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A B S T R A C T   

While speeding up cryptography tasks can be accomplished by using a multi-core architecture to parallelize 
computation, one of the major challenges is optimizing power consumption. In principle, depending on the 
computation workload, individual cores can be turned off to save power during operation. However, too few 
active cores may lead to computational bottlenecks. In this work, we propose a novel platform named Spike- 
MCryptCores: a low-power multi-core AES platform with a neuromorphic controller. The proposed Spike- 
MCryptCores platform is composed of multiple AES cores, each core is equipped with a clock-gating scheme 
for reducing its power consumption while being idle. To optimize the power consumption of the whole platform, 
we use a neuromorphic controller. Therefore, a comprehensive framework to generate a data set, train the neural 
network, and produce hardware configuration for the Spiking Neural Network (SNN), a brain-inspired computing 
paradigm, is also presented in this paper. Moreover, Spike-MCryptCores integrates the hardware SNN inside its 
architecture to support low-cost and low-latency adaptations. The results show that implemented SNN controller 
occupies only 2.3 % of the overall area cost while providing the ability to reduce power consumption signifi
cantly. The lightweight SNN controller model is trained and tested with up to 95 % accuracy. The maximum 
difference between the predicted number of cores and the ideal one from the label is one unit only. Under 24 test 
scenarios, a SNN controller with clock-gating helps Spike-MCryptCores reducing the power consumption by 48.6 
% on the average; by 67 % for the best-case scenario, and by 39 % for the worst-case scenario.   

1. Introduction 

Cryptography has been used for thousands of years to hide secret 
messages, with the first known evidence found in an inscription carved 
around 1900 BC in Egypt. Evidence of cryptography can be seen in major 
early civilizations, such as "Arthshashtra" in India. Julius Caesar used a 
substitution cipher to convey secret messages to his army generals, 
known as the Caesar cipher. In the 16th century, Vigenere designed a 
cipher that used an encryption key, which could be broken by using the 
frequency of letters in the language. Hebern designed an electro- 
mechanical contraption called the Hebern rotor machine in the 19th 
century, which used a single rotor embedded in a rotating disc to encode 
a substitution table. The Engima machine was invented by German en
gineer Arthur Scherbius at the end of World War I and was heavily used 
by German forces during the Second World War. The Enigma machine 
used multiple or more rotors, with the key being the initial setting of the 
rotors. Post-World War II, cryptography attracted commercial attention, 

with businesses trying to secure their data from competitors. IBM 
formed a "crypto group" headed by Horst-Feistel in the 1970s and 
designed a cipher called Lucifer. In 1973, the Nation Bureau of Stan
dards (now NIST) in the US requested proposals for a block cipher, 
which was accepted and named DES or the Data Encryption Standard. 
However, DES was broken by an exhaustive search attack in 1997 due to 
its small size. 

The Advanced Encryption Standard (AES) was developed by Belgian 
cryptographers, Vincent Rijmen and Joan Daemen, and later published by 
the National Institute of Standards and Technology (NIST) in 2001 [1]. 
The AES is now widely regarded as the most popular symmetric cryp
tosystem with a huge variety of applications. 

With the emergence of distributed computing [2,3] and the rise of 
big data [4], the need for secure and rapid data transmission has become 
ubiquitous [5]. Encryption is a technique that manipulates image data to 
prevent illegal access. Over the past two decades, various encryption 
algorithms have been developed for digital image security. These 

* Corresponding author. 
E-mail address: tutx@vnu.edu.vn (X.-T. Tran).  

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

https://doi.org/10.1016/j.micpro.2024.105040 
Received 16 September 2023; Received in revised form 27 November 2023; Accepted 22 February 2024   

mailto:tutx@vnu.edu.vn
www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2024.105040
https://doi.org/10.1016/j.micpro.2024.105040
https://doi.org/10.1016/j.micpro.2024.105040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2024.105040&domain=pdf


Microprocessors and Microsystems 106 (2024) 105040

2

schemes are divided into full and partial encryption. Full encryption 
uses a lot of resources and time, while partial encryption is computa
tionally efficient and suitable for real-time applications like teleconfer
encing and camera surveillance. In recent years, chaotic maps have 
gained attention in various fields, including mathematics, physics, 
computer science, and engineering due to their sensitivity, blanketing 
nature, and topological transitivity [6–8]. propose a DNA key-based 
visual image encryption scheme using quantum chaotic map. Initial 
conditions are computed from a DNA sequence, plaintext image, and 
SHA-512 hash function. Three random vectors are generated, with two 
used for correlation breaking and the third used in XORed operation. 
The scheme is designed to resist cryptographic attacks by transforming 
the ciphertext into a visually encrypted image. The diffused image is 
divided into Least Significant Bit (LSBs) and Most Significant Bits 
(MSBs), and more DWT is applied to the carrier image. Experimental 
analyses confirmed the scheme’s ability to withstand attacks and that it 
is noise-resistant. 

To ensure data security, it is imperative to protect the data using a 
recognized security standard such as AES. Furthermore, large-scale 
systems also demand high bandwidth and low latency capabilities to 
process data in real-time. Consequently, the design of hardware 
encryption modules and their integration into System-on-Chips (SoCs) 
as accelerators has gained significant traction. Researchers have 
explored various approaches to enhance the throughput of AES 
encryption and decryption processes while designing AES hardware 
accelerators [9–13]. 

Since the AES computation is performed separately for every 128 bits 
of data, one natural approach to accelerate the process is to replicate the 
AES core into multiple instances and perform the encoding parallelly 
[14]. While this approach can indeed enhance the throughput, it does 
come with several drawbacks:  

• First, if the incoming data fully utilizes all the parallel cores, we can 
benefit from the increased throughput. However, if incoming data is 
sparse, such as only utilizing 30% of the cores, there are some 
operating cores without any load (i.e., ‘no-load’ cores), resulting in 
unnecessary power consumption without performing any 
computations.  

• Secondly, the power of ‘no-load’ cores can be significantly saved by 
implementing clock-gating or power-gating techniques. However, 
the process of turning ‘no-load’ cores on and off leads to many 
challenges as it requires a certain number of clock cycles for readi
ness. Consequently, the system should adapt over a period of T cy
cles. However, the incoming data rate can vary, and the system must 
decide on an optimal number of cores being activated or deactivated. 
If too many cores are activated, unused cores will consume unnec
essary power. Conversely, if too few cores are activated, the system 
will struggle to process all incoming data, resulting in bottlenecks in 
the data flow. Hence, the system must employ a dedicated controller 
to decide the number of cores to be turned on/off, and the efficiency 
of this controller is crucial for the overall performance of the system.  

• Thirdly, conventional control algorithms such as Fuzzy Logic or PID 
can assist the system in adapting to specific scenarios. However, 
these algorithms face two challenges: (1) they demand significant 
resources, making it difficult to design dedicated hardware; and (2) 
extending these algorithms to accommodate new scenarios is not 
straightforward. Although Artificial Neural Network (ANN)-based 
solutions offer flexibility, the hardware complexity associated with 
ANN implementations can still present many issues. Alternatively, 
Spiking Neural Network (SNN) utilizing the Leaky-Integrate-and-Fire 
neuron model, a brain-inspired computing paradigm, can serve as a 
viable option for the controller. SNNs offer a lower area cost while 
delivering comparable performance. Due to their simplified 
computation, hardware implementation of SNNs can be integrated 
into our system with minimal area overhead. Moreover, as a neural 

network approach, SNNs can be trained and adapted to various 
scenarios.  

• Fourthly, SNNs have demonstrated their efficacy in various domains, 
including robotics, control systems, and computer vision. However, 
to the best of our knowledge, no previous work has explored the 
adaptation of multiple AES cores using SNNs. The primary challenges 
in this context lie in data preparation, SNN training, and the imple
mentation of SNNs into dedicated hardware modules. 

