Toward Real-time Fault-tolerance Through-Silicon-Via based 3D Network-on-Chips

Khanh N. Dang, Ph.D.

khanh.n.dang@ieee.org

VNU Key Laboratory for Smart Integrated Systems (SISLAB),

VNU University of Engineering and Technology (VNU-UET),

Vietnam National University, Hanoi (VNU)

The 2nd IEEE SEACAS Workshop Nov. 25–27, 2018 Bandung, Indonesia

Content

> Overview

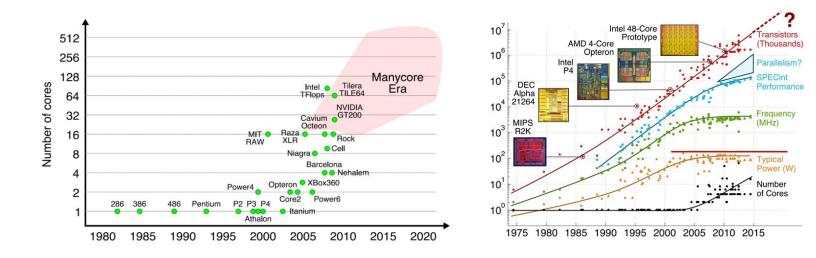
> Project objectives

> Brief results & Discussion

Conclusion

Content

Overview

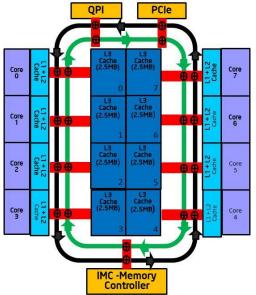

> Project objectives

> Brief results & Discussion

> Conclusion

Overview

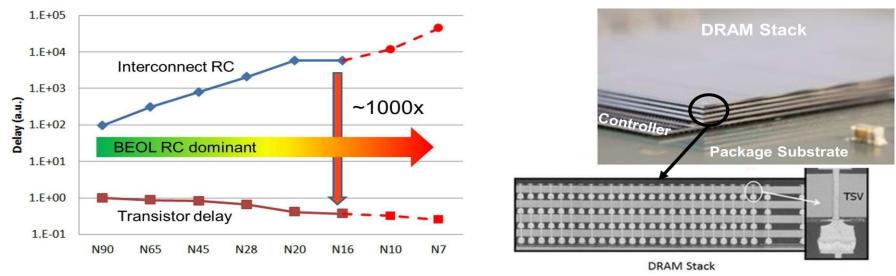
As we reaching the multi/many core area, number of cores inside a chip is expectedly increased.



However, we observe several challenges:

- Parallelism
- Power limitation

Shifting to unconventional interconnection


- Conventional bus system cannot scale up with the new multi/manycore era
 - A new interconnect architecture
- There is a strong shift recently:
 - \circ AHB (single channel) \rightarrow AXI (multi channel)
 - Intel adopt ring connection for their new chip
 - AMD has the new Infinity Fabric
 - Future: Scalable Network-on-Chip?
- Last level cache
 - Shared
 - Distributed

Emerging Interconnect Materials

- RF/Wireless: Replacing on-chip wires by integrated on-chip antennas to communicate with electromagnetic waves, in free space or guided medium.
- Carbone Nanotube: Using of carbon-based interconnect to replace the Cu/low-k technology.
- Photonic: Using photon instead of electron to transfer data.
- 3D Integration: Stacking multiple layers to obtain smaller footprints and shorter intra-layers interconnects.


Toward the 3D structure

To keep up with the increase of integration density, moving to the third dimensions could be an promising solution

The near-future technology is TSV (Through Silicon Via)

3D Network-on-Chips using TSVs

SEACAS 2018 Nov-18 8

Problems

- Thermal issue:
 - Thermal dissipation in 3D-IC is problematic
- Area:
 - Currently, TSV area is still big (1.4–10 μm)[3]
- Reliability issue:
 - Through-Silicon-Via is a fault sensitive device: misalignment, void, short-to-substrate
 - Due to the thermal issue, the fault rate is exponentially accelerated
 - Mechanical stress could also cause cracks/bend (thermal difference between layers could reach 10°C [7])

