
The 1st IEEE South-East Asia Workshop on Circuits and Systems

Fault-Tolerant Architectures and Algorithms
for 3D-Network-on-Chips

Khanh N. Dang, Ph.D.
khanh.n.dang@vnu.edu.vn

SISLAB, University of Engineering and Technology
Vietnam National University Hanoi (VNU)

November 7th, 2017

About SISLAB
One of 7 key R&D laboratories of Vietnam National
University, Hanoi (VNU), Vietnam.
Members: 6 PhDs, 8 PhD students, 3 MSc students, and
BSc students.

Campus 1: University of Engineering and Technology,
Vietnam National University Hanoi,
2.1 E4, 144 Xuan Thuy, Cau Giay, Hanoi
Campus 2: 2th Floor, High Tech Business Incubator
Center (HBI), Hoa Lac High Tech Park, Hanoi

Contact
Tel: 04-3754-9664
Fax: 04-3754-7460
Website: http://sis.uet.vnu.edu.vn
Email: sislab@vnu.edu.vn

2

Research and Development @ SISLAB

3

Products
• CoMoSy: a SoC platform.
• System-C based NoC simulator.
• VENGME: H.264 encoder chip.
• ...

Notable project: VENGME - a H.264/AVC encoder chip
• Technology: Global Foundry CMOS 130nm
• Area: 16mm2

• Complexity: 2 M gates (8 M transistors)
• Power consumption: 53mW
• Operating frequency: 100MHz
• Voltage: 1.2 Volt
• Package: QFP256

For more details/products/publications:
http://sis.uet.vnu.edu.vn
http://www.uet.vnu.edu.vn/∼tutx/

4

Products
• CoMoSy: a SoC platform.
• System-C based NoC simulator.
• VENGME: H.264 encoder chip.
• ...

Notable project: VENGME - a H.264/AVC encoder chip
• Technology: Global Foundry CMOS 130nm
• Area: 16mm2

• Complexity: 2 M gates (8 M transistors)
• Power consumption: 53mW
• Operating frequency: 100MHz
• Voltage: 1.2 Volt
• Package: QFP256

For more details/products/publications:
http://sis.uet.vnu.edu.vn
http://www.uet.vnu.edu.vn/∼tutx/

4

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

5

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

6

Era of Multi/Many-core processing
Constant increase of the number of
cores→ multi/many-core processing.

Figure 1: Integrated Circuit Scaling [1].

Interconnect delay becomes
the major challenge.

Figure 2: Gate and interconnect delay
overtime [2].

To keep up with demands on computational power, we need to:
• Increase parallelism.
• Provide an efficient and low-power interconnect infrastructure to

achieve better scalability, bandwidth, and reliability. 7

Design Challenges of Multi/Many-core systems

Figure 3: Challenge on parallelism and power budget on application speedup at
8nm [3].

8

Emerging Interconnect Paradigms
• RF/Wireless: Replacing on-chip wires by integrated
on-chip antennas to communicate with
electromagnetic waves, in free space or guided
medium.

• Carbone Nanotube: Using of carbon-based
interconnect to replace the Cu/low-k technology.

• Photonic: Using photon instead of electron to
transfer data.

• Network-on-Chips: Electronic networks were
designed on a chip to allow parallel data
transmission.

• 3D Integration: Stacking multiple layers to obtain
smaller footprints and shorter intra-layers
interconnects.

9

3D Integration Technology

Layer 1

Layer 2

Layer 3

Bonded Wires

(a)

Layer 1

Layer 2

Layer 3

Solder-balls

(b)

Layer 1

Layer 2

Layer 3

Through Silicon Vias

(c)

Transmitter

Receiver

Capacitive Coupling Inductive Coupling

(d)

Figure 4: 3D Integration technologies: (a) Wire bonding; (b) Solder balls; (c) Through
Silicon Vias (TSVs); (d) Wireless stacking.

Table 1: Performance and power: 3D vs 2D architecture [4].

of input bits
Kogge-Stone Adder Log shifter 16 Log shifter 32

16-bits 32-bits
Delay Power Delay Power Delay Power

2 planes -20.23% -8% -13.4% -6.5% -28.4% -8%
3 planes -23.60% -15% - - - -
4 planes -32.70% -22% - - - -

10

On-Chip Communication NetworkNetwork-on-Chip: 2D and 3D

26th April 2017Preliminary Review - Dang Nam Khanh 13

R

R

R R

R

R R

R

R

PE

PE

PE PE

PE

PE PE

PE

PE

Router

Processing
Element

R

R

PE

PE

R

R

PE

PE R PE

R PE

R PE R PE R PE

R

R

PE

PE

R

R

PE

PE R PE

R PE

R PE R PE R PE

R

R

PE

PE

R

R

PE

PE R PE

R PE

R PE R PE R PE

Network
Interface

2D Mesh Network-on-Chip 3D Mesh Network-on-Chip

Wires

TSV-based 3D NoCs: Through Silicon Vias as the vertical wires.
Network-on-Chips is an on-chip communication infrastructure:
• Processing Elements (PEs) are attached to routers via Network

Interfaces (NIs).
• Network is established from a set of routers in a specific form

(topology, size, flit-width) and transaction protocols (node to
node, end to end).

• Data (message/packet/flit) transmissions between PEs are
handled by routing inside the network. 11

3D Network-on-Chip
• Among the existed interconnect infrastructure (e.g. Bus,

Point-to-Point), Network-on-Chips have offered benefits on
parallelism, scalability and resource usability.

• 3D integration is considered as the future of ICs that can
improve the performance, reduce the footprint, decrease the
power consumption, and offer multiple technologies integration.

• By using Network-on-Chips on 3D integration1, we obtain
3D-Network-on-Chips (3D-NoCs) that inherits the benefits from
the both technologies.

• Recently, NoCs are widely used for multi/many core processing.
Therefor, 3D-NoCs will be the future paradigm of multi/many
core processing 3D-ICs.

• However, due to the vulnerability of deep sub-micron devices
and the high defect rate of TSVs, 3D-NoCs are predicted to
encounter the reliability challenge.

1TSVs handle the vertical wires between routers.
12

Fault/Error Types of 3D-ICs/3D-NoCs

Beside the benefits, TSV-based 3D-ICs also have challenges on
reliability. Especially, the high defect rates of TSVs are problematic.
Thermal removal difficulty and stress issues also accelerate the fault
rates. 13

Research Motivation
1 Future TSV-based 3D-ICs need fault-tolerances in
order to deal with their reliability issues.

2 As considered as the backbone of future 3D-ICs,
3D-NoCs also need fault-tolerance methods to
ensure the reliability of their communications.

3 There are numerous number of fault-tolerance works
on: soft errors, hard faults, and TSV defects;
however, there is also a need of a comprehensive
work that can handle all type of faults.

4 Beside fault recovery, fault detection and diagnosis
are also important aspects of fault resilience.
Handling faults on-line also help reduce the threat
giving by the occurred faults.

14

Goals and Contributions
1 A highly reliable comprehensive soft-errors
and hard-faults resilient architectures,
algorithms, and design methodologies
To provide a comprehensive fault-tolerance method that
can handle both soft errors and hard faults. Moreover, a
detection, diagnosis and recovery scheme is also
proposed to help in on-line fault/error handling.

2 A scalable cluster-TSV defect tolerance for
vertical connections
Because the cluster-defect is a critical issue that cannot
be efficiently dealt by using redundancies, this work
proposes a cluster-TSV defect tolerance for 3D-NoCs.

15

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

16

Soft Error Hard Fault Tolerant Architectures and Algorithms (1/4)

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

(0,0,0)

(1,0,0) (1,0,1) (1,0,2)

(1,1,2)

(1,2,2)

TSV
cluster

Router

TSV
Landing
Pad

(2,0,0) (2,0,1) (2,0,2)

(2,1,0)

(2,2,0)

(2,1,1)

(2,2,1)

(2,1,2)

(2,2,2)

Layer 2

Layer 1

Layer 0

(0,0,1) (0,0,2)

(0,1,2)

(0,2,2)

(b)(a)

(c) (d)

R(1,1,1)

UP

D
O

W
N

Data In
(N,E,S,W,L)

Data Out
(N,E,S,W,L)

D
O

W
N

UP

S-UP

S-DOWN

CR
down-in

CR
down-out

CR
up-in

CR
up-out

Sharing
Circuit

Vertical
connection’s
TSVs

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

UP
OUT

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

DOWN
OUT

UP
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1)

W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

DOWN
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

From Neighbours
(Weights, Control)

 To Neighbours
(Weights, Control)

From Neighbours
(Weights, Control) To Neighbours

(Weights, Control)

...

CR(2,1,1)

W/4321

CR(1,1,1)

6

6

1

1

W/4

W/4

1 1 1 1

1 1 1 1
S-UP

 (1,1,1)

S-DOWN
(2,1,1)

R(2,1,0)
W/4

1
R(2,1,1)

R(1,1,0)

1

W/4
R(1,1,1)

Top Layer

Bottom Layer

 TSV
Cluster
1:W/4

4

4

R(1,0,1)

R(1,1,2)

R(1,2,1)

R(1,1,0)

R(2,0,1)

R(2,1,2)

R(2,2,1)

R(2,1,0)

 W

 W

Figure 5: System architecture: (a) 3D NoC, (b) Interface between two routers from
adjacent layers; (c) Router architecture; and (d) The wrapped router.

17

Soft Error Hard Fault Tolerant Architectures and Algorithms (2/4)
Proposed Algorithms and Architecture:
• A soft error resilience method, named as Pipeline
Computation Redundancy (PCR), to handle soft
errors on pipeline stage.
• Multiple executions to detect and correct soft errors.
• Since NextPortComputing/SwitchAllocation are the
important part inside the network, we handle soft
errors using PCR.

• A detection, diagnosis and recovery mechanism
(DDRM) for handling the possible faults.

• As a summary, a comprehensive design of 3D-NoC
system (3D-FETO) that can handle both soft errors
and hard faults.

18

Soft Error Hard Fault Tolerant Architectures and Algorithms (3/4)
To complete the design, we adopted the following
fault-tolerant methods:
• Error Correction Code: SECDED (Single Error
Correction, Double Error Detection) [5] to protect data
path against soft errors.

• Buffer Slot Fault Tolerance: Random Access
Buffer[6].

• Crossbar Link Fault Tolerance:
Bypass-Link-on-Demand[6].

• Intra-router Link Fault Tolerance:
Lookahead-Fault-Tolerant (LAFT) routing
algorithm[7].

19

Soft Error Hard Fault Tolerant Architectures and Algorithms (4/4)

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter
Stall/Go

Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

Figure 6: Adaptive 3D-FETO router architecture.

20

Hard Fault-Tolerance (1/2)

N

C

D

N

C

D

N

C

D

N

C

D

Updating faulty information. Case1: One faulty link.

Case2: Two faulty links. Case3: Minimal routing.

Figure 7: Look-Ahead Fault Tolerant Routing[6].

21

Hard Fault-Tolerance (2/2)

00 01 02 03

00 01 02 03

00 01 02 03

00 01 02 03

flit 0

flit 0 flit 1

flit 0 flit 1 flit 2

00 01 02 03flit 0 flit 1 flit 2

flitflitflit

flitflitflit

flitflitflit

flitflitflit

flitflitflit

00 01 02 03 flit 0flit 1 flit 2flitflitflit

00 01 02 03 flit 1flit 3 flit 2flitflitflit

00 01 02 03 flit 2flit 3 flit 4flitflitflit

00 01 02 03 flit 3flit 5flit 4flitflitflit

@t

@t+1

@t+2

@t+3

@t+4

@t+5

@t+6

@t+7

@t+8

2
1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Bypass
links

disabled
links

flitflitflit

flitflitflit

(a) (b)

Figure 8: (a) Buffer fault-tolerance[6]; (b) Crossbar fault-tolerance[6].