In this work, we address the aforementioned challenges by intro
ducing Spike-MCryptCores, a brain-inspired low-power multi-core AES 
platform. The Spike-MCryptCores platform utilizes multiple AES cores to 
enhance the total performance. To minimize power consumption, Spike- 
MCryptCores uses a clock-gating scheme for each individual core. To 
control the clock gating process effectively, Spike-MCryptCores employs 
a controller based on spiking neural networks (SNNs) inspired by the 
human brain. SNNs have garnered significant attention recently due to 
their relative simplicity and low-power hardware characteristics 
[15–18]. From a range of available neuron models, we have chosen the 
Leaky-Integrate-and-Fire model due to its ability to strike a balance 
between simplicity and bio-plausibility. The main contributions of this 
work are as follows: 

• We introduce an open-source platform that enables dataset prepa
ration, training, and testing of SNN (Spiking Neural Network) for 
clock-gating control in a multiple AES cores system1. Additionally, 
we propose a method for quantizing and generating hardware SNN 
configurations that allows the system to have a dedicated controller 
to adapt to different scenarios. The SNN achieves over 95 % accuracy 
using a lightweight controller that occupies only 2.3 % of the total 
system area cost.  

• We develop a hardware architecture of the proposed a low-power 
multi-core AES platform that incorporates two significant in
novations: (1) a tailored, cost-effective hardware architecture for 
SNN that supports both input current and spike input modes for 
system control, and (2) the integration of the SNN hardware into the 
multi-core AES platform to establish a low-power multi-core AES 
platform thanks to SNN-based clock-gating scheme. Consequently, 
by implementing this architecture, power consumption can be 
reduced by 39 % to 67 %, while the system incurs less than a 10 % 
increase in area overhead. 

To the best of our knowledge, this is the first-ever work on adapting a 
brain-inspired computing model to reduce power consumption in a 
multi-core system. 

The remaining part of this paper is organized as follows. Section 2 
reviews related works on single-core and multi-core AES architectures. 
Section 3 presents our proposed parallelized multi-core architecture and 
how it operates. In Section 4, we provide in detail the implementation of 
the proposed architecture on a CMOS 45 nm technology and an evalu
ation of the SNN controller. Section 5 discusses some limitations of the 
work. Finally, Section 6 offers concluding remarks. 

2. Related works 

2.1. Advanced encryption standard implementations 

The Advanced Encryption Standard (AES) algorithm was standard
ized by NIST in 2001. Since then, there have been many implementa
tions of the AES in both software and hardware. Software AES 
implementations can be easily performed using a CPU. However, they 
are generally considered to be less secure, slower, and more power- 

1 Source code is available here: https://github.com/khanhdang/Spike-MC 
ryptCores 
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consuming [12,13]. To address the aforementioned issues, 
hardware-based AES implementations offer viable solutions. For 
resource-constrained devices, the AES is often implemented with basic 
iterative, 8-bit, 16-bit, 32-bit, and 64-bit datapath width architectures 
with one or two S-Boxes to optimize area overhead and minimize power 
consumption [13,14,19,20]. The disadvantage of these architectures is 
low throughput because of the use of loops. For applications that require 
high bandwidth, AES hardware architectures are typically designed 
using full-parallel modes [9–11], unroll architectures [21], or pipeline 
architectures [22]. These architectures provide high performance but at 
a high area cost and high energy consumption. 

One of the common approaches to enhance the performance of the 
AES implementation is to utilize multi-core AES [14,21,22]. Pammu 
et al. [14] take advantage of a Multi-core Processor (AMP-MP) to ach
ieve high throughput while maintaining the security of an Advanced 
Encryption Standard based on Counter with Chaining Mode (AES-CCM). 
The proposed AMP-MP is implemented on a CMOS 65 nm processor with 
an 8-bit asynchronous 9-core architecture. The authors of [23] provide a 
novel parallelization technique for the Advanced Encryption Standard 
based on the Galois/Counter Mode (AES-GCM). The method permits the 
creation of scalable streaming cores capable of processing multiple 
individually keyed packets each clock cycle on broad segmented buses. 
Multi-FPGA systems are possible due to the architecture’s lack of 
core-to-core communication requirements. Work in [24] describes an 
efficient design technique for implementing AES on reconfigurable 
hardware devices. The authors demonstrated how to overcome the 
FPGA’s 100 Gbps speed limit by utilizing four AES cores and four binary 
field multipliers. Four pipeline steps have been placed within the 
multiplication in order to shorten the critical path of the GHASH oper
ation. The final GCM design is 44-layer and delivers 119 Gbps on Xilinx 
Virtex-5 chips. 

2.2. Low-power techniques 

Many design techniques have been developed to reduce power 
consumption, such as clock gating, power gating, multi-threshold 
voltage CMOS cells, multi-VDD technique, dynamic voltage and fre
quency scaling (DVFS), etc. [25]. Clock gating is extremely beneficial for 
lowering the power and energy consumption of digital devices. The 
authors of [26] constructed and tested an energy recovery timed pipe
lined multiplier equipped with an inbuilt resonant clock generator that 
generates a sinusoidal clock. The results indicate a 70 % decrease in 
clock-tree power consumption and an overall power savings of 25–69 % 
when compared to a multiplier employing a standard square-wave 
clocking system and matching flip-flops (FF). Shmuel Wimer and col
leagues [27] describe a unique technique dubbed Look-Ahead Clock 
Gating (LACG). This approach generates the clock enabling signals for 
each FF one cycle ahead of time using the current cycle data for the FFs. 
Not only it is likely to eliminate the bulk of redundant clock pulses, but it 
also avoids the AGFF and data-driven timing limitations. Because the 
LACGs are represented at the RTL level, the gating clock implementation 
is much simplified. Additionally, the authors recommend employing a 
single LACG for two FFs to save hardware overhead and power con
sumption. LACG was evaluated using a 22 nm technology process. The 
testing findings indicate that this strategy saves 22.6 % of the clock 
power and 12.5 % of the system’s total power usage. 

Although there are numerous techniques for lowering power con
sumption, this work adopts clock-gating as the technique. Since the 
Spike-MCryptCores utilize multiple AES cores, turning off the clock 
signal of the unused core will help reduce the power consumption. 
Obviously, other techniques can be integrated into our platform as later 
discussed in Section 5. 

2.3. Brain-inspired controlling methods 

Brain-inspired computing approaches [28] have shown enormous 

promise and success in in diverse of applications, such as image classi
fication, natural language processing, and self-driving systems. Many 
existing works use a variety of these approaches to control system re
sources such as performance, energy consumption, and temperature. 

Power consumption is one of the most challenging issues in the 
design of multi-core systems. In [29], the authors used reinforcement 
learning to control DVFS and the operation states. Experiments 
demonstrate that the system improves energy efficiency. The authors of 
[30] offered a new application scheduling and DVFS solution named 
CARTAD that is based on reinforcement learning and is designed to 
decrease system temperature while ensuring application latency. Jung 
and Pedram [31] provided a power management framework for multi
processor systems based on supervised learning that assesses the sys
tem’s performance based on input characteristics and calculates the best 
voltage–frequency setting using a precomputed policy table. In [32], the 
authors presented a strategy based on online learning that utilizes 
different experts’ processor clock frequency levels, which are then 
picked at runtime based on power consumption and performance 
penalty. 

Moreover, Spiking Neural Networks (SNNs), which are considered 
the third and most advanced neural network architecture, are directly 
inspired by the operation of biological brains. SNNs can be implanted in 
both hardware and software. However, thanks to the low complexity of 
the Leaky-Integrate-and-Fire neuron model and synapses, SNN hard
ware has been a promising solution for power-efficient computing. Both 
academics and industry have been investing in how to implement SNNs 
in hardware architectures [33–39]. Unlike other techniques that require 
high resources, SNNs are lightweight and can be integrated into the 
controller like Spike-MCryptCores. SNNs have been applied to multiple 
control applications such as robotics or decision making. In [40], the 
authors use TrueNorth neuromorphic chip by IBM to perform a 
closed-loop control. Path planning algorithm is also implemented in 
[41] using spiking neural networks. Fischl et al. [42] have demonstrated 
a self-driving robot using SNN. 