Content

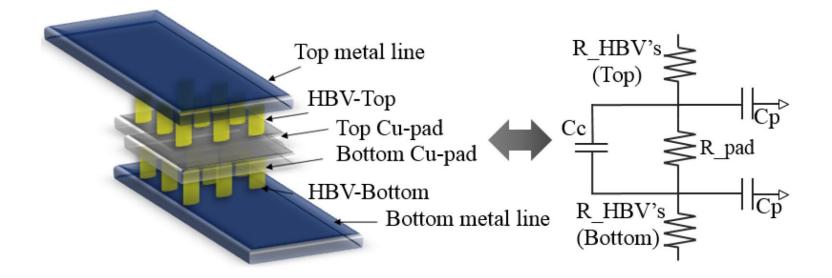
> Overview

> Project objectives

> Brief results & Discussion

> Conclusion

Project objective


Designing a 3D-NoC system with

- Fault-tolerance: provide method to detect, localize and recovery faults
- Real-time awareness: response to the new fault after a dedicated "deadline":
 - Can detect during operation
 - Provide a sufficient solution to handle it
- Thermal awareness: adapt and predict potential reliability issue due to thermal issue:
 - Predict the potential faults of hotspot
 - Provide back-up solution

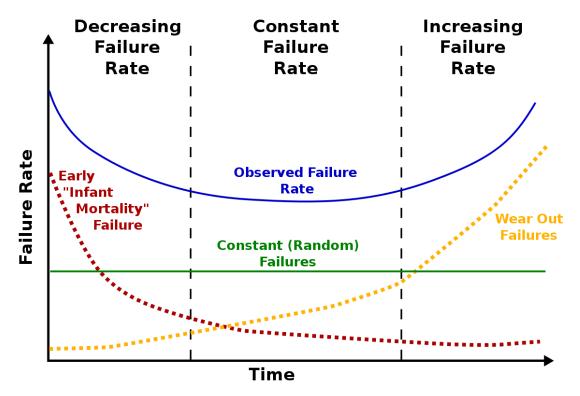
Fault-tolerant phases

- **Fault Detection**
- Help the system understand there are new faults
- **Fault Localization**
- Find the location of the fault
- Fault Recovery
- Recover the system from having faults (i.e. spare, re-execution)

Equivalent electrical model of Cu-Cu interconnect.

[3] Jani et al. "BISTs for Post-Bond Test and Electrical Analysis of High Density 3D Interconnect defects" 23rd IEEE European Test Symposium

Delay cause by misalignment and void


[3] Jani et al. "BISTs for Post-Bond Test and Electrical Analysis of High Density 3D Interconnect defects" 23rd IEEE European Test Symposium

Soft errors

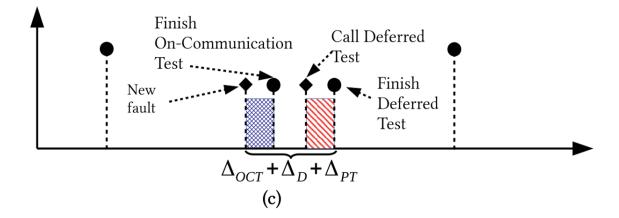
- Transient faults (soft errors):
 - Since top layers act as shields, they can reduce the impact of cosmic ray
 - Smaller size of transistor may reduce the error per bit rate;
 - However, the increasing of density raise of error per chip rate.
- Crosstalk:
 - TSVs are usually place in parallel which is heavily affected by crosstalk

Wear out defects

- Manufacture defect should be tested and recovered.
- However, during operation, new defects could occur:
 - Time-dependent gate oxide breakdown
 - Negative-bias temperature instability affect the latency
 - Electromigration
 - Mechanical stress might crack TSVs

Real-time awareness: Response time to new fault

- Besides having high coverage, short response time is also a critical issue
 - Leaving the system under risk is undesirable
 - If checkpoint is used, it will take lesser cost
- Methods:
 - Off-line
 - On-line
- On-line:
 - Periodically scheduled
 - Interleaving test
 - On-communication/computation


Periodically scheduled test

- State-of-the-art online testing for NoCs:
 - . Pre-schedule the test to a specific device (i.e. a router)
 - 2. Once the time is suitable:
 - 1. Detach the device
 - 2. Reroute the NoC
 - 3. Test the device
 - 4. After test, re-attach the device
- What is the major problem?
 - For real-time applications, each task (communication/computation) has a specific deadline.
 - Invoking test without considering it may cause system errors.