22

Pipeline Computation Redundancy Algorithm
// input flit's data
Input: in_flit
// output flit's data
Output: out_flit
// Write flit's data into buffers

1 BufferWriting(in_flit)
// Compute first time of NPC and SA

2 next_port[1] = NextPortComputing(in_flit)
3 grants[1] = SwitchAllocation(in_flit)

// Compute redundant of NPC and SA
4 next_port[2] = NextPortComputing(in_flit)
5 grants[2] = SwitchAllocation(in_flit)

// Compare orginal and redundant to
detect soft-error

// Soft-error on NPC
6 if (next_port[1] ̸= next_port[2]) then

// roll-back and recalculate NPC
7 next_port[3] =

NextPortComputing(in_flit)
8 final_next_port =

MajorityVoting(next_port[1,2,3]);

9 else
// No soft-error on NPC

10 final_next_port = next_port[1]
// Soft-error on SA

11 if (grants[1] ̸= grants[2]) then
// roll-back and recalculate SA

12 grants[3] = SwitchAllocation(in_flit)
13 final_grants =

MajorityVoting(grants[1,2,3])
14 else

// No soft-error on SA
15 final_grants = grants[1]

// After detection and recovery, the
algorithm finishes with CT

16 out_flit = CrossbarTraversal(in_flit,
final_next_port, final_grants);

Algorithm 1: Algorithm of Pipeline Computation Redundancy (PCR).
23

Pipeline Computation Redundancy Timeline

flit 1

CTNPC/SABW

flitflitflit

flitflitflit

flitflitflit

flitflitflit

flitflitflit

flitflitflit

@t

@t+1

@t+2

@t+3

@t+4

flit 0

flit 1 flit 0 (1)

flit 0 (2) =

flit 1flit 2

flit 1flit 2

flit 3 flit 0

YES

flit 2flit 3flit 4

flit 0 (3) MJV

flit 0

NO

flit 2flit 3

flit 1

Figure 9: Pipeline Computation Redundancy (PCR).

• BW: Buffer Writing
• NPC: Next Port Computing
• SA: Switch Allocation
• CT: Crossbar Traversal

24

Detection, Diagnosis and Recovery Mechanism Algorithm

// Automatic Retransmission Request
Input: transmitting_flit
// Transmitted Buffer Position
Input: buff er_position
// Control signal to all Fault-Tolerance

modules
Output: RAB_control , BLoD_control ,

LAFT_control
// Transmit the flit, get the ECC's feedback

1 Transmit(transmitting_flit);
2 ECC_result = ECC-Decoder(transmitting_flit);

// DETECTION PHASE:
3 if ECC_result == ARQ then

// Automatic Retransmission Request
4 increase(ARQ_counter);
5 ARQ(transmitting_flit);
6 else

// The transmitted flit is non faulty
7 Finish;

// Check the number of consecutive ARQs
8 if (ARQ_counter == 2) then

// There is a permanent fault
// Jump to DIAGNOSIS-RECOVERY PHASE

// DIAGNOSIS-RECOVERY PHASE:
// Start with Input Buffer Checking

9 Buff er_Fai lure ←
Buff er_Checking(buff er_position);

10 if (Buff er_Fai lure == Yes) then
// Random Access Buffer is received the

position to handle.
11 RAB_Control = buff er_position;
12 Finish;
13 else

// The buffer slot is non faulty.
// Move to Crossbar Checking: using a

Bypass-Link.
14 BLoD_control = enable;

// Get the ECC's feedback and detect with
ARQ counter.

15 if (ARQ_counter == 2) then
// BLoD cannot fix the fault, the link

is failed.
16 BLoD_control = release;

// The LAFT routing algorithm handles
the faulty link.

17 LAFT_control = faulty;
18 Finish;
19 else

// BLoD already fixed the failure, the
recovery step is finished.

20 Finish;

Algorithm 2: Fault Detection, Diagnosis and Recovery.
25

Detection, Diagnosis and Recovery Mechanism

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter
Stall/Go

Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

e
r

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

arq-in arq-out

Routers & PEs
R

o
u

te
rs

 &
 P

E
s

R
o

u
te

rs
 &

 P
E

s44

44

44

44

44

44

1
1

1
1

1
1

1
1

1
1

1
1

1

2

3

Input Buffer Checking

Configure BLoD
Fault-Tolerant Routing

1 Input buffer slot faults are handled by Random Access Buffer.
2 Crossbar link faults are handled by Bypass Link on Demand

(BLoD).
3 Inter-routers channel faults are handled by Look-Ahead

Fault-Tolerant routing algorithm.
26

Detection, Diagnosis and Recovery Mechanism

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter
Stall/Go

Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1
1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

e
r

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

arq-in arq-out

Routers & PEs
R

o
u

te
rs

 &
 P

E
s

R
o

u
te

rs
 &

 P
E

s44

44

44

44

44

44

1
1

1
1

1
1

1
1

1
1

1
1

1

1

2

3

Input Buffer Checking

Configure BLoD
Fault-Tolerant Routing

1 Input buffer slot faults are handled by Random Access Buffer.
2 Crossbar link faults are handled by Bypass Link on Demand

(BLoD).
3 Inter-routers channel faults are handled by Look-Ahead

Fault-Tolerant routing algorithm.
26

Detection, Diagnosis and Recovery Mechanism

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter
Stall/Go

Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

e
r

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

arq-in arq-out

Routers & PEs
R

o
u

te
rs

 &
 P

E
s

R
o

u
te

rs
 &

 P
E

s44

44

44

44

44

44

1
1

1
1

1
1

1
1

1
1

1
1

2

1

2

3

Input Buffer Checking

Configure BLoD
Fault-Tolerant Routing

1 Input buffer slot faults are handled by Random Access Buffer.
2 Crossbar link faults are handled by Bypass Link on Demand

(BLoD).
3 Inter-routers channel faults are handled by Look-Ahead

Fault-Tolerant routing algorithm.

26

Detection, Diagnosis and Recovery Mechanism

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter
Stall/Go

Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

e
r

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

arq-in arq-out

Routers & PEs
R

o
u

te
rs

 &
 P

E
s

R
o

u
te

rs
 &

 P
E

s44

44

44

44

44

44

1
1

1
1

1
1

1
1

1
1

1
1

3
3

1

2

3

Input Buffer Checking

Configure BLoD
Fault-Tolerant Routing

1 Input buffer slot faults are handled by Random Access Buffer.
2 Crossbar link faults are handled by Bypass Link on Demand

(BLoD).
3 Inter-routers channel faults are handled by Look-Ahead

Fault-Tolerant routing algorithm.

26

Soft Error Hard Fault Tolerant Architectures and Algorithms

Contributions

1 2Fault/Error Types Position/Distribution 3 Solution

Types

Hard Faults

Input Buffer

Crossbar

Inter-router
Channel

Data Path
Soft Errors

TSV Defects

Pipeline
Computation

Random Access Buffer

Bypass Link on Demand

Look-Ahead Fault
Tolerant Routing

Pipeline Computation
Redundancy

Error Correcting Code

Detection & Diagnosis

Related Paper
• Khanh N. Dang, Michael Meyer, Yuichi Okuyama and Abderazek Ben Abdallah, “A Low-overhead

Soft-Hard Fault Tolerant Architecture, Design, and Management Scheme for Reliable High-performance
Many-core 3D-NoC Systems”, The Journal of Supercomputing, Volume 73, Issue 6, pp 2705–2729, 2017.

• Khanh N. Dang, Michael Meyer, Yuichi Okuyama and Abderazek Ben Abdallah, “Reliability Assessment
and Quantitative Evaluation of Soft-Error Resilient 3D Network-on-Chip Systems”, The IEEE 25th Asian
Test Symposium (ATS), pp. 161-166, Hiroshima, Japan, November 21-24, 2016.

• Khanh N. Dang, Yuichi Okuyama, and Abderazek Ben Abdallah, “Soft-error resilient network-on-chip for
safety-critical applications”, The 2016 International Conference on IC Design and Technology (ICICDT), pp.
1-4, Ho Chi Minh City, Vietnam, June 27-29, 2016.

• Khanh N. Dang, Michael Meyer, Yuichi Okuyama, Abderazek Ben Abdallah, and Xuan-Tu Tran, “Soft-error
resilient 3d network-on-chip router”, The 2015 IEEE 7th International Conference on Awareness Science
and Technology (iCAST), pp. 84-90 Qinhuangdao, China, September 22-24, 2015.

27

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

28

Scalable Cluster-TSV Defect Tolerance (1/4)

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

an
ag

er

Arbiter Stall/Go
Controller

local2xbar

north2xbar

east2xbar

south2xbar

west2xbar

up2xbar

Input Buffer

north2xbar

south2xbar

up2xbar

west2xbar

east2xbar

local2xbar

RAB

Input Port Manager

NPC A
R

Q
 B

uf
fe

r

request

sw_grant

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in
44

44

44

44

44

44

44 44

44x7

7
7

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

7

49

down2xbar

36

3

18

(0,0,0)

(1,0,0) (1,0,1) (1,0,2)

(1,1,2)

(1,2,2)

TSV
cluster

Router

TSV
Landing
Pad

(2,0,0) (2,0,1) (2,0,2)

(2,1,0)

(2,2,0)

(2,1,1)

(2,2,1)

(2,1,2)

(2,2,2)

Layer 2

Layer 1

Layer 0

(0,0,1) (0,0,2)

(0,1,2)

(0,2,2)

(b)(a)

(c) (d)

R(1,1,1)

UP

D
O

W
N

Data In
(N,E,S,W,L)

Data Out
(N,E,S,W,L)

D
O

W
N

UP

S-UP

S-DOWN

CR
down-in

CR
down-out

CR
up-in

CR
up-out

Sharing
Circuit

Vertical
connection’s
TSVs

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

UP
OUT

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

DOWN
OUT

UP
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1)

W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

DOWN
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

From Neighbours
(Weights, Control)

 To Neighbours
(Weights, Control)

From Neighbours
(Weights, Control) To Neighbours

(Weights, Control)

...

CR(2,1,1)

W/4321

CR(1,1,1)

6

6

1

1

W/4

W/4

1 1 1 1

1 1 1 1
S-UP

 (1,1,1)

S-DOWN
(2,1,1)

R(2,1,0)
W/4

1
R(2,1,1)

R(1,1,0)

1

W/4
R(1,1,1)

Top Layer

Bottom Layer

 TSV
Cluster
1:W/4

4

4

R(1,0,1)

R(1,1,2)

R(1,2,1)

R(1,1,0)

R(2,0,1)

R(2,1,2)

R(2,2,1)

R(2,1,0)

 W

 W

Figure 10: System architecture: (a) 3D NoC, (b) Interface between two routers from
adjacent layers; (c) Router architecture; and (d) The wrapped router. 29

Scalable Cluster-TSV Defect Tolerance (2/4)
Approach:
• A method to organize the TSVs in 3D-NoC systems
to handle the cluster defect2.

• A cluster-TSV defect recovery method without adding
TSV redundancies.

• An adaptive online algorithm to handle the
cluster-TSV defect.

2In fact, in this design, ECC code can handle random failed TSVs.
30

Fault Assumption

Healthy TSV cluster Random defect (10) Cluster defect (2x5)

Healthy TSV Defect TSV

Figure 11: TSV fault assumption.

• This work only focuses on cluster defect. No random
defects are considered.

• Detection is assumed to be done by a dedicated
module3.

3DDRM module can help detect the fault occurence; however, it
does not support the diagnosis phase.