Although SNNs (or neuromorphic computing) have shown their 
potential in several applications [36,40,41]. Applying SNNs for practical 
applications is still challenging. In [32], the authors went through deep 
analyses to compare conventional neural networks with SNNs. 

Despite applying SNNs for controlling and computer vision tasks 
have been investigated, there is no work on how we can apply SNNs to 
control on-chip systems. In this work, we will try to answer the question 
of how we can train and implement lightweight SNNs to handle a con
trolling task within SoCs. 

3. Spike-MCryptCores platform 

In this section, we present the overview architecture of the proposed 
low-power multi-core AES platform with a brain-inspired controller 
(Spike-MCryptCores platform). Then, we will describe each module of 
this platform in detail. 

3.1. Platform overview 

The overview diagram of the proposed low-power multi-core AES 
platform (Spike-MCryptCores platform) is presented in Fig. 1. 

In principle, the Spike-MCryptCores hardware architecture consists 
of N homogeneous AES cores operating in parallel. Due to the incon
sistency of incoming data rates, there are chances that the incoming data 
will not fully utilize all N cores. Because there are cores not being used, 
Spike-MCryptCores will gate the clock to reduce the dynamic power 
consumption. However, the process of turning on/off each core has 
some delay and may mess up the order of the data. Therefore, we need to 
provide a proper controller to efficiently manage the multi-core system. 
In the Spike-MCryptCores platform, we use Spiking Neural Network 
(SNN), a brain-inspired computing model, as the backbone of the 
controller. 
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3.1.1. Brain-inspired controlling 
As the incoming data can be varied at different rates at different 

times, we should apply a controlling mechanism to allow the system to 
enable/disable core during operation. Brain-inspired methods have been 
applied in robotic fields such as computer vision or decision making 
[28]. Inspired by the efficiency and the ability to adapt to multiple 
scenarios, the Spike-MCryptCores platform utilizes spiking neural net
works, a brain-inspired computing paradigm, as the backbone. SNN 
computation is based on binary input (spikes/action potentials) and has 
shown the ability to control complex tasks with energy efficiency. 

Fig. 2 illustrates the computing model of SNNs. The structure of a 
biological neuron is depicted in Fig. 2(a) where a neuron is connected to 
others via an axon-synapse-dendrite connection. Once a neuron issues 
an action potential (or spike), the spike is transmitted through the axon 
and goes to downstream neurons through different synapses. The 
incoming spike is received at a synapse and will be delivered to the core 
of a neuron (soma) via dendrite. The strength of a connection between 

neurons is usually considered as a weight in a conventional neural 
network. Fig. 2(b) shows the spike graphs for an SNN neuron, incoming 
spikes, usually considered as a binary value (current in biological 
neuron) goes through a synapse with a synaptic weight that alters the 
spike with different strengths. The weighted input will be integrated into 
the neuron’s membrane potential. Once the membrane potential of a 
neuron crosses the threshold, the neuron issues a spike and sends it to 
the downstream neurons. 

There are two basic ways of training an SNN model. The first method 
is to train with an ANN model and then convert it to an SNN [43]. This 
method provides the flexibility to allow designers to adapt to different 
scenarios. The second method is to train SNN with bio-inspired learning 
mechanisms [44,45] (STDP, SDSP) or ANN-like learning mechanisms (i. 
e., backpropagation) [46]. Both methods have demonstrated that SNNs 
can learn complex tasks. Furthermore, as a brain-inspired computing 
paradigm, using SNN can offer the possibility to adopt bio-plausible 
features. 

3.1.2. Software and hardware parts 
As illustrated in Fig. 1, the proposed platform comprises two major 

components: software and hardware. Fig. 1(a) describes the process 
performed on the software, including the following stages: (1) generate 
training data based on different scenarios of input data and save it to 
comma-separated values (.csv) files; (2) train the SNN model using the 
data scenarios generated in Stage 1, evaluate the model, and generate 
hyperparameters, weights, and biases for the Spike-MCryptCores hard
ware. The main role of the Software is to generate several common 
scenarios of data and use them to train the SNN. With the trained SNN 
model, the system can predict the behavior of the data rate and give a 
suitable adaptation. In other words, the SNN model will predict the 
number of AES cores needed to be turned on to encode the incoming 
data. If too many cores are activated, there are unused cores and it will 
waste power. On the other hand, if too few cores are activated, it will 
create a bottleneck as the Spike-MCryptCores throughput is smaller than 
the incoming data rate. Therefore, deciding the number of cores to be 
activated can be crucial. 

Fig. 1(b) illustrates the hardware block diagram of the Spike- 
MCryptCores platform, including (1) Hardware SNN: controls the pro
cess of splitting and concatenating data (MUX, DEMUX) and on/off AES 
cores; (2) DEMUX: Demultiplexer for input data; (3) MUX: Multiplexer 
for output data; (4) I-FIFOs and O-FIFOs are Input Data Buffers and 
Output Data Buffers, respectively; (5) AESCs: consists of N AES cores 
(AESCs) operating in parallel. Note that the number of AES cores (N) can 
be configured at the design phase. With the hardware configurations 
generated by the Software, the hardware architecture of SNN can 
perform the same prediction task, which allows it to generate a suitable 
number of cores to be activated. Since the whole SNN inference can be 
done on hardware in parallel, the system does not need any dedicated 
CPU to perform the prediction. Moreover, thanks to the low complexity 
and low power features of SNN, the whole controller can be power 
efficient and will not create considerable overhead in terms of power 
and area cost. 

3.2. Software design for platform 

As described in Section 3.1, Fig. 1(a) is a process diagram of software 
implementation, consisting of two main stages. The purpose of the 
software is to generate possible scenarios from the input data. These 
scenarios are used to train the SNN model and then generate the SNN 
hardware configuration. 

3.2.1. Stage 1: generate data to train 
As we mentioned above, there are several approaches to training an 

SNN. In this work, we will train an ANN using supervised learning and 
convert the ANN to SNN [43]. By using the conversion method, we must 
prepare the data consisting of inputs and labels for training/testing. 

Fig. 1. Spike-MCryptCores platform (a) Software and (b) Hardware.  

Fig. 2. Spiking neural network computing model: a) Biological neuron; (b) 
Spiking neuron. 
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In this section, we discuss in detail how to use the Python pro
gramming language to create data scenarios for SNN training. Usually, 
data can be collected from realistic datasets. However, as it is difficult to 
manage the quality of data (which could be redundant and randomized), 
we decided to generate a synthetic dataset for training and testing. 
Although we use this synthetic data set, designers can collect realistic 
data rates and use them for training/testing. 

Data scenarios transform according to functions such as exponential, 
sine, tan, step, sawtooth functions, and so on (The details of the pre
defined data scenarios are presented in TABLE A in the Supplemental 
Document). Please note that designers can add or remove functions to 
adapt the system to different scenarios. Actual data can also be recorded 
and used to train the SNN as well. In this work, we also added a random 
case (see Fig. 4(m)) as an example of user define cases. 

First, we prepare the data in the form of given functions. The data 
rate (Data(t)) is counted during the sampling time T (T is the number of 
system clocks per each sampling). T can be changed to suit the design of 
the system (e.g., T = 100, 128, 256, 512, or 1024). Based on the value of 
Data(t), the software will calculate inputs and labels. 

Algorithm 1 presents the data generation algorithm for the SNN 
training process. The inputs of the algorithm are:  

• num_of_core: number of AES cores;  
• samp_of_data: number of data samples generated for each scenario;  
• clock_in_sample: number of system clocks in each sample (T).  
• gen_function: the function used to generate data. 