Interleaving test

- Allow to test as long as it free
 - For instance: once no flit is routed to vertical connection, the test pattern is sent.
- Advantages
 - Minimize the degradation
 - Transactions have the highest priority
- Disadvantages:
 - If the utilization rate is high \rightarrow less chance to test
 - If the utilization rate is high → higher power consumption → higher temperature → higher fault rates

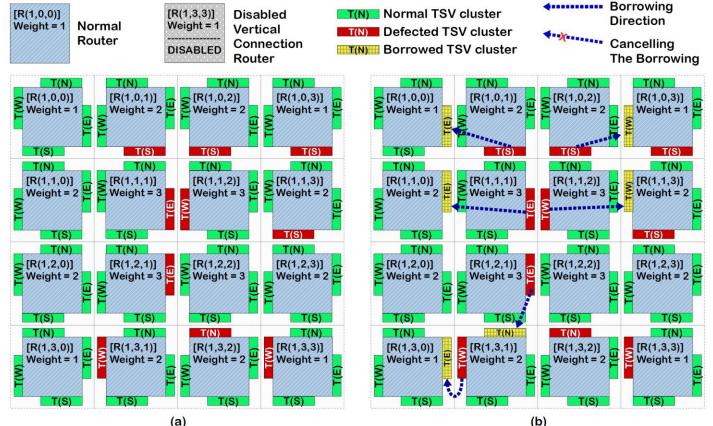
On-communication/computation (OCT)

Deferred Test: let the system run under risky situation to ensure the real-time constraint. Test the quality after a deferred time Δ_D

Fault recovery for TSV

- Spare (redundant) TSV for recovery:
 - Replace the faulty one by the spare (healthy) one.
 - Need to carefully consider the number of spare
- Algorithm-approach:
 - Using alternative communication paths
 - Remapping the system to avoid faulty paths.

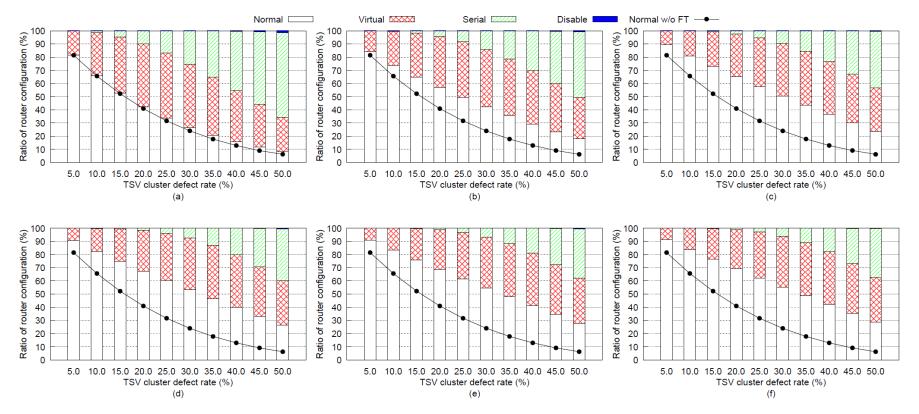
Content


> Overview

> Project objectives

> Brief results & Discussion

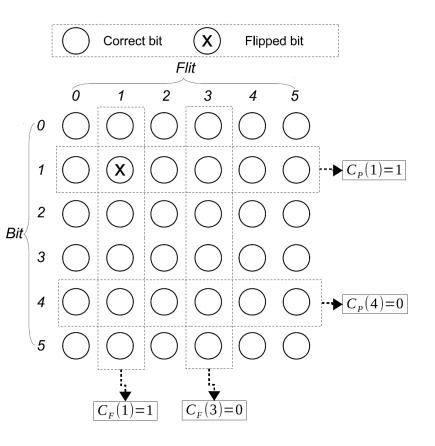
Conclusion


TSV sharing algorithm

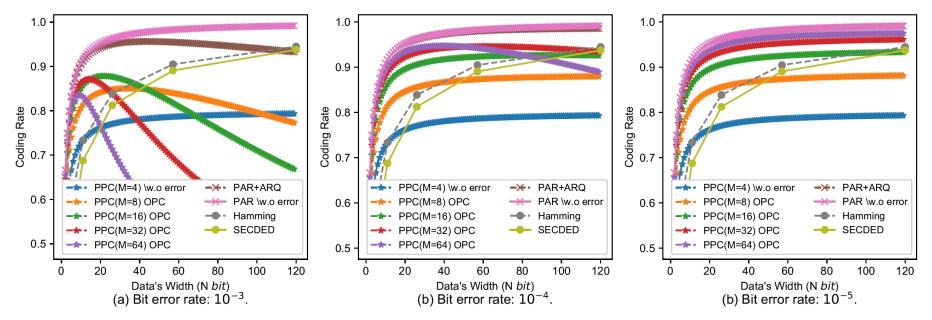
[1] Khanh et al. "Scalable design methodology and online algorithm for TSV-cluster defects recovery in highly reliable 3D-NoC systems", IEEE Transactions on Emerging Topics in Computing (TETC) (in-press) SEACAS 2018 Nov-18