31

Scalable Cluster-TSV Defect Tolerance (3/4)
Healthy TSV Defect TSV Redundant TSV

SIGNAL

SIGNAL

SIGNAL

SIGNAL

1 defected TSV 2 defected TSVs

SIGNAL

SIGNAL

4 defected TSVs

Figure 12: Conventional TSV fault-tolerant method.

Healthy TSV Defect TSV

SIGNAL SIGNAL

SIGNAL SIGNAL

Figure 13: The proposed technique.

(0,0,0)

(1,0,0) (1,0,1) (1,0,2)

(1,1,2)

(1,2,2)

TSV
cluster

Router

TSV
Landing

Pad

(2,0,0) (2,0,1) (2,0,2)

(2,1,0)

(2,2,0)

(2,1,1)

(2,2,1)

(2,1,2)

(2,2,2)

Layer 2

Layer 1

Layer 0

(0,0,1) (0,0,2)

(0,1,2)

(0,2,2)

TSV
Sharing

Area

Figure 14: Simplified block diagram of the
proposed system with configuration 3 × 3 × 3.

32

Scalable Cluster-TSV Defect Tolerance (4/4)
Router Architecture

R(1,1,1)

UP

D
O

W
N

Data In
(N,E,S,W,L)

Data Out
(N,E,S,W,L)

D
O

W
N

UP

S-UP

S-DOWN

CR
down-in

CR
down-out

CR
up-in

CR
up-out

...

CR(2,1,1)

W/4321

CR(1,1,1)

6

6

1

1

W/4

W/4

1 1 1 1

1 1 1 1
S-UP

 (1,1,1)

S-DOWN
(2,1,1)

R(2,1,0)
W/4

1
R(2,1,1)

R(1,1,0)

1

W/4
R(1,1,1)

Top Layer

Bottom Layer

 TSV
Cluster
1:W/4

Sharing
Circuit

Vertical
connection’s
TSVs

(a)

(b)

4

4

R(1,0,1)

R(1,1,2)

R(1,2,1)

R(1,1,0)

R(2,0,1)

R(2,1,2)

R(2,2,1)

R(2,1,0)

 W

 W

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

UP
OUT

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

DOWN
OUT

UP
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

DOWN
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

From Neighbours
(Weights, Control)

 To Neighbours
(Weights, Control)

From Neighbours
(Weights, Control) To Neighbours

(Weights, Control)

The TSV Router wrapper fault-tolerance architecture. S-UP and S-DOWN are the
sharing arbitrators which manage the proposed mechanism. CR stands for
configuration register and W is the flit width. 33

Inter-Layer Connection

R(1,1,1)

UP

D
O

W
N

Data In
(N,E,S,W,L)

Data Out
(N,E,S,W,L)

D
O

W
N

UP

S-UP

S-DOWN

CR
down-in

CR
down-out

CR
up-in

CR
up-out

...

CR(2,1,1)

W/4321

CR(1,1,1)

6

6

1

1

W/4

W/4

1 1 1 1

1 1 1 1
S-UP

 (1,1,1)

S-DOWN
(2,1,1)

R(2,1,0)
W/4

1
R(2,1,1)

R(1,1,0)

1

W/4
R(1,1,1)

Top Layer

Bottom Layer

 TSV
Cluster
1:W/4

Sharing
Circuit

Vertical
connection’s
TSVs

(a)

(b)

4

4

R(1,0,1)

R(1,1,2)

R(1,2,1)

R(1,1,0)

R(2,0,1)

R(2,1,2)

R(2,2,1)

R(2,1,0)

 W

 W

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

UP
OUT

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

DOWN
OUT

UP
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

DOWN
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

From Neighbours
(Weights, Control)

 To Neighbours
(Weights, Control)

From Neighbours
(Weights, Control) To Neighbours

(Weights, Control)

Figure 15: Cluster-TSV connection between two layers.

34

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 3: TSV Sharing Algorithm. 35

TSV Sharing Algorithm

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

36

TSV Sharing Algorithm

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• Every router is assigned a weight value.

Note: The weight values can be generated based on traffic of the vertical connection of
the router. In this work, we generate higher weights for the middle routers and lower
weights for the border routers:

Weightrouter(x , y) = min(x , cols − x) + min(y , rows − y) + 1 (1)

36

TSV Sharing Algorithm

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)

4 TSV clusters
of a router’s
vertical connection

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.

36

TSV Sharing Algorithm

Initial state Step 1

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

Possible
Borrowing

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.
• Each router having defected/borrowed TSV cluster (red/yellow) can borrow from

one of its neighbors.

36

TSV Sharing Algorithm

Initial state Step 1

Impossible
Borrowing

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.
• Each router having defected/borrowed TSV cluster (red/yellow) can borrow from

one of its neighbors.
• The borrowed cluster must be healthy.

36

TSV Sharing Algorithm

Initial state Step 1

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

Lower weight Possible →

Higher weight Prohibited →

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.
• Each router having defected/borrowed TSV cluster (red/yellow) can borrow from

one of its neighbors.
• The borrowed cluster must be healthy.
• The borrowed cluster must belong to the router having lower weight than the

current router.

36

TSV Sharing Algorithm

Initial state Step 1

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 3

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 2

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 3

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 2

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

Lowest weight selected→

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.
• Each router having defected/borrowed TSV cluster (red/yellow) can borrow from

one of its neighbors.
• The borrowed cluster must be healthy.
• The borrowed cluster must belong to the router having lower weight than the

current router.
• The borrowed router must have the lowest weight than all possible candidates.

36

TSV Sharing Algorithm

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

DISABLED

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

Prohibited
Borrowing

Disabled
Vertical
Connection

Normal
Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• Every router is assigned a weight value.
• TSVs of a router are organized in four clusters around it.
• Each router having defected/borrowed TSV cluster (red/yellow) can borrow from

one of its neighbors.
• The borrowed cluster must be healthy.
• The borrowed cluster must belong to the router having lower weight than the

current router.
• The borrowed router must have the lowest weight than all possible candidates.
• If a router fails to find a cluster to maintain its connection, its vertical connection

is disabled.
36

TSV Sharing Algorithm: Optimization

[R(1,0,0)]
Weight = 1

DISABLED

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)
T

(E
)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)
T(N)T(N)

T(N)T(N)

x
R(1,0,1) fails
to find new
cluster for
borrowing

R(1,0,1)
return a
cluster to
R(1,0,0)

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

DISABLED

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 1

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• New disabled router will return its borrowing cluster.

37

TSV Sharing Algorithm: Optimization

[R(1,0,0)]
Weight = 1

DISABLED

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 2

DISABLED

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)

Both
router’s
connection
is disabled

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

[R(1,1,0)]
Weight = 0

DISABLED

T(S)

T
(E

)

T
(W

)

[R(1,1,1)]
Weight = 3

T(S)

T
(E

)T
(W

)

T(N)T(N)

T(N)T(N)Adjust the
router weight
so its clusters
can be
borrowed

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• New disabled router will return its borrowing cluster.
• Disabled router’s weights are considered to be adjusted. This helps lower weight

routers can gain their operations.

37

TSV Sharing Algorithm: Optimization

[R(1,0,0)]
Weight = 1

DISABLED

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

T(N)T(N)

Borrowing

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

DISABLED

T(S)

T
(E

)

T
(W

)

T(N)T(N)

Temporary
return

Temporary
disabled

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• New disabled router will return its borrowing cluster.
• Disabled router’s weights are considered to be adjusted. This helps lower weight

routers can gain their operations.
• Virtual TSV: Even being disabled, router can temporarily borrow a cluster to

transmit data. Case 1: return the cluster to its origin.

37

TSV Sharing Algorithm: Optimization

[R(1,0,0)]
Weight = 1

DISABLED

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

T(S)

T
(E

)

T
(W

)

T(N)T(N)

Disabled

[R(1,0,0)]
Weight = 1

T(S)

T
(E

)T
(W

) [R(1,0,1)]
Weight = 2

DISABLED

T(S)

T
(E

)

T
(W

)

T(N)T(N)

Temporary
borrowing

Temporary
disabled

[R(1,0,0)]
Weight = 1 Normal

Router

[R(1,3,3)]
Weight = 1

DISABLED

Disabled
Vertical
Connection
Router

T(N) Normal TSV cluster
T(N) Defected TSV cluster
T(N) Borrowed TSV cluster

Borrowing
Direction

x Cancelling
The Borrowing

• New disabled router will return its borrowing cluster.
• Disabled router’s weights are considered to be adjusted. This helps lower weight

routers can gain their operations.
• Virtual TSV: Even being disabled, router can temporarily borrow a cluster to

transmit data. Case 2: borrow from a higher weight router.

37

TSV Sharing Algorithm: Optimization

DATA[W/4:(W/2-1)]

DATA[W/2:(3*W/4-1)]

DATA[3*W/4:(W-1)]

Serial Counter

From
Crossbar

D
O

W
N

D
O

W
N

D
O

W
N

D
O

W
N

DATA[0:(W/4-1)]

DATA[W/4:(W/2-1)]

DATA[W/2:(3*W/4-1)]

Serial Counter

To
Buffer

Serial
Config

Serial
Config

W/4

W/4

W/4

W/4

W/4

W/4

W/4

W/4

 2

 2 2

 2

W/4

W/4

W/4

W/4

W/4

W/4

W/4

W/4

W/4

W/4

Top Layer

Bottom Layer

Sharing TSV

Sharing TSV

• Serialization: When it is impossible to have 4 clusters, serialization technique is
adopted to maintain the connection.

37

Scalable Cluster-TSV Defect Tolerance

Contributions

1 2Fault/Error Types Position/Distribution 3 Solution

Types

Hard Faults

Input Buffer

Crossbar

Inter-router
Channel

Data Path
Soft Errors

TSV Defects

Pipeline
Computation

Random Access Buffer

Bypass Link on Demand

Look-Ahead Fault
Tolerant Routing

Pipeline Computation
Redundancy

Error Correcting Code

Random

Cluster

TSV Sharing

Detection & Diagnosis

Related paper
• Khanh N. Dang, Akram Ben Ahmed, Yuichi Okuyama and Abderazek Ben Abdallah, “Scalable design

methodology and online algorithm for TSV-cluster defects recovery in highly reliable 3D-NoC systems”,
IEEE Transactions on Emerging Topics in Computing, 2017.

38

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

39

Evaluation Methodology
RTL-level

Design
RTL-level

Simulation Synthesis
Post-Synthesis

Simulation

Place and
Route

Post P&R
 Simulation

Specification
Start

Design

CompleteTSV Placement
Calculation

Verilog HDL,
NCSim/ModelSim

Performance

TCL

TSV positions

NCSim

Power,
Timing

Processing

Relibility:
Defect Rate

Cadence SoC
Encounter

Layout

Design
 Compiler

Netlist

Tools Result Design
Flow

Stage
 Flow

Design
Stage

40

Evaluation Configuration and Assumption
Table 2: Technology parameters.

Parameter Value

Technology Nangate 45 nm
FreePDK3D45

Voltage 1.1 V
TSV’s size 4.06µm × 4.06µm
TSV pitch 10 µm

Keep-out Zone 15 µm

Fault-rate of hard faults:
• Percentage of routers having

faults.
• There is no local link is failed.

Fault-rate of soft errors:
• For ECC, percentage of ARQ

per flit.
• For PCR, percentage of error

per executing clock cycle.
Fault-rate of TSV-cluster defects:
• No random defect.
• TSVs randomly fail in

clusters.

Table 3: System configurations.

Parameter Value
ports 7
Topology 3D Mesh

Routing Algorithm Look-ahead routing
Flow Control Stall-Go

Forwarding mechanism Wormhole
Input buffer 4
Flit width 44

Table 4: Simulation configurations.

