.39%, 1.11%, and 0.01% in virtual,
serial, and disable mode, respectively. As the results show,
we can observe that more routers operate in normal mode
with FF than SAWI as observed in Figure 9. However, at
higher defect-rates, FF method becomes less efficient than
SAWI for having a smaller number of normal routers. For
example, at a 50% defect rate, 4 × 4, and hyb.-red., the FF
method and SAWI maintain 18.87% and 28.40% of the routers
in the normal mode, respectively. Despite being less efficient
for mapping router in normal mode, we can observe that
FF has fewer routers being disabled since it claims 0.31%
while SAWI claims 0.73% of the routers having disabled
connections. The main reason is that FF method only tries to
make the maximum flow, which corrects as many clusters as
possible. This makes FF method have fewer disabled routers;
however, it has more routers in virtual or serial mode. Here, we
can observe that both weight assignment adaption (SAWI) and
the offline mapping (FF) easily dominate the center priority
approach in [21]. Depending on the applications’ needs
and specifications, designers can choose a proper method for
remapping TSV clusters.

D. Performance Evaluation

The previous section has proved the reliability of the
proposed solution. In this section, we evaluate the system
performance under TSV-cluster defects. As we previously
mentioned, works in [44] have demonstrated the low utilization
rates of the vertical connections; nevertheless, the performance
degradation on highly stressed networks has to be investigated.
To evaluate the proposed system’s performance and keep
fair comparisons to the baseline, we adopted both synthetic
and realistic traffic patterns as benchmarks. The packets are
injected until the saturation point of the network is reached.

To keep a fair comparison, only TSV defects are injected.
This means that the other fault-tolerance mechanisms [40] are
disabled not to affect the performance.
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Fig. 10: Evaluation results and comparison of HotCluster
with hyb.red. and TSV-Sharing [21] using CWPI in terms of
Average Packet Latency. Results are normalized to the baseline
3D-NoC design [39].
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Fig. 11: Evaluation results and comparison of HotCluster
with hyb.red. and TSV-Sharing [21] using CWPI in terms of
throughput. Results are normalized to the baseline 3D-NoC
design [39].
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TABLE I: Normalized Average Packet Latency (APL)
and Throughput (TP) comparison.

Benchmark #Defect [45] [46] This work
Link APL TP APL1 APL2 APL TP

H.264 0 N/A 0.92 0.83 1 1
14 N/A 1.030 0.89 1 1

PIP 0 1.351 1.012 N/A 1 1
MWD 0 1.988 0.998 N/A 1 1
VOPD 0 2.630 0.900 N/A 1 1
Average3 1 2.536 0.338 1.030 0.89 1 1

1 Routing algorithm: AdaptiveZ.
2 Routing algorithm: AdaptiveXYZ.
3 For [45], we used their value for seven benchmarks, with three layers config-
uration.
4 In order to compare with [46], this work is inserted defect TSV clusters to
create a defective all layers link.

In this experiment, we evaluate the proposed architecture’s
performance in terms of Average Packet Latency (APL) and
throughput over various benchmark programs and defect-rates.
We compare four different patterns where the irr.-red. is the
output of the HotCluster. The simulation results are shown in
Figure 10 and Figure 11. From these graphs, we notice that
with a 0% of defect-rate, the system has similar performance
compared to the baseline system.

As shown in Figures 10 and 11, when we increase the
defect-rates in the TSV-Sharing system [21], it has demon-
strated additional impacts on APL and throughput. Mean-
while, our proposed system under four different configurations
shows no degradation at less than 20% defect rate. Once we
increase it to 20%, we start to obverse some degradation
in performance. The external redundancy method starts to
degrade at higher error rates. This can be easily observed in
Section V-B where the disabled connections start to appear in
these benchmarks. The int.-red. only has some degradation in
some benchmarks at very high fault rates. The main reason
is that int.-red. inserts one redundant cluster per four TSV
clusters; therefore, it can easily correct at a 25% defect
rate. However, as we evaluated in Section V-C, there are
some virtualized and serialized connections even with only
25% defect rates. On the other hand, both hyb-.red. and
HotCluster easily dominate in this benchmark with basically
no degradation. The main reason is that both methods have an
abundant amount of TSV redundancies; therefore, they have
no difficulties in this evaluation.