The outputs of the algorithm are: Data(t), Data(t-1), Data(t-2), Data 
(t-3), Delta(t-1), Delta(t-2), Delta(t-3), Residual(t-1), Enable_cores(t) and 
gen_data. While gen_data the binary array indicates the incoming data for 
Spike-MCryptCores, the other outputs are described in Table 1. Note that 
the first eight values are the inputs and the last one (Enable_cores(t)) is 
the label for training and testing of the SNN. 

To understand how the data is generated, we would like to illustrate 
the case of the exponential function in Fig. 3. The horizontal axis is time. 
For convenience of calculation, we choose the sampling period T = 100 
clock cycles. There are two graphs in the chart. The black graph repre
sents 100 input data samples. The traffic rate is the number of data 
blocks contained in T = 100 clock cycles (one data block is 128 bits). 
Traffic rate is changed each interval of 100 clock cycles. In this case, the 
traffic rate is an exponential function. The red graph shows the number 
of cores that need to be turned on to avoid data loss. In lines 1-3, the 
Algorithm 1 loops from 0 to samp_of_data-1 and generate a series of Data 
(t) (y(t) is a copy of Data(t)). The value of Data(t) is based on the gen_
function. For example, if t=80 the value Data(t) is 63 which means in T 
cycles, the Spike-MCryptCores has 63 incoming data blocks. 

From lines 4 to 9 in Algorithm 1, the algorithm generates randomly 
the data for each T cycles. The gen data[t][i] will be generated randomly 
between 0 and 1 (0: no incoming data block, 1: has incoming data 

block). The second loop will break once it reaches Data(t) incoming data 
blocks in T cycles (as y[t] down to zero). 

Finally, the algorithm calculates the remained values using the 
equations in Table 1 (line 9) and returns the calculated values (line 10). 
The value of enable cores for exponential function can be seen in Fig. 3. 

As can be seen in Table 1, Stage 1 basically gives the history of data 
rates as inputs, and the correct number of cores should be activated as 
the label. The key idea is to let SNN predict the proper number of cores 
by knowing the history of the data rate. As the data rates usually go 
serially by proper patterns (or functions), the SNN can predict the 
number of cores. If the data rates are randomized, there is less chance 
that SNN can predict. In this work, we only consider the four previous 
sampling periods as the history of SNN training. Obviously, we can even 
extend or reduce the range. Based on our experimental results reported 
in Section 4.3, having eight inputs for training and testing can obtain 
more than 95% accuracy with the SNN model of 8-5-11. 

Fig. 4 illustrates the data scenarios. Each scenario consists of 
sample of data = 100, and clock in sample = 100. The Data (t) takes 
values from 0 to 100; enable core(t) takes values from 0 to 
number of core (number of core = 10 is the number of AESCs in the 
Spike-MCryptCores platform). 

In the data set, we have two types of functions. The first type is just 
the standalone functions as in Fig. 4(a-l). The second type is the com
bination of the functions and randomization. Fig. 4(m) first shows a 
random function. Then, we combine the random function with the 
function in Fig. 4(a-l). As the data rates might vary and we try to mimic 
those behaviors. 

3.2.2. Stage 2: SNN network models and learning algorithm 
With the data rate scenarios generated as in Stage 1, we can use the 

inputs and labels to train our SNN network. A normal SNN network is 
defined by the neuron models, the learning rules for the synapse, and the 
overall topology for the connection between layers of neurons [47]. In 
this work, we use a feedforward, fully-connected topology of neurons 
with one hidden layer and one readout layer to determine the required 
number of AES cores for operations, as shown in Fig. 5. The hidden layer 
has M neurons, while the readout layer has 11 neurons to represent the 
11 possible cases for the number of activating cores (0 to 10). The 
number of hidden layers can be increased to have a more complex 
model. 

However, as we aim to maintain a low-cost SNN controller and a 
single hidden layer can provide good accuracy, the SNN model will only 
use a single hidden layer. Spike-MCryptCores also supports creating 
different numbers of neurons in a hidden layer and changing the number 
of hidden layers. 

Fig. 6 depicts a basic Leaky Integrate-and-Fire (LIF) neuron, con
sisting of its synapses, soma, and axon. The synapses serve as the link 
between two neurons. When a neuron receives input spikes from neu
rons in the preceding layer, the input spikes are scaled according to the 
weighted synapse strength, and the weighted inputs are incorporated 
into the membrane potential at the soma of the neuron. Once the 
membrane potential exceeds a predefined threshold, the neuron will fire 
and create an output spike, which is then communicated to the neuron in 
the next layer through the axon. 

We select the conductance-based Leaky-Integrate-and-Fire (LIF) 
neuron’s models since it has low complexity while still maintaining 
effective computation capabilities. For the hidden layer, the neurons 
have analog current input. The neurons in both layers used a reset-by- 
subtraction method. The dynamics of the LIF neurons are captured in 
Eq. (1). 

Algorithm 1 
Generate data for training  

1 Input: num_of_core, samp_of_data, clock_in_sample, gen_function 
Output: Data(t), Data(t-1), Data(t-2), Data(t-3), Delta(t-1), Delta(t-2), Delta(t- 
3), 
Residual(t-1), Enable_cores(t), gen_data 
for t in 0 to samp_of_data-1: 

2 
3  

y[t] = min(gen_function(i), clock_in_sample); 
Data(t) =y[t]; 

4 for t in 0 to samp_of_data-1: 
5  for i in 0 to clock_in_sample-1: 
6 
7 
8   

gen_data[t][i] = randomize(0,1); 
y[t] = y[t] - gen_data[t][i]; 
if y[t] == 0: break; 

9 calculate: Data(t-1), Data(t-2), Data(t-3), Delta(t-1), Delta(t-2), Delta(t-3), 
Residual(t-1), Enable_cores(t) from equation in TABLE 1. 

10 return  
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Vl
i [t]pre =

∑

j
wl

i,j × Ij[t] × Ol− 1
j [t] + Vl

i [t − 1]post + bl
i

Ol
j[t] =

⎧
⎨

⎩

1 f Vl
i [t] ≥ Vthreshold

0 otherwise

Vl
i [t]post =

⎧
⎨

⎩

Vl
i [t]pre if Ol

j[t] = 1

Vl
i [t]pre − Vthreshold if Ol

j[t] = 0

(1) 

Where Vl
i [t]preand Vl

i [t]postdenote the pre and post-fire membrane po
tential of neuron-i at layer l at timestep t, while wl

i,j denotes the synaptic 
weight between the pre-synaptic neuron-j and the post-synaptic neuron- 
i, and bl

i is the bias term for neuron-i at each layer l. Each neuron will 
integrate the product of wl

i,j and the input current Ij[t] from all neurons in 
the previous layer. The bias term is added after the integration process is 
completed. A neuron will emit a spike Ol

j[t] if the pre-fire membrane 
potential crosses a certain threshold Vthreshold. After firing, the neuron will 
reset to the post-fire potential by subtracting Vthreshold. The output spike is 
sent to the downstream layer. 

This work adopts the ANN-to-SNN conversion technique depicted in 
[42] to train the network. The trained network then will go through a 
Post-Training-Quantization (PTQ) process before being deployed with 
the hardware model. The main reason why we would like to perform 
quantization is that reducing to a fixed-point format could lead to less 
hardware complexity. 

An overview of the conversion technique and the PTQ process is 
shown in Algorithm 2. The conversion from ANN-to-SNN starts with the 
training of a fully-connected ANN with backpropagation. A weight 

normalization process is then carried out with part of the training data to 
ensure the ratio between the weights and the threshold is kept in bal
ance. For a detailed discussion on the weight normalization process, we 
refer to the original paper in [48]. 