Parameter/System Value

Network Size (x × y × z)

Matrix 6 × 6 × 3
Transpose 4 × 4 × 4
Uniform 4 × 4 × 4

Hotspot 10% 4 × 4 × 4
H.264 3 × 3 × 3
VPOD 3 × 2 × 2
MWD 2 × 2 × 3
PIP 2 × 2 × 2

Total Injected Packets

Matrix 1,080
Transpose 640
Uniform 8,192

Hotspot 10% 8,192
H.264 8,400
VPOD 3,494
MWD 1,120
PIP 512

Packet’s Size
Hotspot 10% 10 flits+10%

on hostpot nodes
Others 10 flits

41

Average Packet Latency of realistic benchmarks

 0

 50

 100

 150

 200

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) H.264

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 5

 10

 15

 20

 25

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) PIP

 0

 5

 10

 15

 20

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) MWD

 0

 5

 10

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) VOPD

Figure 16: Average packet latency evaluation of the realistic benchmarks.
42

Throughput of synthetic benchmarks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0% 10% 20% 33%

T
hr

ou
gh

pu
t (

fli
ts

/n
od

e/
cy

cl
e)

Fault Rate (%)

(a) Transpose

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft-Error Tolerant OASIS
3D-FETO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0% 10% 20% 33%

T
hr

ou
gh

pu
t (

fli
ts

/n
od

e/
cy

cl
e)

Fault Rate (%)

(b) Uniform

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0% 10% 20% 33%

T
hr

ou
gh

pu
t (

fli
ts

/n
od

e/
cy

cl
e)

Fault Rate (%)

(c) Matrix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0% 10% 20% 33%

T
hr

ou
gh

pu
t (

fli
ts

/n
od

e/
cy

cl
e)

Fault Rate (%)

(d) Hotspot

Figure 17: Throughput evaluation of the synthetic benchmarks.
43

Comparison of Soft Error Tolerance

Model TMR-OASIS4 [8] [9] PCR
Mechanism Majority Voting Monitor Monitor Monitor
Area Overhead 204.33% 9% 3% (average) 54.46%
RAF ≃ 1.33 ≃ 11.11 ≃ 1 (only detection) 1.84
Delay (cycle) +0 +0 (no fault) 0% (only detection) +1 (redudancy)

+1 (recovery) +2 (recovery)
Fault Coverage 100% of hard

faults
design specific design specific 100% soft er-

rors
and soft errors (7 faults) (13 faults)

Reovery method immediately re-execution unsupport re-execution

Summary:
• Pipeline Computation Redundancy (PCR) coverage the
maximum soft errors (100%) under the assumption.

• The RAF value of PCR is smaller than the technique by Yu
et al. [8].

• The area overhead of PCR is still smaller than the TMR
method.

4Triple Modular Redundancy for SA and RC 44

TSV-cluster: Reliability Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(a)

Normal Virtual Serial Disable Normal w/o FT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(d)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(e)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(f)

Defect-rate evaluation5: (a) Layer size: 2× 2 (4 routers, 16 TSV
clusters); (b) Layer size: 4× 4 (16 routers, 64 TSV clusters); (c) Layer
size: 8× 8 (64 routers, 256 TSV clusters); (d) Layer size: 16× 16 (256
routers, 1024 TSV clusters); (e) Layer size: 32× 32 (1024 routers,
4096 TSV clusters); (f) Layer size: 64× 64 (4096 routers, 16384 TSV
clusters).

Increment of normal router rates at 50% defect rates
are from +29.83% to +346.74%.
Disable rates are less than 2%.

5We generate 100K cases and calculate the average value.
45

TSV-cluster: Reliability Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(a)

Normal Virtual Serial Disable Normal w/o FT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(d)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(e)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

R
at

io
 o

f r
ou

te
r

co
nf

ig
ur

at
io

n
(%

)

TSV cluster defect rate (%)
(f)

Defect-rate evaluation5: (a) Layer size: 2× 2 (4 routers, 16 TSV
clusters); (b) Layer size: 4× 4 (16 routers, 64 TSV clusters); (c) Layer
size: 8× 8 (64 routers, 256 TSV clusters); (d) Layer size: 16× 16 (256
routers, 1024 TSV clusters); (e) Layer size: 32× 32 (1024 routers,
4096 TSV clusters); (f) Layer size: 64× 64 (4096 routers, 16384 TSV
clusters).

Increment of normal router rates at 50% defect rates
are from +29.83% to +346.74%.
Disable rates are less than 2%.

5We generate 100K cases and calculate the average value.
45

TSV Fault Tolerance Performance Evaluation

 0

 20

 40

 60

 80

 100

Transpose Uniform Matrix Hotspot VOPD PIP MWD H.264A
ve

ra
ge

 L
at

en
cy

 (
cy
cl
es
/p
ac
ke
t)

(a)

Baseline 0% 1% 5% 10% 20% 30%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Transpose Uniform Matrix Hotspot VOPD PIP MWD H.264

T
hr

ou
gh

pu
t (
fli
t/n
od
e/
cy
cl
e)

(b)

Figure 18: Evaluation result: (a) Average Packet Latency; (b) Throughput.

• Use the same configuration as 3D-FETO.
• Only cluster-TSV defects are randomly injected.

46

Reliability and Area Cost Comparison of TSV Fault Tolerance
Model TSV Network [10]
Technology 65 nm
#TSV 1000
Configuration 4:2 8:2 4 × 4 : 8 8 × 8 : 16 16 × 16 : 32
#Spare TSV 512 256 512 256 128
45nm Arbiter Area (µm2) 372 2 744 2 1,116 2 1,116 2 1,116 2

Average Area/TSV (µm2) 151.572 126.244 152.316 126.716 128.03
Reliability 100% 99% 100% 100% 100%
Fault Assumption (δTSV = 0.01%, α = 2)4

Model TSV Grouping [11] This work
Technology N/A 45 nm
#TSV 6000 8448
Configuration 4:4 8:4 20:5 11 × 4 × 4:0
#Spare TSV 6000 3000 1500 0
45nm Arbiter Area (µm2) 11,160 1 11,1601 12,5551 434,7843
Average Area/TSV (µm2) 113.916 151.86 127.09 151.47
Reliability 100% 98.11% 100%
Fault Assumption (δTSV = 1%,α = 2)4 δc = 50%4 δc = 1%4
1 The authors use 2:1 multiplexers [11]. For comparison, we use the area cost of multiplexer from Nangate 45nm [12]
(MUX2_X1: 0.186µm2) .

2 The authors use 1-to-3 multiplexers [10] which consists of two MUX2_X1 multiplexers (2 × 0.186µm2 [12]).
3 For fair comparisons, our arbiter only consists of the TSV sharing and serialization modules as shown in Table 6.
4 δ: defect-rate. α: parameter of Poisson distribution [10, 11]. δc : cluster fault rate, δTSV : TSV fault rate.

The average area of this work is similar with some
cases but worse than the best case. However, this
work consists of an online arbitration.

In term of number of TSV, this work doesn’t requires
any redundancies.

In term of reliability, this work provide extremely high
working rate: 98.11% of routers even with 50% of
clusters are defected..

47

Reliability and Area Cost Comparison of TSV Fault Tolerance
Model TSV Network [10]
Technology 65 nm
#TSV 1000
Configuration 4:2 8:2 4 × 4 : 8 8 × 8 : 16 16 × 16 : 32
#Spare TSV 512 256 512 256 128
45nm Arbiter Area (µm2) 372 2 744 2 1,116 2 1,116 2 1,116 2

Average Area/TSV (µm2) 151.572 126.244 152.316 126.716 128.03
Reliability 100% 99% 100% 100% 100%
Fault Assumption (δTSV = 0.01%, α = 2)4

Model TSV Grouping [11] This work
Technology N/A 45 nm
#TSV 6000 8448
Configuration 4:4 8:4 20:5 11 × 4 × 4:0
#Spare TSV 6000 3000 1500 0
45nm Arbiter Area (µm2) 11,160 1 11,1601 12,5551 434,7843
Average Area/TSV (µm2) 113.916 151.86 127.09 151.47
Reliability 100% 98.11% 100%
Fault Assumption (δTSV = 1%,α = 2)4 δc = 50%4 δc = 1%4
1 The authors use 2:1 multiplexers [11]. For comparison, we use the area cost of multiplexer from Nangate 45nm [12]
(MUX2_X1: 0.186µm2) .

2 The authors use 1-to-3 multiplexers [10] which consists of two MUX2_X1 multiplexers (2 × 0.186µm2 [12]).
3 For fair comparisons, our arbiter only consists of the TSV sharing and serialization modules as shown in Table 6.
4 δ: defect-rate. α: parameter of Poisson distribution [10, 11]. δc : cluster fault rate, δTSV : TSV fault rate.

The average area of this work is similar with some
cases but worse than the best case. However, this
work consists of an online arbitration.

In term of number of TSV, this work doesn’t requires
any redundancies.

In term of reliability, this work provide extremely high
working rate: 98.11% of routers even with 50% of
clusters are defected..

47

Reliability and Area Cost Comparison of TSV Fault Tolerance
Model TSV Network [10]
Technology 65 nm
#TSV 1000
Configuration 4:2 8:2 4 × 4 : 8 8 × 8 : 16 16 × 16 : 32
#Spare TSV 512 256 512 256 128
45nm Arbiter Area (µm2) 372 2 744 2 1,116 2 1,116 2 1,116 2

Average Area/TSV (µm2) 151.572 126.244 152.316 126.716 128.03
Reliability 100% 99% 100% 100% 100%
Fault Assumption (δTSV = 0.01%, α = 2)4

Model TSV Grouping [11] This work
Technology N/A 45 nm
#TSV 6000 8448
Configuration 4:4 8:4 20:5 11 × 4 × 4:0
#Spare TSV 6000 3000 1500 0
45nm Arbiter Area (µm2) 11,160 1 11,1601 12,5551 434,7843
Average Area/TSV (µm2) 113.916 151.86 127.09 151.47
Reliability 100% 98.11% 100%
Fault Assumption (δTSV = 1%,α = 2)4 δc = 50%4 δc = 1%4
1 The authors use 2:1 multiplexers [11]. For comparison, we use the area cost of multiplexer from Nangate 45nm [12]
(MUX2_X1: 0.186µm2) .

2 The authors use 1-to-3 multiplexers [10] which consists of two MUX2_X1 multiplexers (2 × 0.186µm2 [12]).
3 For fair comparisons, our arbiter only consists of the TSV sharing and serialization modules as shown in Table 6.
4 δ: defect-rate. α: parameter of Poisson distribution [10, 11]. δc : cluster fault rate, δTSV : TSV fault rate.

The average area of this work is similar with some
cases but worse than the best case. However, this
work consists of an online arbitration.

In term of number of TSV, this work doesn’t requires
any redundancies.

In term of reliability, this work provide extremely high
working rate: 98.11% of routers even with 50% of
clusters are defected..

47

Reliability and Area Cost Comparison of TSV Fault Tolerance
Model TSV Network [10]
Technology 65 nm
#TSV 1000
Configuration 4:2 8:2 4 × 4 : 8 8 × 8 : 16 16 × 16 : 32
#Spare TSV 512 256 512 256 128
45nm Arbiter Area (µm2) 372 2 744 2 1,116 2 1,116 2 1,116 2

Average Area/TSV (µm2) 151.572 126.244 152.316 126.716 128.03
Reliability 100% 99% 100% 100% 100%
Fault Assumption (δTSV = 0.01%, α = 2)4

Model TSV Grouping [11] This work
Technology N/A 45 nm
#TSV 6000 8448
Configuration 4:4 8:4 20:5 11 × 4 × 4:0
#Spare TSV 6000 3000 1500 0
45nm Arbiter Area (µm2) 11,160 1 11,1601 12,5551 434,7843
Average Area/TSV (µm2) 113.916 151.86 127.09 151.47
Reliability 100% 98.11% 100%
Fault Assumption (δTSV = 1%,α = 2)4 δc = 50%4 δc = 1%4
1 The authors use 2:1 multiplexers [11]. For comparison, we use the area cost of multiplexer from Nangate 45nm [12]
(MUX2_X1: 0.186µm2) .