Table I shows the comparison results of our work with
three other inter-layer fault-tolerant communication methods.
The selected two works were presented in [45] and [46]
which target fault-tolerant customized 3D-NoCs and hybrid-
3D-NoC, respectively, while TSV-Sharing [21] is our previous
work. As shown in Table I, HotCluster provides the best
performance when compared to the other works [45], [46].
The customized 3D-NoCs in [45], [46] suffer from significant
performance degradation due to the lack of routing paths and
frequent occurrence bottlenecks, which increase the APL by
nearly 2.5 times and reduce the overall throughput almost
three times. In summary, our proposed technique provides
similar performance as the baseline one while providing high
resiliency against TSV defects.

E. Router Hardware Complexity

Table II illustrates the hardware complexity breakdown of
the proposed router in terms of area, power, and speed. In
comparison to TSV Sharing [21], the router of CPWI without
redundancies, the area and power consumption have increased
by 1.93% and 14.39%, respectively, while the maximum speed
is maintained as the same. This could be well explained
by the fact that the additional circuit is very low cost and
has no impact on the critical path; however, the switching
activities to select different TSVs for a signal cause more
power consumption. In comparison to the baseline model, the
proposed system almost doubles the area cost and power con-
sumption while decreasing the maximum frequency by about
50%. However, the designed HotCluster not only supports link
faults, soft error, and TSV faults, but also supports online
recovery. As we showed in Section V-D, the HotCluster system
totally dominates the baseline and TSV sharing systems at the
presence of TSV faults.

TABLE II: Hardware complexity breakdown of a single
router.

Model Area Power Speed
(µm2) (mW) (Mhz)

Baseline router [39] 18,873 6.0658 925.28
TSV Sharing [21] routing units 29,780 12.3144 613.50

Serialization 3,318 - -
External sharing 5,740 - -
Router’s logic 38,838 14.6128 537.63

(CPWI-no-red.) TSV’s area 2,901.1136 - -
Total 41,739 14.6128 537.63
routing units 29,780 12.3144 613.50
Serialization 3,318 - -

HotCluster External sharing 5,740 - -
(int.red.)1 Internal correction 325.5840 - -

Router’s logic 38,920 16.7161 537.63
TSV’s area 1 3,626.3920 - -
Total 42,546 16.7161 537.63

TSV area without Keep-out-Zone: 4.06× 4.06 = 16.4836µm2.
1 The TSV area depends on the insertion of redundancies in HotCluster flow.

F. Comparison

To understand the efficiency of the proposed approach, we
compare it with existing solutions for cluster TSV defects,
as shown in Table III. Here, we analyze our proposal with a
network size of 4 × 4 × 4. Because the router and its TSV
clusters structure are identical, similar results can be obtained
with other network sizes.

We select the best results of these two works [16], [24]
for the comparison. TSV Grouping [24] optimized the con-
figuration of redundancy to deal with TSV-cluster defects.
TSV Network [16] established TSVs into a network that
allows routing from defective TSVs to redundant ones. We
also compare with TSV Sharing [21] which is our previous
work. From this table, we can see that the average area
of HotCluster [21] is 51.93µm2 per original TSV which is
slightly larger than TSV Sharing. The TSV Network [16] has
a similar value for 4:2 configuration (4 original TSVs and 2
redundant TSVs). With 8:4 configuration, TSV Grouping also
obtained an average area of 51.86µm2. Also our HotCluster
has a higher area cost; however, it is still reasonable as the
TSV with Keep-out-Zone of 10µm cost 100µm2 of physical
area.
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TABLE III: Comparison results between the proposed approach and the existing works.