The trained SNN networks need to be quantized to fixed point format 
Qi.f before the hardware evaluation step. The Qi.f fixed point format 
used 1 sign bit, i bits for the integer part, and f bits for the fractional part. 
It is able to represent numbers in the range of [− 2i; 2i − 2f] with a pre
cision of є = 2− f . We round the floating-point number x to its fixed-point 
counterpart by the rounding to the nearest method, as depicted in 
Equation (2): 

Round(x) =

⎧
⎨

⎩

⌊x⌋ if ⌊x⌋ ≤ x < ⌊x⌋ +
є
2

⌊x⌋ + є if ⌊x⌋ +
є
2

≤ x < ⌊x⌋ + є
(2) 

On this platform, we not only design the SNN model in software, but 
also design the hardware architecture of this SNN to be integrated into 
the controller of the Spike-MCryptCores. Details on the hardware ar
chitecture of SNN are shown in Section 3.3. 

3.3. Hardware architecture of the platform 

In Section 3.2, we have illustrated how we create synthetic data and 
train the SNN model. The hardware architecture for the SNN is also 
proposed. In this section, we will describe the hardware architecture of 
Spike-MCryptCores. 

Fig. 7 presents the detailed hardware architecture of the Spike- 
MCryptCores platform, which includes the following modules:  

• DEMUX: A demultiplexer with 1 input, N outputs, and DSEL control 
signal. DEMUX is used to distribute the input data among each 
module.  

• I-FIFO: Input data buffers for AESCs. There are N I-FIFOs in the 
hardware of the Spike-MCryptCores platform.  

• AESC: There are N AESCs in the hardware of the Spike-MCryptCores 
platform.  

• Expand Key: The module generates subkeys for AESCs.  
• O-FIFO: Output data buffers for AESCs. There are N O-FIFOs in the 

hardware of the Spike-MCryptCores platform. 
• MUX: A multiplexer with N inputs, 1 output, and MSEL control sig

nals. The MUX module is used to merge all the data from all the AES 
cores into a single stream. The MSEL selection signal relies on DSEL 
which allows it to keep the order of data. 

Table 1 
Calculation training data.  

Fig. 3. An example of data scenarios: exponential function.  
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• SNN Controller: This module will perform the prediction of the 
number of cores to be turned on/off (by gating the clock of each AES 
core). The module also generates control signals for DEMUX, I-FIFO, 
AESC, O-FIFO, and MUX. 

We would like to note that the Spike-MCryptCores platform operates 
in two frequency domains. Sys_Clk is the clock signal of the system, 
while Core_Clk is the clock signal of the AESCs. By having two clock 
domains, the AES core can operate at a lower frequency while having N 
cores can still provide high throughput to the system. Here, we fixed 
Sys Clk = N × Core Clk to balance the throughput at the maximum rate 
cases. I-FIFOs and O-FIFOs operate on both Sys_Clk and Core_Clk fre
quency domains. 

Data_in has a data width of 128 bits. An example of input data has a 
waveform as shown in Fig. 8. Here, there are times when there are a lot 

Fig. 4. Data scenarios used during SNN training.  

Fig. 5. Our SNN network with the feedforward topology.  

Fig. 6. Leaky integrate-and-fire (LIF) neuron model.  

Algorithm 2 
SNN network models and learning algorithm   

Input: Data training (.csv file) 
Input: Labels (.csv file) 
Output: Hyperparameters, weights, bias  
Begin 

1  S1: Train the ANN model. 
2  S2: Weight Normalization 
3  S3: Convert to SNN Network 
4  S4: Quantize the SNN Parameters 
5  S5: Quantized SNN Network (Qi.f) 
6  S6: Testing for SNN Accuracy 
7  S7: Calculate Hyperparameters, weights, and bias  

End  
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of inputs, there are times when there is no input. For example, at the 
clocks 1, 2, 5, 7 to 9, 12 to 16, 17, there is input data. At the clocks 0, 3, 
4, 6, 10, 11, 16, 19, there is no data to the system. Therefore, the input 
data rate can be different in scenarios for the same function. 

I-FIFOs and O-FIFOs, which operate on two frequency domains 
(Asynchronous FIFO), are data buffers that handle the conversion be
tween two clock domains (Core Clk and Sys Clk). Because AESCs operate 
in parallel, their operating frequency is slower than that of the system (in 
this work, we defined Core Clk = Sys Clk/N). I-FIFOs convert input 
data from DEMUX (high speed) to AESCs (low speed). In contrast, O- 
FIFOs convert data from AESCs (low speed) to MUX sets (high speed). By 
having a depth of four data blocks, I-FIFOs and O-FIFOs help avoid data 
loss due to delays during control with the SNN Controller. 

3.3.1. SNN controler 
In the previous sections, we presented the architecture for Spike- 

MCryptCores with N AES cores. As the Spike-MCryptCores hardware 
allows to turn on and turn off the clock signals to each of its AES cores, 
the system needs to control the enable signal of each core. Here, we 
designed the SNN controller with the ability to predict the suitable 
number of cores and provide enable signals to each AES core. SNN’s 
hyperparameters, weights, and biases are trained in the software model. 

Algorithm 3 presents our proposed algorithm for the SNN Controller. 
The algorithm consists of six phases: S1: counting data; S2: storing 

values; S3: calculating parameters; S4: calculating the number of AESCs 
to be turned on; S5: controlling MUXs, DEMUX FIFOs; and S6: con
trolling the AESCs. The block diagram for the controller is shown in 
Fig. 9.  

• S1 - Counting input data: Input data valid signal (Data_in_valid) is put 
into Counter to count the number of data occurrences in time of T 
cycles (T = 100, 128, 256, 512, 1024 Sys_Clock). The number of data 
occurrences in period T is Data(t).  

• S2 - Storing values: Data(t-1), Data(t-2), Data(t-3), Data(t-4) values 
are saved to calculate the parameters in S3.  

• S3 - Calculating the change of data at time t-1, t-2, and t-3 by the 
corresponding equations in Table 1.  

• S4 - Providing Inputs for hardware SNN. Based on the input values, 
SNN calculates #Core - which is the number of AESCs that need to be 
turned on at time T. At the end of phase S4, the SNN outputs the 
number of cores being turned on.  

• S5þS6 - SNN Controller uses the #Core value and the ‘Empty’, ‘Full’ 
signals of the I-FIFOs and O-FIFOs to output the DSEL signals that 

Fig. 7. Hardware architecture of Spike-MCryptCores platform.  

Fig. 8. Example of waveform graph of input data.  

Algorithm 3 
SNN controller   

Input: data_in, Empty, Full 
Output: #core 
Output: DSEL, MSEL 
Output: EN(0), EN(1),…, EN(N-1)  
Begin 

1  S1: Count for Data(t) each T cycles. 
2  S2: Store Data(t), Data(t-1), Data(t-2), Data(t-3), Data(t-4). 
3  S3: Calculate Delta(t-1), Delta(t-2), 

Delta(t-3), Residual(t-1). 
4  S4: Predict the number of cores being turned on by SNN hardware. 
5  S5: Generate DSEL, MSEL signals 
6  S6: Generate EN(0), EN(1),…, EN(N-1).  

End  Fig. 9. SNN controller diagram.  
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control the DEMUXs and the MSELs that control the MUXs. The 
controller also computes and outputs the WriteEn_in and ReadEn_in 
signals to control the reading and writing of I-FIFOs and O-FIFOs. On 
the other hand, the En(0) to En(N-1) signals are also generated by the 
SNN Controller based on the number of cores to control the on/off 
clock of the AESC(0) to AESC(N-1) cores. 

Fig. 9 illustrates the architecture of the SNN controller. The data rate 
is counted by a counter each T cycles. Then, the data rate is stored in the 
register of Data(t-1), Data(t-2), Data(t-3), Data(t-4). The delta value is 
calculated by subtracting a pair of data rate values. The eight inputs are 
fed into SNN to predict the number of cores. As the input vector must be 
normalized, here we counted for T = power of two cycles (i.e., 128, 256, 
512) which allows the normalization converts to shift bit function. In the 
other words, we can eliminate the normalization function. 