2 The authors use 1-to-3 multiplexers [10] which consists of two MUX2_X1 multiplexers (2 × 0.186µm2 [12]).
3 For fair comparisons, our arbiter only consists of the TSV sharing and serialization modules as shown in Table 6.
4 δ: defect-rate. α: parameter of Poisson distribution [10, 11]. δc : cluster fault rate, δTSV : TSV fault rate.

The average area of this work is similar with some
cases but worse than the best case. However, this
work consists of an online arbitration.

In term of number of TSV, this work doesn’t requires
any redundancies.

In term of reliability, this work provide extremely high
working rate: 98.11% of routers even with 50% of
clusters are defected.. 47

Hardware Design Result (1/2)
Table 5: Design parameters.

Parameter Value

Technology Nangate 45 nm
FreePDK3D45

Voltage 1.1 V
Chip’s size 865µm × 865µm
TSV’s size 4.06µm × 4.06µm
TSV pitch 10 µm

Keep-out Zone 15 µm

R(1,0,0) R(1,0,0)

R(1,1,0) R(1,1,1)

TSV Area

TSV
Sharing

Area

T
S

V

S
h

a
ri

n
g

A
re

a

R(1,1,0)
UP IN
T(E)

R(1,1,1)
UP IN
T(W)

R(1,1,0)
UP OUT

T(E)

R(1,1,1)
UP OUT

T(W)

R(1,1,0)
DOWN IN

T(E)

R(1,1,1)
DOWN IN

T(W)

R(1,1,0)
DOWN OUT

T(E)

R(1,1,1)
DOWN OUT

T(W)

TSV
Sharing

Area

T
S

V

S
h

a
ri

n
g

A
re

a

TSV Sharing Area
Placement

TSV AreaTSV Area

TSV Area

T
S

V
 A

re
a

T
S

V
 A

re
a

T
S

V
 A

re
a

T
S

V
 A

re
a

Figure 19: Single layer layout illustrating the
TSV sharing areas (red boxes). The layout size
is 865µm × 865µm. The sharing TSV area are
the red boxes. Each sharing area has 8 clusters
for 4 ports and 2 routers.

• Estimated 3D-NoC router layout area: 423.5µm × 423.5µm.
• Estimated 3D-NoC (X × Y × Z) layout area: Z layers ×

X × 423.5µm × Y × 423.5µm
• E.g.: MWD (X = 2, Y = 2, Z = 3) needs 3D-NoC with layout of

3× 865µm × 865µm
48

Hardware Design Result (2/2)

Table 6: Hardware complexity of a single router.

Area Power Speed
Model (µm2) (mW) (Mhz)

Static Dynamic Total
Baseline router [13] 18,873 5.1229 0.9429 6.0658 925.28
3D-FTO [6] router6 19,143 6.4280 1.1939 7.6219 909.09
Soft Error Tolerance router7 27,457 9.7314 2.6710 12.4024 625.00
3D-FETO router8 29,516 10.0819 2.7839 12.8658 613.50

Final router9
Router 29,780 10.017 2.2574 12.3144 613.50
Serialization 3,318 0.9877 0.2807 1.2684 -
TSV Sharing 5,740 0.7863 0.2892 1.0300 -
Total 38,838 11.7910 2.8273 14.6128 537.63

6This router consists of RAB, BLoD, and LAFT.
7This router consists of ECC and PCR.
8This router consists all soft error and hard fault tolerant

techniques: RAB, BLoD, LAFT, ECC and PCR.
9This router is 3D-FETO with TSV management.

49

Table of Contents

1 Introduction

2 Soft Error Hard Fault Tolerant Architectures and
Algorithms

3 Scalable Cluster-TSV Defect Tolerant Algorithm

4 Evaluation

5 Discussion and Conclusion

50

Conclusion
Conclusion:
• We provide a set of on-chip communication
fault-resilient adaptive architectures and algorithms
for 3D-NoC IC technologies.

Future Work:
• Further research is needed about the thermal
awareness in terms of design, routing and reliability.

• An in-depth study on stress issues is also
necessary to understand the potential defects.

• Fault-tolerance also need to be covered in application
layers with a cross-layers protocol.

51

Related publications
• Khanh N. Dang, Michael Meyer, Yuichi Okuyama and Abderazek Ben Abdallah, “A
Low-overhead Soft-Hard Fault Tolerant Architecture, Design, and Management
Scheme for Reliable High-performance Many-core 3D-NoC Systems”, The Journal of
Supercomputing, Volume 73, Issue 6, pp 2705–2729, 2017.

• Khanh N. Dang, Akram Ben Ahmed, Xuan-Tu Tran, Yuichi Okuyama and Abderazek
Ben Abdallah, “A Comprehensive Reliability Assessment of Fault-Resilient
Network-on-Chip Using Analytical Model”, IEEE Transactions on Very Large Scale
Integration Systems, Volume 25, Issue 11, pp 3099-3112, 2017.

• Khanh N. Dang, Akram Ben Ahmed, Yuichi Okuyama and Abderazek Ben Abdallah,
“Scalable design methodology and online algorithm for TSV-cluster defects recovery
in highly reliable 3D-NoC systems”, IEEE Transactions on Emerging Topics in
Computing, 2017.

• Khanh N. Dang, Michael Meyer, Yuichi Okuyama and Abderazek Ben Abdallah,
“Reliability Assessment and Quantitative Evaluation of Soft-Error Resilient 3D
Network-on-Chip Systems”, The IEEE 25th Asian Test Symposium (ATS), pp.
161-166, Hiroshima, Japan, November 21-24, 2016.

• Khanh N. Dang, Yuichi Okuyama, and Abderazek Ben Abdallah, “Soft-error resilient
network-on-chip for safety-critical applications”, The 2016 International Conference
on IC Design and Technology (ICICDT), pp. 1-4, Ho Chi Minh City, Vietnam, June
27-29, 2016.

• Khanh N. Dang, Michael Meyer, Yuichi Okuyama, Abderazek Ben Abdallah, and
Xuan-Tu Tran, “Soft-error resilient 3d network-on-chip router”, The 2015 IEEE 7th
International Conference on Awareness Science and Technology (iCAST), pp. 84-90
Qinhuangdao, China, September 22-24, 2015.

52

References (1/2)
[1] C. Batten, “Energy-efficient parallel computer architecture,” 2014.

[2] M. A. El-Moursy and E. G. Friedman, “Shielding effect of on-chip interconnect inductance,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 3, pp. 396–400, 2005.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Power challenges may end the
multicore era,” Communications of the ACM, vol. 56, no. 2, pp. 93–102, 2013.

[4] B. Vaidyanathan, W.-L. Hung, F. Wang, Y. Xie, V. Narayanan, and M. J. Irwin, “Architecting microprocessor
components in 3d design space,” in VLSI Design, 2007. Held Jointly with 6th International Conference on
Embedded Systems., 20th International Conference on, pp. 103–108, IEEE, 2007.

[5] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column sec-ded codes,” IBM Journal of Research and
Development, vol. 14, no. 4, pp. 395–401, 1970.

[6] A. B. Ahmed and A. B. Abdallah, “Adaptive fault-tolerant architecture and routing algorithm for reliable
many-core 3D-NoC systems,” Journal of Parallel and Distributed Computing, vol. 93-94, pp. 30–43, 2016.

[7] A. Ben Ahmed and A. Ben Abdallah, “Architecture and design of high-throughput, low-latency, and
fault-tolerant routing algorithm for 3D-network-on-chip (3D-NoC),” The Journal of Supercomputing, vol. 66,
no. 3, pp. 1507–1532, 2013.

[8] Q. Yu, M. Zhang, and P. Ampadu, “Addressing network-on-chip router transient errors with inherent
information redundancy,” ACM Transactions on Embedded Computing Systems (TECS), vol. 12, no. 4,
pp. 105:1–105:21, 2013.

[9] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “NoCAlert: An On-Line and Real-Time Fault
Detection Mechanism for Network-on-Chip Architectures,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 60–71, December 2012.

[10] L. Jiang, F. Ye, Q. Xu, K. Chakrabarty, and B. Eklow, “On effective and efficient in-field TSV repair for stacked
3D ICs,” in Proceedings of the 50th Annual Design Automation Conference, p. 74, ACM, 2013.

53

References (2/2)
[11] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, “Cost-effective TSV grouping for yield improvement of 3D-ICs,”

in Asian Test Symposium (ATS), pp. 201–206, IEEE, 2011.

[12] NanGate Inc., “Nangate Open Cell Library 45 nm,” 2016.

[13] A. Ben Ahmed and A. Ben Abdallah, “LA-XYZ: low latency, high throughput look-ahead routing algorithm for
3D network-on-chip (3D-NoC) architecture,” in IEEE 6th International Symposium on Embedded Multicore
Socs (MCSoC), pp. 167–174, IEEE, September 2012.

[14] J. P. Hayes, “A graph model for fault-tolerant computing systems,” IEEE Transactions on Computers, vol. 100,
no. 9, pp. 875–884, 1976.

[15] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. Chen, “A reliable routing architecture
and algorithm for NoCs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 31, no. 5, pp. 726–739, 2012.

[16] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke, T. Austin, and M. Orshansky,
“Bulletproof: A defect-tolerant CMP switch architecture,” in The Twelfth International Symposium on
High-Performance Computer Architecture, pp. 5–16, IEEE, 2006.

[17] F. Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits: Characterization, test, and optimal spare
allocation,” in Proceedings of the 49th Annual Design Automation Conference, pp. 1024–1030, ACM, 2012.

[18] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, et al.,
“Razor: A low-power pipeline based on circuit-level timing speculation,” in Proceedings 36th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-36), pp. 7–18, IEEE, 2003.

54

Thank you for your attention!

Backup slides

Fault Assumption
Hard Fault Assumption
• Hard faults only occur in the following positions: input

buffer, crossbar and inter-router channel.
• Hard faults are modeled as stuck-at faults where the
output values of faulty gates are always ‘0’ or ‘1’.

• This type of faults occurs permanently.

Soft Error Assumption
• Soft errors can occur in data path or in the routing
arbitrator (Next Port Computing and Switch Allocator).

• Soft errors are modeled as stuck-at faults where the
output values of faulty gates are always ‘0’ or ‘1’.

• This type of faults only occurs in a single clock cycle.

Reliability Assessment Methodology
Dividing:

1 A Network-on-Chip consists of NR routers.
2 A router is divided into several modules.

Conquering:
1 For each module of a router, analyze it using one of
the following model:
• Model 0: non fault-tolerant module - use the fault
assumption (Eq. 10).

• Model 1: spare or reconfiguration module.
• Model 2: fault reduced module.
• Model 3: module with fault-tolerance support.

Merging:
1 A router reliability is obtained by Router Merging.
2 A network reliability is obtained by Network Merging.

Model 1: spare/reconfiguration
This strategy handles faults using spare modules or by
reconfiguring.

1 2 3 n 1 2 rm

Extra

Minimum required

Original

• Module has n separate identical parts.
• Module can function with at least m parts.
• Extra r spare parts are added in the design stage.
• f is the number of parts that are faulty in a state.

Lemma 1: The RAF values can be calculated as follows:

RAFconv . = MTTFFT

MTTFor iginal
= Σ n+r

i=m
n
i = 1 + Σ n−1

i=m
n
i + Σ n+r

i=n+1
n
i

(1)

Model 2: fault reduced
• For helping the platform being compatible with other
reliability assessments, this model can integrate them
together.