Model TSV Network [16] TSV Grouping [24] TSV Sharing [21] HotCluster
Technology 65 nm N/A 45 nm 45 nm
#TSV 1000 6000 8448 8448
Configuration 4:2 8:2 64 : 16 256 : 32 4:4 8:4 20:5 176:0 4:15 4:26 4:15 4:26

#Spare TSV 512 256 256 128 6000 3000 1500 0 2112 4224 2112 4224
Arbiter Area (µm2) 372 2 744 2 1,116 2 1,116 2 11,160 1 11,1601 12,5551 434,7843 438,7203

per TSV (µm2) 51.57 26.24 26.72 28.03 13.92 51.86 27.09 51.47 51.93
Reliability 100% 99% 100% 100% 100% 100% 98.11% 100% 100% 99.27% 99.76%
Fault Config. δTSV = 0.01%, α = 24 δTSV = 1%,α = 24 δc = 1%4 δc = 50%4 δc = 1%4 δc = 50%4

1 The authors use 2:1 multiplexers [24]. For comparison, we use the area cost of multiplexer from Nangate 45nm [37] (MUX2 X1: 0.186µm2) .
2 The authors use 1-to-3 multiplexers [16] which consists of two MUX2 X1 multiplexers (2× 0.186µm2 [37]).
3 For fair comparisons, the arbiter only consists of the TSV sharing and serialization modules.
4 δTSV : TSV defect-rate. α: parameter of Poisson distribution [16], [24]. δc: TSV cluster defect-rate.
5 : int.red. configuration.
6 : ext.red. configuration.

Although the TSV Grouping [24] and TSV Network [16]
obtained lower area overheads, our design not only consists
of the rerouting circuit, but also includes an online adaptive
algorithm designed in hardware. Both TSV Grouping and TSV
Network have to require additional dedicated circuits or CPU
time to recover from the cluster defects. Meanwhile, our
previous work (TSV Sharing [21]) can compete with similar
features; however, our improvements in redundancies can
easily dominate the reliability and performance, as previously
depicted in Figures 9, 10 and 11.

In terms of reliability, TSV Grouping demonstrated a 100%
of yield rate under a defect-rate of 1% and TSV Network
obtained nearly 100% in the most cases. However, when these
techniques can be inefficient when a lot of TSVs become
defective, our technique can still help the system works.
For example, with 4:1 and 4:2 redundancies, HotCluster
under 1% defective clusters maintains the active routers as
100%. Moreover, more than 99.27% of routers still maintain
their connections even under 50% clustering defect-rate. With
hyb.red., there are nearly 10.8% routers working in Serializa-
tion mode, which means about 88% of routers can work in
normal or virtual mode. Note that with 50% defect-rate, only
TSV Grouping with 4:4 can possibly function as we assume
the recovery works perfectly. It is also important to mention
that we use the Look-Ahead Routing Algorithm [2] to recover
the disabled routing paths in disable routers.

VI. CONCLUSION AND FUTURE WORK

This paper presented a thermal aware recovery methodology
for TSVs in 3D-ICs systems to deal with the TSV-cluster
defects. We first give several algorithms to help correct the
faulty TSV clusters within a 3D-NoC. Then, thermal modeling
using Arrhenius’s Law is presented to help predict the critical
area of the 3D-ICs in terms of reliability. Based on the thermal
model, we give the cluster placement approach and its cluster
finding solution based on weight to adapt with the thermal
related defects. The results have proven the system’s ability to
provide high reliability that can reach up to 100% of working
routers even under 50% defective clusters. Moreover, the
proposed approach can correctly work without any degradation
under a 20% defect-rate. The hardware complexity has shown
a small overhead in terms of area cost even with redundant
TSVs (30.86%). Our platform even reduces the number of

TSV redundancy to reduce the area cost, especially with
possible hotspots.

As future work, the random TSV-defect is also an addi-
tional challenge for our 3D-NoC system. The impact of high
temperature on TSV timing is another critical issue for our
future works. On the other hand, the irregular TSV placement
needs to be considered to support more flexible architectures.
Furthermore, degradation factors on 3D-NoCs such as thermal
dissipation, stress, operating voltages should be investigated.
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