The detailed architecture of the SNN is shown in Section 3.3.2. After 
having the number of cores being turned on, the sub-controller will 
generate the Enable signal and the DSEL/MSEL signal as in S5 and S6. 

3.3.2. Hardware architecture for the SNN’s block 
In Section 3.2, we have illustrated the data generations and how we 

choose and train the SNN model. Obviously, the SNN can be performed 
by a dedicated CPU within the system; however, it will introduce a 
significant amount of area overhead. In our proposed Spike- 
MCryptCores, we use a hardware SNN architecture to compute. We 
also already quantized the SNN model to be ready for the hardware SNN. 

Fig. 10 shows the hardware architecture for a single Processing 
Element (PE) and the block diagram for the SNN network. The dynamics 
of the LIF neurons are handled by the PE. Each PE consists of a simple 
Multiply-and-Accumulate (MAC) which will integrate the inputs to the 
neuron in each time step. The weights and the input current are kept at 
8-b precision. It depends on the mode of operations, the PE could inte
grate the products of the input current and the weights (in the case of 
analog input), or with only the weights (in the case of binary spiking 
input). A comparator is used to give an output spike. 

In conventional SNN architectures [37–39], the 
Leaky-Integrate-and-Fire neuron is usually processed with binary inputs 
(spikes). However, in this work, we decided to use the input current in 
8-bit format and MAC to compute. The main reason is to reduce the 
complexity of the design. If the design follows the spike-based approach, 
the inputs (data and delta values) must be converted to spikes. While in 
software this could be done easily, in hardware it requires a pseudo
random module (i.e., a linear feedback-shift register and a comparator) 
for each input, which significantly requires more area cost. In this work, 
we used currents as the input to reduce the pseudorandom module for 
the first layer. For the following layers, we use spikes for computation. 

This type of hybrid design can have a lower area cost and lower latency. 
Neurons in the same layer are handled by the same PEs complex. The 

number of PEs complexes and the number of neurons in each complex 
are fixed by the network architecture. Each complex has a dedicated 
SRAM buffer to store the trained SNN’s parameters such as weights and 
bias. After each timestep, the output spikes are encoded into the 
Address-Event-Representation (AER) format, which is a popular 
encoding format for spikes in modern neuromorphic formats. With AER, 
the address of each neuron is encoded to send to the next layer. In the 
next layer, the incoming AER signals are used to load the correct weights 
for integration. The layers communicate with each other through a 
simple handshake protocol to ensure operations can be handled in a 
pipelined, sequential fashion. 

The details of DEMUX, MUX, I-FIFO, O-FIFO, AESC, and ExpandKey 
are shown in the Supplemental document. 

4. Results 

In this section, we present the evaluation results of the Spike- 
MCryptCores platform. We first describe the evaluation methodology. 
Then, we present the hardware results in CMOS 45nm technology. In the 
following part, we evaluate the training results with the SNN model. The 
power consumption of the Spike-MCryptCores hardware is also 
compared with that of the MCryptCores to highlight the benefits of the 
SNN Controller. The hardware architecture of MCryptCores basically 
consists of N AES cores without a clock gating feature and an SNN 
controller. 

4.1. Evaluation methodology 

To generate data for SNN training, we use Algorithm 1 to generate 
different data scenarios using the Python programming language. Input 
data Data(t) are generated according to the scenarios of functions. The 
algorithm then computes the Inputs and Labels as shown in Table 1. 
Finally, the Inputs and Labels are saved to files for the training process. 

For training and converting, we first train a fully-connected ANN 
with backpropagation using the SpikingJelly framework [49]. A weight 
normalization process is then carried out with part of the training data to 
ensure the ratio between the weights and the threshold is kept in bal
ance. The trained network then goes through a 
Post-Training-Quantization (PTQ) process before being deployed with 
the hardware model. Weights and biases are downloaded to SNN 
hardware later at the beginning of its operation. 

For the hardware, we evaluate the hardware implementation results 
of the Spike-MCryptCores architecture, such as area cost, power con
sumption, and layout. To highlight the effectiveness of the SNN 
Controller, we evaluated 24 data samples as shown in Fig. 4. 

In this work, we decide to have N = 10 core AES within the Spike- 
MCryptCores. We pick it as a case study and obviously the system can 
adapt to different numbers of cores. 

4.2. Hardware evaluation results 

The hardware architecture of Spike-MCryptCores is designed in 
VHDL, simulated, and verified on ModelSim. We synthesize and analyze 
power consumption and layout with Synopsys Design Compile, Prime 

Fig. 10. Hardware architecture for the SNN system.  

Table 2 
Hardware complexity of the spike-MCryptCores.  

Module Absolute Total (mm2) Percent (%) 

Spike-MCryptCores 0.992 100 
10 AES cores 0.898 90.5 
DEMUX + I-FIFO 0.036 3.6 
MUX + O-FIFO 0.036 3.6 
SNN CONTROLLER 0.021 2.3  
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Time, and Cadence Innovus using the CMOS NANGATE 45 nm library. 
Table 2 presents the hardware complexity of the modules in the 

Spike-MCryptCores Platform. With an N = 10 AESCs configuration, the 
area cost of the Spike-MCryptCores platform is 0.992 mm2. In which the 
area cost for AESCs is 0.898 mm2, accounting for 90.5 %. Hardware costs 
for DEMUX and MUX modules account for 7.2 %. While the SNN 
controller has only 2.3 % of the total. It can be seen that with a very 
small area cost, the SNN controller can predict the number of cores and 
can turn on/off the clocks of the AESCs in accordance with the incoming 
data rate. 

Table 3 shows a summary of the power consumption of the Spike- 
MCryptCores architecture using clock gating and the MCryptCores ar
chitecture not using clock gating. Both architectures operate at a clock 
frequency of 50 MHz. In the absence of encrypted input, the SNN 
Controller in the Spike-McryptCores architecture turns off the clock to 
all AESCs. For the MCryptCores architecture, the clocks of the AESCs are 
not disconnected. In this case, the power consumption of Spike- 
MCryptCores is 24.5 mW and that of MCryptCores is 104.7 mW. Thus, 
the power consumption of MCryptCores is 4 times higher than that of 
Spike-MCryptCores. In case of the maximum incoming bandwidth, all 
cores are enabled, the power consumption of Spike-MCryptCores is 
173.7 mW and that of MCryptCores is 253.1 mW. In this case, 
MCryptCore’s power consumption is still 1.4 times higher than Spike- 
MCryptCores. This power reduction is thanks to the intensive clock 
gating in the Spike-MCryptCores. In summary, the Spike-MCryptCores 
architecture using clock gating technology can save from 31.4 to 76.6 
% power consumption compared to the MCryptCores architecture 
without clock gating technique. 

Fig. 11 is the Layout and Floorplan of Spike-MCryptCores with di
mensions of 1200× . 1425 μm2 consisting of the following main mod
ules: AESCs (10 AESCs) that occupy the majority of the chip area (90.5 
%), DEMUX and MUX that take up 7.2 %, and the rest is the SSN 
Controller, accounting for only a small part (2.3 %) of the chip. 

4.3. Evaluation of training results 

The data prepared for the training process consists of 2500 data 
samples and labels. This data is divided into 2 parts. Part 1: randomly 
selecting 400 samples to test the accuracy of the training model. Part 2: 
including the remaining 2100 samples used for training. 

First, the data samples are trained with a fully connected (floating 
point) ANN model. In this process, we went through an empirical pro
cess to choose the best ANN model to use. The training results with the 
ANN model are converted to SNN (floating-point). To reduce the 
complexity when transferring the model to hardware, perform Quanti
zation for quantization (8 bits). Finally, the SNN model (8 bits) is con
verted to hardware SNN. 