• With a fault reduction value fFT given by the other
technique, the new fault rate is obtained by Eq. 2.

λFT = fFTλor iginal (2)
The RAF value can be obtained by:

RAFFT = 1/fFT (3)

Model 3: module with fault-tolerance

1 2 3 m 1 2 rn

Extra

Minimum required

Original

original

error
handling

original

(a) (b)

Before fault-tolerance After fault-tolerance

Because the fault-tolerance technique may require
additional modules for checking and correcting faults.
These correction modules also add fault-rates.

Model 3: module with fault-tolerance

Figure 20: A simplified Markov-state reliability model for (a) the original system; (b) the
fault-tolerant (FT) system.

Lemma 2: The RAF value can be then expressed as:

RAFFT = fD +
λC
λD

(4)

Where
• λD is the fault-rate of the original system (D).
• λC is the fault-rate of the repair module of the FT system.
• fD is the fault reducing value by applying the fault-tolerance mechanism.

Summary of Models
In this proposal, we analyze the reliability for four types of
model:
• Model 0: no fault-tolerance.
• Model 1: spare or reconfiguration model which is the
most common fault-tolerant method.

• Model 2: fault reduced model which this platform
compatible with other methods.

• Model 3: a typical fault-tolerant module. Most of the
works ignore the additional fault rates given by the
correction module. So, we consider them for more
accurate result.

For each sub-module in the NoC systems, it reliability is
analyzed by using one of four model. Later, the system
reliability is synthesized (Merging).

Reliability Assessment Methodology
Dividing:

1 A Network-on-Chip consists of NR routers.
2 A router is divided into several modules.

Conquering:
1 For each module of a router, analyze it using one of
the following model:
• Model 0: non fault-tolerant module - use the fault
assumption (Eq. 10).

• Model 1: spare or reconfiguration module.
• Model 2: fault reduced module.
• Model 3: module with fault-tolerance support.

Merging:
1 A router reliability is obtained by Router Merging.
2 A network reliability is obtained by Network Merging.

Merging
Router
The fault rate of a router is summarized from its own N
sub-modules (Mi):

λrouter =
N∑

i=1
fMiλMi (5)

Network
The fault rate of a network is summarized from three
parts: (1) the local connection (router-PE), (2) the routing
paths inside network and (3) other modules inside routers:

λnetwork = λlocal + λtransmitting−path + λothers (6)

Network Merging
Three main parts of network are:
• λlocal = NR × (2λ1−channel + λinput−buff er) is the
fault-rate of all local connections.

• λtransmitting−path = λRTR × NRTR . λRTR is the fault-rate
of all router-to-router (RTR) connections. NRTR is the
number of used RTR connections.

• λothers is given by the fault-rates of other parts
(non-routing parts) of routers.

Reliability of transmitting path
• A router-to-router (RTR) connection consists of: an
input buffer, a crossbar link and an intra-router
channel10.

• For transmitting path reliability, we use the k-failure
[14] model: a router is disconnected at the presence
of k failures11.

• For 3D-NoCs, we the k value depends on the position
of the router and the efficiency of the fault-tolerant
algorithm.12.

10The control logic is counted as other modules in the network
equation (Eq. 6).

11Note: Not only the k-failure model, any reliability network
assessment can be applied to obtain the λtransmitting−path.

12Conner routers: k=3, middle routers: k= 6

Pipeline Computation Redundancy Timeline
Cycle BW NPC/SA (PCR) CT

1st 𝑓𝑙𝑖𝑡(1) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

2nd 𝑓𝑙𝑖𝑡(2) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(1) 𝑤𝑎𝑖𝑡 𝑖𝑑𝑙𝑒

3rd 𝑓𝑙𝑖𝑡(3) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(2) 𝐜(𝟏)
𝑐 1 = 𝑇: 𝑓𝑙𝑖𝑡 1

𝑐 1 = 𝐹: 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝑇 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡(2) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝐹 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(3) 𝐦𝐣𝐯(𝟏) 𝑓𝑙𝑖𝑡 1

𝑓𝑙𝑖𝑡(𝑛) : flit 𝑛𝑡ℎ in a packet.

𝑡𝑖𝑚𝑒 𝑚 : the flit’s computation at the 𝑚𝑡ℎ time.

𝑐(𝑛) : flit 𝑛𝑡ℎ comparison. 𝑇 = 𝑇𝑟𝑢𝑒; 𝐹 = 𝐹𝑎𝑙𝑠𝑒
𝑚𝑗𝑣(𝑛) : flit 𝑛𝑡ℎ finalization based on majority voting.

: Input direction

BW : Buffer Writing

NPC: Next Port Computing

SA : Switch Allocation

CT : Crossbar Traversal

PCR: Pipeline Computation Redundancy

1 1st cycle: the flit arrives and is handled by BW.
2 2nd cycle: the first time routing/arbitrating is started in NPC/SA.
3 3rd cycle: the second time routing/arbitrating is started in NPC/SA. PCR

compares two consecutive results to find out whether a soft error occurred. If
there is no soft error, CT finishes the flit’s transmission. Otherwise, a recovery is
need.

4 4th cycle: the third time routing/arbitrating is started in NPC/SA. A majority
voting is used to find the correct result. Later, CT completes the transmission.

Summary: PCR requires one additional clock cycle for detect-
ing and one more clock cycle for recovery.

Pipeline Computation Redundancy Timeline
Cycle BW NPC/SA (PCR) CT

1st 𝑓𝑙𝑖𝑡(1) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

2nd 𝑓𝑙𝑖𝑡(2) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(1) 𝑤𝑎𝑖𝑡 𝑖𝑑𝑙𝑒

3rd 𝑓𝑙𝑖𝑡(3) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(2) 𝐜(𝟏)
𝑐 1 = 𝑇: 𝑓𝑙𝑖𝑡 1

𝑐 1 = 𝐹: 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝑇 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡(2) 𝑖𝑑𝑙𝑒 𝑖𝑑𝑙𝑒

4th : 𝑐 1 = 𝐹 𝑓𝑙𝑖𝑡(4) 𝑓𝑙𝑖𝑡 1 , 𝑡𝑖𝑚𝑒(3) 𝐦𝐣𝐯(𝟏) 𝑓𝑙𝑖𝑡 1

𝑓𝑙𝑖𝑡(𝑛) : flit 𝑛𝑡ℎ in a packet.

𝑡𝑖𝑚𝑒 𝑚 : the flit’s computation at the 𝑚𝑡ℎ time.

𝑐(𝑛) : flit 𝑛𝑡ℎ comparison. 𝑇 = 𝑇𝑟𝑢𝑒; 𝐹 = 𝐹𝑎𝑙𝑠𝑒
𝑚𝑗𝑣(𝑛) : flit 𝑛𝑡ℎ finalization based on majority voting.

: Input direction

BW : Buffer Writing

NPC: Next Port Computing

SA : Switch Allocation

CT : Crossbar Traversal

PCR: Pipeline Computation Redundancy

1 1st cycle: the flit arrives and is handled by BW.
2 2nd cycle: the first time routing/arbitrating is started in NPC/SA.
3 3rd cycle: the second time routing/arbitrating is started in NPC/SA. PCR

compares two consecutive results to find out whether a soft error occurred. If
there is no soft error, CT finishes the flit’s transmission. Otherwise, a recovery is
need.

4 4th cycle: the third time routing/arbitrating is started in NPC/SA. A majority
voting is used to find the correct result. Later, CT completes the transmission.

Summary: PCR requires one additional clock cycle for detect-
ing and one more clock cycle for recovery.

Optimizations for TSV Sharing
Although TSV sharing significantly enhances the reliability of the
vertical connection, there are additional optimizations:

1 Weight Adjustment: after finishing the sharing process, there
is a chance that a disabled lower weight router can borrow a
disabled higher weight router a cluster to obtain 4 clusters.
Therefore,Weight adjustment will reduce the weights of the
disabled and higher weight routers to optimize.

2 Virtual TSV: when a router does not have 4 TSV-clusters, it can
temporarily borrow one of its neighbors for communication. This
only happens when the neighbor is free to be borrowed.

3 Serialization: when even borrowing cannot help the router to
obtain 4 clusters, it can perform a serialization mode. Instead of
1 flit/clock cycle, it takes 2 or 4 cycles.

4 Fault-tolerant routing: at a high fault rate, a router even has no
cluster for communication.

Reliability Assessment Configuration
In order to assess the reliability, we first select a random
weight where more faults are injected in the protected
module. In addition, we extracted the ratio of area cost
from hard ware complexity13.

Table 7: Router’s Weight and Gate Ratio.

Module Submodule Weight Gate Ratio
Network 100% 100%

Network Routers 70% 100%
Channels 30% 0%
Router 100% 100%

Input Buffer 69.72% 7.90%
Router Crossbar 8.00% 11.43%

Switch-Allocator 7.00% 16.97%
Others 15.28% 63.7%

13The used router is 3D-FETO (without TSV fault-tolerance).

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 4: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 5: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 6: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 7: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 8: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

// Weight values of the current router and its N neighbors
Input: Weightcurrent , Weightneighbor [1 : N]
// Status of current and neighboring TSV-clusters
Input: TSV_Statuscurrent [1 : N], TSV_Statusneighbor [1 : N]
// Request to link TSV-clusters to neighbors
Output: RQ_l ink[1 : N]
// Current router status
Output: Router_Status

1 foreach TSV _Statuscurrent [i] do
2 if TSV _Statuscurrent [i] == “NORMAL” then

// It is a healthy TSV-cluster
3 RQ_l ink[i] = “NULL”
4 else

// It is a faulty or borrowed TSV-cluster
5 find c in 1:N with:
6 Weightneighbor [c] < Weightcurrent
7 Weightneighbor [c] is minimal
8 and TSV_Statusneighbor [c] == “NORMAL”;
9 if (c==NULL) then
10 return RQ_l ink[i] = “NULL”
11 return Router_Status = “DISABLE”
12 else
13 return RQ_l ink[i] = c
14 return Router_Status = “NORMAL”

Algorithm 9: TSV Sharing Algorithm.

Initialization: the inputs are
the weights and TSV-cluster
status of current and neigh-
boring routers.

Initialization: the output are
the router status and the re-
quest signals to neighboring
routers.

Checking the current TSV
status: if all TSV clusters
are normal, there is nothing
to do.

Find a replacement for
the failed/borrowed clus-
ters: if there are failed/bor-
rowed TSV clusters , the
router finds replacement
and sends request signal.
If it cannot find, it turns into
‘DISABLE’ mode.

Conditions:
1. Candidate c should have smaller weight than the cur-
rent router.
2. Candidate c should have the smallest weight among
the possible ones.
3. The TSV cluster from c should be NORMAL.