23

Reliability Evaluation


(a) Layer size: 2 2 (4 routers, 16 TSV clusters); (b) Layer size: 4 4 (16 routers, 64 TSV clusters); (c) Layer size: 8 8 (64 routers, 256 TSV clusters); (d) Layer size: 16 16 (256 routers, 1024 TSV clusters); (e) Layer size: 32 32 (1024 routers, 4096 TSV clusters); (f) Layer size: 64 64 (4096 routers, 16384 TSV clusters). SEACAS 2018

24

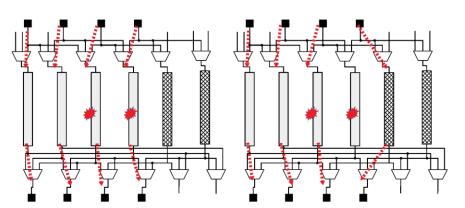

Nov-18

High coding rate ECC [4]

- We use Parity Product Code (square code):
 - Parity for flit
 - Parity for packet
- The system can easily correct 1 fault
- 2+ fault:
 - Retransmit flit
 - Retransmit bit-index
- Lower rates:
 - Parity for multiple packets
 - May need to roll-back if there is a fault

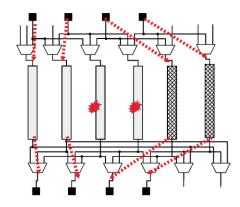
Parity for multiple packets [4]

We use parity for multi packets technique named OPC (Overflow Packet Check) which is a deferred test technique.


[4] Khanh N. Dang and Xuan-Tu Tran, "Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication", 2018 IEEE 11th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Sep. 12-14, 2018

OCT by utilizing spare TSV

To perform OCT, we use spare TSV to keep the connect while testing


M	R	Κ	# hidden error	detection rate
5	1	8	352	0.9648
5	1	16	2	0.9998
5	1	32	0	1.00
5	2	8	1828	0.8172
55	2	16	4	0.9996
5	2	32	0	1.00
9	1	8	679	0.9321
9	1	16	3	0.9998
9	1	32	0	1.00
9	2	8	3921	0.9321
9	2	16	16	0.9998
9	2	32	0	1.00

This work is under preparation

(a) TSV group with two faults

(b) Isolating and shifting: still faulty

(c) Isolating and shifting: faults isolated

Content

> Overview

> Project objectives

> Brief results & Discussion

Conclusion

Conclusion

- We have been working on fault-tolerance design for 3D-NoCs with
 - Real-time awareness with OCT
 - Cluster defect tolerance with TSV sharing algorithm
 - Adaptive soft error protection with deferred OCT
- In the future, we aim to provide a comprehensive for TSV with considerations:
 - Real-time
 - Thermal issue
 - Mix type of faults: soft error, crosstalk, permanent.
 - Dynamic Frequency/Sampling.

Reference

- [1] Khanh et al. "Scalable design methodology and online algorithm for TSV-cluster defects recovery in highly reliable 3D-NoC systems", IEEE Trans. on Emerging Topics in Computing (TETC) (in-press)
- [2] Khanh N. Dang and Abderazek Ben Abdallah, "Architecture and Design Methodology for Highly-Reliable TSV-NoC Systems", Invited Book Chapter, Horizons in Computer Science Research. Volume 16, Chapter 7. Nova Science Publishers, 2018.
- [3] Jani et al. "BISTs for Post-Bond Test and Electrical Analysis of High Density 3D Interconnect defects" 23rd IEEE European Test Symposium
- [4] Khanh N. Dang and Xuan-Tu Tran, "Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication", IEEE 11th Int. Symp. on Emb. Multicore/Many-core SoCs, Sep. 12-14, 2018
- [5] J. Wang et al., "Efficient design-for-test approach for networks-on-chip," IEEE Trans. Comput., 2018.
- [6] L. Huang et al., "Non-blocking testing for network-on-chip," IEEE Trans. Comput., vol. 65, no. 3, pp. 679–692, 2016.
- [7] Y. J. Park et al., "Thermal analysis for 3D multi-core processors with dynamic frequency scaling," in 2010 IEEE/ACIS 9th Int. Conf. on Comput. and Inform. Sci. (ICIS). IEEE, 2010, pp. 69–74.

Thank you for your attention!