Training results with different configurations such as 8-3-11, 8-5-11, 
8-10-11, and 8-15-11 are presented in Table 4. It can be seen that the 
accuracy of the SNN (quantized) is directly proportional to the number 
of neurons in the hidden layer. With the SNN configuration with 3 
hidden layers (8-3-11), the accuracy of the SNN is the lowest (89.29 %). 
With the SNN configuration with 15 neurons at the hidden layer (8-15- 
11), the accuracy is up to 97.27 %. However, when increasing the 
number of neurons in the hidden layer, the hardware complexity of the 
SNN also increases. Therefore, in this work, we chose the neural network 
configuration as 8-5-11 to balance the accuracy and the complexity in 
hardware implementation. 

As the training accuracy is not 100 %, we consider the difference 

Table 3 
Implementation results of spike-MCryptCores and MCryptCores on 45nm CMOS technology.  

Active 
cores  

Spike-MCryptCores with Clock gating MCryptCores without Clock gating Saving Power 
(%) 

CLK 
(MHz) 

Total Power 
(mW) 

Throughput 
(Gbps) 

Energy Efficiency 
(Gbps/W) 

Total Power 
(mW) 

Throughput 
(Gbps) 

Energy Efficiency 
(Gbps/W) 

No core 50 24.5 0 0 104.7 0 0 76.6 
One core 50 39.9 6.4 160.3 119.5 6.4 53.6 66.6 
Two cores 50 54.1 12.8 236.6 134.3 12.8 95.3 59.7 
Three 

cores 
50 69.0 19.2 278.2 149.2 19.2 128.7 53.7 

Four cores 50 83.9 25.6 305.1 164.1 25.6 156.0 48.9 
Five cores 50 98.7 32.0 324.1 178.9 32.0 165.2 44.8 
Six cores 50 113.6 38.4 338.2 193.7 38.4 184.1 41.4 
Seven 

cores 
50 128.5 44.8 348.6 208.6 44.8 200.2 38.4 

Eight 
cores 

50 143.5 51.2 356.8 223.7 51.2 228.8 35.9 

Nine cores 50 158.3 57.6 363.9 238.6 57.6 241.4 33.7 
Ten cores 50 173.7 64.0 368.4 253.1 64.0 252.8 31.4  

Fig. 11. Spike-MCryptCores layout & floorplan  

Table 4 
Training results.  

Network 8-3-11 8-5-11 8-10-11 8-15-11 

ANN 95.82% 98.326% 95.81% 100% 
SNN controller (32-bit) 89.29% 97.72% 95.67% 97.72% 
SNN controller (8-bit) 89.29% 95.44% 96.58% 97.27% 
Min Diff. (Prediction vs Label) -1 -1 -1 -1 
Max Diff. (Prediction vs Label) +1 +1 +1 +1  
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between label and prediction of the SNN Controller (min & max diff) as 
the key factor. According Table 4, the accuracy of the SNN controller (8- 
bit) with configuration 8-5-11 is 95.44 %, thus the error rate of this 
model is 4.56 %. However, in case the prediction is wrong, the difference 
between the label and the prediction is only 1 unit. That is, if the model 
predicts incorrectly, the deviation is also very small (the SNN controller 
predicts less than one core or more than one core in comparison to the 
label). The Spike-AES hardware has I-FIFO and O-FIFO modules at the 
inputs and outputs of the AESCs, so data can be stabilized, and we can 
expect small bottlenecks. Models 8-10-11 or models 8-15-11 can be 
selected to improve accuracy to 96.58 % or 97.27 %; however, as the 
hardware complexity also increases, we decide to use 8-5-11 as it gives 
the best trade-off between accuracy and area cost. 

Fig. 12 is a graph showing the results of training with the 8-5-11 
neural network model. The model has 8 inputs, M = 5 hidden layers, 
and 11 outputs. With the ANN model, the accuracy reaches 98.326 %, 
with the SNN model the accuracy increases with timestep T and reaches 
saturation with an accuracy of up to 100 % at T = 16. Please note that 
since the spikes generated during the training of the SNN are randomly 
generated using Poisson process, the accuracy may vary during the 
inference time and the variation can be different by using different seeds 
for random. We note that the peak at 100 % can be a random noise as it 
drops lower after 17 timesteps. In general, we only consider the final 
results as the controller only considers them. 

Fig. 13 illustrates the test result with random values (1-100 in 2500). 
We generated 2500 random data samples and tested them with the 
trained model 8-5-11. The prediction accuracy of the SNN controller is 
only 560/2500 (22.4 %). This result is predictable as the SNN cannot 
deal with this type of change. It can be seen that the prediction graph of 
the SNN controller is different from the ideal graph. Out of 2500 data 
samples, 560 (22.4 %) samples are predicted as the same as the ideal 
value, 1179 samples end up with one core difference, and 761 samples 
have 2+ cores difference. 

4.4. Evaluation of SNN controller performance 

Since the Spike-MCryptCores utilize multiple AES cores with the 
ability to turn off the clock signal of the unused core using an SNN 
controller, it can significantly reduce the power consumption. On the 
other hand, MCryptCores does not have a control mechanism to turn off 
the clock signal of the unused core, it still consumes dynamic power 
from the clock signals. To compare the power consumption of Spike- 
MCryptCores vs MCryptCores (multi-AES cores with clock-gating and 
SNN controller), we tested both platforms with the same input dataset of 
24 scenarios. The results are shown in Fig. 15. Note that, besides the 
overall power consumption, we also evaluate the residual value of the 
Spike-MCryptCores. The residual will reflect how well the SNN 
controller adapts to the scenarios. If the residual is negative, it means 
there is an unused core. If the residual is positive, it means there are 

residual data blocks not being processed after T cycles. 
In the scenario where the input data is a sine function (Fig. 15(a)), 

the power dissipation of the Spike-MCryptCores and MCryptCores are 
also sine functions and correspond to the input data. However, the 
average power consumption of Spike-MCryptCores (99.24 mW) is lower 
than the average power consumption of MCryptCores (176.26 mW). 
Thus, with the same sine data scenario, Spike-MCryptCores saves 45 % 
power compared to MCryptCores. Same with other scenarios in Fig. 15. 
Power consumption of Spike-MCryptCores is 39 % to 67 % lower than 
MCryptCores. 

In Fig. 15 (a) and (l), Spike-MCryptCores residual is -5 in most 
samples, indicating that switching AESCs is not optimal, AESCs have not 
used up their throughput. In Fig. 15(j) and (k), the Spike-MCryptCores 
residual is zero in most samples, indicating that switching AESCs is 
optimal, AESCs using their throughput to the maximum. In all scenarios 
in Fig. 15, the data residual varies from -5 to +5. Although there is an 
unused core or residual data block, the value is relatively small 
(maximum 5 unused cycle cores or 5 residual data blocks in total N*T =
1000 cycle cores). 

In Fig. 14, we present the average power of Spike-MCryptCores and 
MCryptCores for all scenarios. Accordingly, the most evaluated data 
scenario (best case) is the tan function. In this scenario, the power 
consumption of the Spike-MCryptCores is 39.78 mW, while the power 
consumption of the MCryptCores is 119.84 mW. Thus, with the same 
data scenario as the tan function, the power consumption of Spike- 
MCryptCores is only 33 % of that of MCryptCores. The worst-case data 
scenario is the square_rand function. In this scenario, the power con
sumption of the Spike-MCryptCores is 126.86 mW, while the power 
consumption of the MCryptCores is 206.95 mW. Thus, in this scenario, 
the power consumption of Spike-MCryptCores is equal to 61 % of 
MCryptCores. 

The average power consumption of Spike-MCryptCores in 24 data 
scenarios is 84.85 mW, while with MCryptCores is 164.93 mW. Thus, the 
average Power Consumption of Spike-MCryptCores in 24 data scenarios 
is equal to 51.4 % of MCryptCores. Spike-MCryptCores achieves 
controllability as expected. The control accuracy is up to 95.44 %. In 
4.56 % of the error samples, the difference is ±1 number of cores. In the 
above scenarios, the scenario with a low data rate (e.g., a tan function 
scenario) is highly energy efficient. In the best case (tan scenario), the 
power consumption of Spike-MCryptCores is only 33 % of that of 
MCryptCores. The average of 24 Spike-MCryptCores scenarios saves up 
to 51.4 % energy compared to MCryptCores. 