Overview of PCR

BW NPC/SA CT

Local
Input-port

North
Input-port

East
Input-port

West
Input-port

South
Input-port

Up
Input-port

Down
Input-port

Sw
it
ch

A
ll
o
ca
to
r

C
ro
ss
b
ar

Ta
il

Se
n

t

data_out_L

stop_in_L

data_out_N

stop_in_N

data_out_E

stop_in_E

data_out_W

stop_in_W

data_out_S

stop_in_S

data_out_U

stop_in_U

data_out_D

stop_in_D

Input
Buffer

NPC

Input port
manager

d
at

a_
in

Arbiter
Stall/Go

Controller

to
_c

ro
ss

b
ar

grant

Soft-Error
Monitor

cr
o

ss
b

ar
_c

tr
l

M U X

M U X

EC
C

ar
q

_o
u

t

request

RAB

P
C

R
 m

an
ag

er

(d) (e)

(a)

data_in_L
stop_out_L

data_in_N
stop_out_N

data_in_E
stop_out_E

data_in_W
stop_out_W

data_in_S
stop_out_S

data_in_U
stop_out_U

data_in_D
stop_out_D 1

44

1
44

1
44

1
44

1
44

1
44

1
44 1

1
1
1
1
1
1

44
44
44
44
44
44
44

30 31 32 33

20 21 22 32

10 11 21 31

00 01 02 03

30 31 32 33

20 21 22 32

10 11 21 31

00 01 02 03

30 31 32 33

20 21 22 32

10 11 21 31

00 01 02 03

30 31 32 33

20 21 22 32

10 11 21 31

00 01 02 03

R

NI

UP

DOWN

EASTWEST

NORTH

SOUTH

PE

(b)

(c)

Figure 21: High-level view of the soft-hard error recovery approach: (a) 3D-Mesh based
NoC configuration; (b) Tile organization; (c) SHER-3DR router organization; (d)
Input-Port; (e) Switch allocation unit.

Speedup of the assessment method

Table 8: Reliability Assessment Speedup.

Evaluated module A MTTF simulation Proposed method Speedup
A router 11 hours 0.090 second 440,000

A 2 × 2 × 2 network 20 hours 0.091 second 791,209
A 3 × 3 × 3 network 2 days 0.092 second 1,878,261
A 4 × 4 × 4 network 3.5 days 0.109 second 2,774,312

Scaling of network reliability
The network reliability doesn’t scale up with network size:
• Router vs network: Since router reliability doesn’t
have the flexibility as inside the network, its reliability
is less than the network. E.g. router inside a network
can choose an alternative routing path

• The verification of network reliability is uniform, where
each node has to send to ever node.

• So, the most critical routing path is actually two
neighboring router instead of long routing path.

• Therefore, the fault-tolerant algorithm benefit the
reliability but not extremely enhance.

Scaling of network reliability (cnt.)
• We use k-failure model to represent that with k
failures, a node is disconnected. The k value is either
3 (corner routers), 4(edge routers), 5 (side routers) or
6 (middle routers). There is an improvement while
increasing the network size.

• There is a domination of local (router-PE) failure that
reduce the overall reliability.

λRTR = Pcorner × λcorner + Pedge × λedge+
Pside × λside + Pmiddle × λmiddle (7)

λcorner , λedge, λside, and λmiddle are calculated using model
1: m=1, n = k and r= 0. The based element is λconn.:

λconn. = λ1−input−buff er + λ1−crossbar−l ink + λ1−router−channel
(8)

Throughput of realistic benchmarks

 0

 0.005

 0.01

 0.015

 0.02

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) H.264

Baseline OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 0.05

 0.1

 0.15

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) PIP

 0

 0.05

 0.1

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) MWD

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) VOPD

Figure 22: Throughput evaluation of the synthetic benchmarks.

Reliability Assessment Accuracy Comparison (2)

 0

 1

 2

 3

 4

 5

1Router 2×2×2 3×3×3 4×4×4

R
el

ia
bi

lit
y

A
cc

el
er

at
io

n
F

ac
to

r

System's size (X×Y×Z)

Hard Faults/Gate Ratio/Analytical
Hard Faults/Gate Ratio/Sim

Soft Errors/Gate Ratio/Analytical
Soft Errors/Gate Ratio/Sim

Figure 23: Comparison results between analytical assessment and Monte-Carlo MTTF
simulation (cnt.).

Average Packet Latency of synthetic benchmarks

 0

 10

 20

 30

 40

 50

 60

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) Transpose

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 10

 20

 30

 40

 50

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) Uniform

 0

 5

 10

 15

 20

 25

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) Matrix

 0

 5

 10

 15

 20

 25

 30

 35

 40

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) Hotspot

Figure 24: Average packet latency evaluation of the synthetic benchmarks.

APL at 0% of error rates, Soft Error Toler-
ant OASIS ≃ 20% + the baseline.
APL at 33% of error rates, Soft Error Toler-
ant OASIS ≤ 50% + the baseline.
APL at 33% of error rates, 3D-FETO ≤
79% + the baseline.

Average Packet Latency of synthetic benchmarks

 0

 10

 20

 30

 40

 50

 60

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) Transpose

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 10

 20

 30

 40

 50

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) Uniform

 0

 5

 10

 15

 20

 25

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) Matrix

 0

 5

 10

 15

 20

 25

 30

 35

 40

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) Hotspot

Figure 24: Average packet latency evaluation of the synthetic benchmarks.
APL at 0% of error rates, Soft Error Toler-
ant OASIS ≃ 20% + the baseline.

APL at 33% of error rates, Soft Error Toler-
ant OASIS ≤ 50% + the baseline.
APL at 33% of error rates, 3D-FETO ≤
79% + the baseline.

Average Packet Latency of synthetic benchmarks

 0

 10

 20

 30

 40

 50

 60

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) Transpose

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 10

 20

 30

 40

 50

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) Uniform

 0

 5

 10

 15

 20

 25

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) Matrix

 0

 5

 10

 15

 20

 25

 30

 35

 40

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) Hotspot

Figure 24: Average packet latency evaluation of the synthetic benchmarks.

APL at 0% of error rates, Soft Error Toler-
ant OASIS ≃ 20% + the baseline.

APL at 33% of error rates, Soft Error Toler-
ant OASIS ≤ 50% + the baseline.

APL at 33% of error rates, 3D-FETO ≤
79% + the baseline.

Average Packet Latency of synthetic benchmarks

 0

 10

 20

 30

 40

 50

 60

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(a) Transpose

Baseline LAFT-OASIS
Hard Fault Tolerant OASIS

Soft Error Tolerant OASIS
3D-FETO

 0

 10

 20

 30

 40

 50

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(b) Uniform

 0

 5

 10

 15

 20

 25

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(c) Matrix

 0

 5

 10

 15

 20

 25

 30

 35

 40

0% 10% 20% 33%

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

/p
ac

ke
t)

Fault Rate (%)

(d) Hotspot

Figure 24: Average packet latency evaluation of the synthetic benchmarks.

APL at 0% of error rates, Soft Error Toler-
ant OASIS ≃ 20% + the baseline.
APL at 33% of error rates, Soft Error Toler-
ant OASIS ≤ 50% + the baseline.

APL at 33% of error rates, 3D-FETO ≤
79% + the baseline.

Detail of Benchmark
Benchmark Description
Transpose Each node (a,b,c) in a network with

(X,Y,Z) sends packets to node (X-a, Y-b,
Z-c)

Uniform Each node in a network sends packets to
all nodes

Matrix-
multiplication

Performs C=A*B. Matrix A is stored in
layer-1, is sent to layer-2 which has ma-
trix B. The final values are accumulated
in layer-3 as matrix C.

Hotspot 10% Each node in a network sends packets to
all nodes. X (X=1 or 2 or more) nodes
have additional 10% amount of traffic.

Realistic
Traffic Pat-
tern

Generate from task graphs which provide
the connections (e.g: node A→B) and the
traffic (e.g: 100 packets).

⇒ The following slides will explain these benchmarks in details.

Transpose algorithm
// Network
Input: Network(X , Y , Z)
// Amount of data for each communication
Input: D
// Communication set
Output: C = {ci : (source → destination, amount of data)}

1 foreach node (a,b,c) in Network(X , Y , Z) do
2 add ((a, b, c) → (X − a − 1, Y − b − 1, Z − c − 1), D packets) to C

3 return C
Algorithm 10: Transpose Algorithm.

Uniform algorithm
// Network
Input: Network(X , Y , Z)
// Amount of data for each communication
Input: D
// Communication set
Output: C = {ci : (source → destination, amount of data)}

1 foreach node (a,b,c) in Network(X , Y , Z) do
2 foreach node (m,n,p) in Network(X , Y , Z) do
3 add ((a, b, c) → (m, n, p), D packets) to C

4 return C
Algorithm 11: Uniform Algorithm.

Matrix-multiplication algorithm
Input: layerA(n, n), layerB(n, n), layerC(n, n),
Input: A(n, n), B(n, n)
Output: C(n, n)

1 foreach node (i,j) in layerA(n, n) do
2 send A(i,j) → layerB(j,i)
3 foreach node (i,j) in layerB(n, n) do
4 receive A(j,i)
5 R(i , j) = A(j, i) × B(i , j)
6 foreach k in 1:n do
7 send R(i,j) → layerC(i,k)

8 foreach node (i,j) in layerC(n, n) do
9 foreach k in 1:n do
10 send C(i,j) = C(i,j) + R(k,i)

11 return C(n, n) from layerC(n, n)
Algorithm 12: Matrix-multiplication Algorithm.

Hotspot algorithm
// Network
Input: Network(X , Y , Z)
// Amount of data for each communication
Input: D
// Extra percentage of hotspot node
Input: E
// Communication set
Output: C = {ci : (source → destination, amount of data)}

1 foreach node (a,b,c) in Network(X , Y , Z) do
2 foreach node (m,n,p) in Network(X , Y , Z) do
3 if node (m,n,p) is hotspot node then
4 add ((a, b, c) → (m, n, p), (D+D*E/100) packets) to C
5 else
6 add ((a, b, c) → (m, n, p), D packets) to C

7 return C
Algorithm 13: Hotspot Algorithm.

Algorithm of Realistic Benchmark
Input: Network(X , Y , Z)
// Communication set
Input: C = {ci : (source → destination, D, O)}

1 ProgramCounter = 0;
2 foreach node (i,j,k) in Network(X , Y , Z) do
3 foreach ci in C do
4 if ci (source) == (i , j, k) and ProgramCounter == O then
5 send (i,j,k) → ci (destination) with ci (D) packets.
6 if ci (destination) == (i , j, k) and ProgramCounter == O then
7 receive ci (D) packets.

8 if all destinations completedly receive their own ci (D) packets then
9 ProgramCounter++;

Algorithm 14: Realistic Benchmark Algorithm.

Task mapping (1/5)

Video
Memory

YUV
Generator

Padding for MV
Computation

Chroma
Resampler

Motion
Compensation

Motion
Estimation

SRAM

Transform
(DCT)

Transform
(DCT)

Audio
Memory

Filter
Bank

FFT

MDCT Quantizer
Huffman
Encoder

Stream Mux
Memory

IQ PredictorIDCT
De-Blocking

Filter

Sample
Hold

Quantization
(Q)

Entropy
Encoder

PS/TS
Mux

Modulator
(OFDM)

IFFT

(8
4

0
0

,0
)

(5
6

0
0

,1
)

(2
8

0
0

,1
)

(2800,1)

(1
4

0
0

,2
)

(2800,1)

(2000,2)

(30,3)

(2280,1)

(4200,4)

(4200,4)

(4
2

0
0

,5
)

(4
2

0
0

,5
)

(30,3)

(2100,6)

(2100,6) (660,7)

(660,7)

(240,8) (240,9) (2210,10)

(2280,11)

(660,8)

(620,9)

(640,10) (640,11)

(2
0

,5
)

(20,4)(30,3)(90,1)

(9
0

,2
)(9

0
,1

)

(90,0)

Figure 25: H.264 Task Graph.

Task mapping (2/5)

Z Y

X

Filter Bank

Huffman
Encoder

Stream
Mux Mem.

PS/TS Mux

Quantizer MDCT
Modulator

(OFDM)

Audio
Memory R R

FFT
R

R

R R

R

R

R

Video
Memory

Padding for
MV Comp.

Entropy
Encoder

DCT Q

IFFT
R

SRAM
R

IQ
R

R

R R

R

R

R

Chrome
Resampler

YUV
Generator

Motion
Estimation

Sample
Hold

Motion
Compensation DCT

De-Blocking
Filter R

Predictor
R

IDCT
R

R

R R

R

R

R

Through-Silicon-Vias

Router-to-Router Channel

Network-on-Chip’s Router

IP Block

Figure 26: H.264 Task Map.