Table 5 shows the comparison between our method and other low- 
power solution for System-on-Chip. Here, our method achieves a 
maximum of 67.0 % while other DVFS can only achieve up to 51 %. 
Work in [49] also uses clock gating and obtains a comparable result. In 

Fig. 12. ANN and SNN Accuracy using 8-5-11 configuration.  

Fig. 13. SNN control test result with random values (1 to 100 in 2500).  
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summary, our platform shows an approach to reducing power con
sumption with comparable efficiency. Please also note that in compar
ison to other methods, SNN allows more flexibility with the ability to 
retrain to adapt to new scenarios. 

5. Discussion 

In the previous sections, we have shown the Spike-MCryptCores 
platform with the ability to train and adapt to different data rates to 
optimize the power consumption of the system. Although the results 
show Spike-MCryptCores can decrease from 39% to 67% of the power 
consumption, there are some limitations of the system we would like to 
point out. 

First, the system relies on offline training and still cannot perform 
adaption during its operation (i.e., realize the underperformed cases and 
adapt the SNN). This is due to the lack of an online training algorithm for 
multiple layer perceptron for SNN. If designers would like to have online 
training, there are two solutions: (1) use a dedicated CPU to collect data 
and train the SNN, and (2) use a bio-plausible Spike-Timing Dependent 
Plasticity (STDP) online learning. Although training is computation and 
memory intensive, with a small model like ours, it is totally possible to 
train. Our open-source training program on Google Collab takes around 
20 s to train our model with 100 epochs. Therefore, it is possible to train 
the system once it finds out that the SNN cannot deal with the data rates. 
The second approach is of course to adopt a bio-plausible learning al
gorithm such as STDP [37]. However, STDP learning is a local learning 
approach and usually works with a single layer. In order to adapt to 
different scenarios, a single layer of a plural number of neurons with 
lateral inhibitory can be used. Once a pattern is recognized by one of the 
neurons due to its compatible weight, it issues inhibitory spikes to other 
neurons which further allows it to continue to fire [41]. By indicating 
the most firing neuron, the system can indicate the possible control 
method. This could be one of the future works for our group to provide 
the ability to adjust the system online. 

Second, the Spike-MCryptCores platform is still not optimal in terms 

of residual status. This could be easily explained by the fact that the 
control is not perfect, and the system needs to rely on input and output 
buffers to stabilize the connection as the data input varies randomly. 
However, as we tested with 24 cases, there was no data loss, and the 
Spike-MCryptCores still reduced the power consumption significantly. 
One of the potential solutions for this is to provide handshaking between 
the Spike-MCryptCores and the module that sends the data. This could 
help eliminate the Input and Output FIFO. However, it may lead to long 
latencies and create a chain of postponement in computation/commu
nication. Data dependencies could be problematic as the output of Spike- 
MCryptCores is needed for the other tasks. 

Third, we can easily realize that despite the Spike-MCryptCores 
platform being designed for multiple AES cores, the method can be 
applied for other computing applications as long as the cores are iden
tical and exchangeable. However, there are two main reasons why AES 
computation can be treated differently. The first reason is that the 
encoding process for AES is separated for each 128-bit. For other ap
plications, the tasks could be dependent on each other and could lead to 
idle cores under load. Adapting this to other applications must be 
investigated carefully. The second reason is the high complexity of AES. 
As shown in the hardware complexity results, the 10 core AES takes 
nearly 1 mm2, which allows us to have flexibility in designing SNN (2.3 
% of the whole area cost). Because of these two reasons, we believe the 
AES applications can be engineered to fit with the bio-inspired 
controller. This work could be a pilot for other works on how we use 
SNN for controlling on-chip applications. 

Forth, although the clock-gating may reduce up to 67 % of the power 
consumption, we are aware of the other low power techniques such as 
power gating or dynamic voltage-frequency scaling (DVFS). The power 
gating can be used as it cuts off the power of the module, and we can use 
the SNN control for this approach. DVFS can provide more choices for us 
to adapt to the system. Both of the approaches are considered future 
works, and we believe the SNN can adapt to them. 

Fifth, the prepared data set in this work is synthetic and we are aware 
of the possibility of having realistic cases that are not in our scenarios. 
However, the SNN can be easily extended with new data in the data set, 
and we already provide random cases for the training. Since the software 
platform is open source, designers can adapt the method to other data 
rates and scenarios. 

Sixth, while implementing the multi-core system like Spike- 
MCryptCores, we use MUX and DEMUX to distribute the data and 
collect the encoded data from each core. However, this approach can be 
limited due to the fan-out of the DEMUX. Alternatively, there are several 
communication paradigms to help communicate between cores, like 
buses or Network-on-Chips (NoCs). Work in [14] utilizes an asynchro
nous Network-on-Chip to deliver its data flow. Apparently, adopting 
NoCs can enhance the scalability of our system. Our research group has 
been working on NoCs [55] and this is one of our future research 
projects. 

Seventh, in this work, we use a feedforward, fully-connected topol
ogy without exploiting the sparsity in the connections. For more 
complicated models, exploiting the sparsity to reduce the complexity of 
the SNN can be important; however, since our model is lightweight and 
only take 2.3 % of the area cost, exploiting the sparsity connection will 
be future work. 

Eighth, synchronous communication is used between the layers of 
the SNN of this work. However, using asynchronicity in communication 
can also be utilized [35,36]. Regardless of the design choice, this work 
proves the idea of using SNN can be applied, and using synchronous or 
asynchronous communication will not affect the overall accuracy. 

Although Spike-MCryptCores has the above limitations, the evalua
tion still shows that it is extremely efficient in power consumption. 

6. Conclusion 

In this paper, we have proposed Spike-MCryptCores platform – a low 

Fig. 14. Compare the average power consumption of Spike-MCryptCores and 
MCryptCores. 
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power multi-core AES platform with a neuromorphic controller. Spike- 
MCryptCores consists of a software part that allows designing, 
training, and testing SNNs for controller and a hardware part that con
sists of multiple AES cores controlled by the SNN hardware counterpart. 
The software architecture for SNN has successfully trained with more 
than 95 % accuracy with only a single hidden layer of 5 neurons and 
only one core difference from the label in the error cases. The proposed 
platform only has 7.6 % area overhead for multiplexer, demultiplexer, 
and asynchronous FIFO. Furthermore, the SNN controller only occupies 
2.3 % of the area of the system, which is insignificant. With the SNN 
controller, the system can reduce power consumption by 67 to 39 % in 
comparison to the parallel AES core. In summary, the Spike- 
MCryptCores has introduced a novel method to design and control 
multiple-core systems with extremely small overhead and high 
accuracy. 

In future works, we would like to adapt the Spike-MCryptCores to 
different types of multi-core applications. Furthermore, extending 
Spike-MCryptCores with other low power techniques such as power 
gating or dynamic voltage-frequency scaling can be useful. 

NoCs can enhance scalability in multi-core systems like Spike- 
MCryptCores by utilizing asynchronous Network-on-Chips for data 
flow. This approach, unlike MUX and DEMUX, can be limited by fan-out 
issues, making NoCs a promising future research project. 

The system relies on offline training and cannot adapt due to the lack 
of an online training algorithm for multiple layer perceptron for SNN. 
Two solutions are using a dedicated CPU for data collection and training 
the SNN or using bio-plausible Spike-Timing Dependent Plasticity 
(STDP) online learning. STDP is a local learning approach with a single 
layer but can be used to adapt to different scenarios. By indicating the 
most firing neuron, the system can indicate possible control methods, 
potentially allowing for online adjustment. This could be one of the 
future works for our group to provide the ability to adjust the system 
online. 
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