Task mapping (3/5)
VLD

(70,0) INV
SCAN

RUN
LE DEC

IQUAN

ACDC
PRED

IDCTARM
STRIPE
MEM

(362,1) (362,2)

(357,5) (27,4)(16,5)

RUN
LE DEC

VOP
MEM

VLD
IP

SAMP

R

R R

R

(4
9

,3
)

UP
SAMP

VOP
REC

PAD
VOP

MEM

(313,9)

(94,8)

(300,7)
(313,8)

(500,7)

PAD

VOP
REC R

R

INV
SCAN

STRIPE
MEM

ACDC
PRED

IQUAN

R

R R

R
ARM

IDCT
R

R

Z Y

X

Figure 27: VOPD Task Map.

Task mapping (4/5)
IN

(64,0) ME
M1

NR

ME
M2

HVSHSVS

JU
G1

ME
M3

JU
G2

SE
BLE
ND

(64,1)

(64,2)

(96,4)(96,1)

(9
6

,2
)

(96,3) (96,6)

(6
4

,7
)

(64,8)

Z Y

X
IN NR

ME
M2

ME
M1

R

R R

R

HS VS

HVS
JU
G1

R

R R

R

BLE
ND

SE

JU
G2

ME
M3

R

R R

R

Figure 28: MWD Task Map.

Task mapping (5/5)
INP
MEM

(128,0)
VSHS

ME
M2

JUG1

JUG2
INP
MEM

OP
DISP

(64,1) (64,2)
(6
4
,0
)

(64,2) (64,4)(64,1)
INP
MEM

INP
MEM

HS JUG2

R

R R

R

OP
DISP

ME
M2

VS
JU
G1

R

R R

R

Z Y

X

Figure 29: PIP Task Map.

System
HDL files

ASIC
Synthesizer

ASIC
Library

netlist
model

Error
injecting

Post error
injection netlist
model

Testbench
files

Simulation

System’s
correctness

Fault
configuration

Figure 30: Monte-Carlo setting up flow.

C

gate

EIJ_1.v

O

I

C

DFF

EIJ_2.v

O
I

IN
ON

1 or 0

1 or 0

(a) (b)

Figure 31: Error Injector architecture (a) Single output gate, (b) Flip-flop with two
outputs.

Define the total

number of

experiments (N)

Identify random

parameters of the

system

Assume

appropriate

distributions for

the parameters

Initialize counter 𝑖 = 1

Generate a

uniformly

distributed

number for

each

“experiment” i

Generate the

random

variable

numbers to the

system’s

distribution

Evaluate by

using the set

of random

number

Determine the

system is a

success or a

failure

Is I =

N?
𝑖 = 𝑖 + 1

Calculate the system MTTF:

𝑀𝑇𝑇𝐹 =
∑𝑓𝑖 ×𝑀𝑇𝑇𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

N

No

Yes

MODIFIED MONTE-CARLO

failure

success

𝑓𝑖 = 0

𝑓𝑖 = 𝑓𝑖 + 1

𝑓1 = 0

Figure 32: MTTF Monte-Carlo simulation process.

Netlist simulation

Prepare Gate
Label

Match the
module

instantiation

Library Analysis

Prepare
Output pattern

Match the
module
output

Create a
copy for

verification

New output
wires

Insert EIJ.v

EOF
?

No Yes Declare the
wires,

RAND_F.v

Completed
file

Figure 33: Flow chart of error injector inserting.

Netlist simulation
module AND_3x1(x1, x2, x3,
o1)

input x1,x2,x3;

output o1;

assign o1 = n1;

endmodule

G1

G2

x1
x2

x3
o1

Original model

G1

G2

x1
x2

x3 o1

EIJ

EIJ

f_t

Processed modelRTL code

module AND_3x1(x1, x2, x3,
o1, f_t)

input x1,x2,x3;

output o1;

input f_t;

wire [1:0] temp_wire;

wire [1:0] c;

wire x1,x2,x3;

wire o1, n2;

AND_2x1 G1 (temp_wire[0], x1,
x2);

AND_2x1 G2 (temp_wire[1], x3,

n2);

assign o1 = n1;

endmodule

processed netlist

module AND_3x1(x1, x2, x3,
o1)

input x1,x2,x3;

output o1;

wire x1,x2,x3;

wire o1, n2;

assign o1 = n1;

endmodule
netlist

Figure 34: An example of input and output of the netlist processing.

Netlist simulation
Extract modules in

netlist file Start of module

Detect Gate

Detect output

Change output
and Insert EIJ

Eij_cnt ++
Wire_cnt ++

End of module?

Next line

Insert declarations
(modules, wires)

Detect IOs

Insert IOs for fault
injection

End of file?Finish

No
Yes

No

Yes

Detect sub-
modules

Insert IOs for fault
injection

f_t_cnt++

Eij_cnt : number of EIJ modules
Wire_cnt: number of temporal wires
f_t_cnt: number of trigger signals

Start

Figure 35: Netlist processing for multiple modules file.

Netlist simulation
Network

Router RouterRouterRouter

Input Port Switch Allocation Crossbar Channel

FIFO Controller Link Controller

1/PR1/PR1/PR1/PR

0.6 0.1 0.2 0.1

0.10.10.10.5

1/PR Fault rate value
C

Fault trigger

Fault rate inside router0.1when “fault trigger” arrives, a fault is set
in a randomized indexed gate.
For example: C =1 makes the corresponded
EIJ injects a fault The values are loaded

from configuration files.

0.1

Figure 36: Fault trigger.

Fault-tolerance

Table 9: Taxonomy of different error recovery protocols and architectures in 3D-NoCs.
Classification: A: architecture, S: software and I: integration.

Fault Type Position/Type Fault Tolerant Method Approach

Soft Errors
Data Path Automatic Re-transmission Request S

Error Detecting/Correcting Code S

Control Logic
Logic/Latch Hardening A,I
Pipeline Redundancy S
Monitoring and Correcting model S

Hard Faults
Routing Technique

Spare wire A
Split transmission A
Fault-Tolerant routing algorithm S

Architecture-based Hardware Redundancy A
Technique Reconfiguration architectures A

TSV Defects
Redundancy

Shifting A,I
Crossbar A,I
Network A,S,I

Management Design awareness I
Randomly distributed redundancy A,I

Fault Tolerance Approaches (1/2)
1 Architecture approach: adding redundancies or self
configuring the system to handle the task of failed
module.
• Example: failed buffer slot isolation[15], router’s
module triple modular redundancy [16], TSV
redundancies [10, 11].

• Drawback: either having high area overhead
(redundancy) or degrading the performance
(self-configuration).

2 Software approach: creating a check-point and
roll-back when a fault occurs.
• Example: pipeline stage redundancy [8].
• Drawback: creating bottleneck by re-executing the
failed task.

Fault Tolerance Approaches (2/2)
3 Integration approach: hardening the systems by
using protection or improving the reliability of
backbone devices.
• Example: TSV placement awareness [17],Logic/Latch
Hardening [18].

• Drawback: This type of approach leads to a highly
complex design process.

4 Hybrid approach: combining multiple approaches to
handle the fault.

Reliability Assessment Methodology (1/2)

Specification
Preliminary

Design

Detailed
Design

FAIT

Product/
Support

Re-designR
e
-d
e
sig

n

Figure 37: Stages of reliability assessment14.

• To alleviate the risk of redesign, early assessment is
essential, especially the first three stages.

• Reliability prediction for NoC systems is still immature.
14FAIT:Fabrication, Assembly, Integration and Test

Reliability Assessment Methodology (2/2)
Approach:
• A quantitative factor, which is called as Reliability
Acceleration Factor, to represent the efficiency of
the fault tolerant mechanism.

• A fault assumption to help calculate the failure rate of
a system.

• An analytical model to assess the reliability of NoC
systems using Markov-state model.

RAF: Reliability Acceleration Factor
RAF (Reliability Acceleration Factor), which represent the
efficiency of the applied fault-tolerances, is given by the
following equation:

RAF = λor iginal

λFT
= MTTFFT

MTTFor iginal
≥ 1 (9)

Where:
• λ is the fault rate and it is the inverse value of Mean
Time to Failure (MTTF).

• MTTFor iginal is the MTTF of the original system.
• MTTFFT is the MTTF of the fault-tolerant system.

Fault Rate Assumption
For a system with k components, its fault rate is given by:

λsystem = 1
MTTFsystem

=
k∑

i=1
fiπiλunit (10)

Where:
• unit is a selected module as a reference for
calculation.

• πi is the fault-rate ratio between the component and
the unit.

• fi is the fault-rate ratio after attaching the component
to the system.

Markov-state Model

𝜆(m−1)→(𝑛−1)Δ𝑡

Faulty StatesHealthy States

Figure 38: A Markov-state
reliability model for an n states
system with m non-faulty states.

Mean Time To Failure (MTTF) calculation
as follows:

MTTF =
∫ ∞

t=0
R(t) = lim

s→0
(R∗(s)) (11)

where R(t) is the reliability function and
R∗(s) is its Laplace form.
Assume a system has n states of
failure/healthy. H is the set of healthy
states. F is the set of failed states.

R∗(s) = P(H) =
∑
Si∈H

P(Si) (12)

By calculating the probability of each
state (in Laplace domain), we can obtain
the MTTF value.

Markov-state Model (cnt.)

𝜆(m−1)→(𝑛−1)Δ𝑡

Faulty StatesHealthy States

Figure 39: A Markov-state
reliability model for an m states
system with n non-faulty states.

Inside a Markov-state model, the
transitions between states are
indicated with:

• Fault-rate of a sub-module (λ):
when a sub-module is failed, the
state of the system may change
to another state.

• Repair-rate of a sub-module
(µ): when a sub-module is
repaired, the state of the system
may change to another state.

Reliability Assessment Methodology
Dividing:

1 A Network-on-Chip consists of NR routers.
2 A router is divided into several modules.

Conquering:
1 For each module of a router, analyze it using one of
the following model:
• Model 0: non fault-tolerant module - use the fault
assumption (Eq. 10).

• Model 1: spare or reconfiguration module.
• Model 2: fault reduced module.
• Model 3: module with fault-tolerance support.

Merging:
1 A router reliability is obtained by Router Merging.
2 A network reliability is obtained by Network Merging.

Reliability Assessment Methodology
1 2Dividing Conquering 3 Merging

Network

Routers

Module A

Module B

Module C

Models?

Module D

Model 0

Model 1

Model 2

Model 3

RAFModule C

RAFModule B

RAFModule A

RAFModule D

Router

Network

Related journal paper

1 Khanh N. Dang, Akram Ben Ahmed, Xuan-Tu Tran, Yuichi Okuyama and Abderazek Ben Abdallah, “A
Comprehensive Reliability Assessment of Fault-Resilient Network-on-Chip Using Analytical Model”, IEEE
Transactions on Very Large Scale Integration Systems, 2017. DOI: 10.1109/TVLSI.2017.2736004.

Related conference paper

1 Khanh N. Dang, Michael Meyer, Yuichi Okuyama and Abderazek Ben Abdallah, “Reliability Assessment
and Quantitative Evaluation of Soft-Error Resilient 3D Network-on-Chip Systems”, The IEEE 25th Asian
Test Symposium (ATS), pp. 161-166, Hiroshima, Japan, November 21-24, 2016.

	Introduction
	Soft Error Hard Fault Tolerant Architectures and Algorithms
	Scalable Cluster-TSV Defect Tolerant Algorithm
	Evaluation
	Discussion and Conclusion

