
Microprocessors and Microsystems 106 (2024) 105040

Available online 26 February 2024
0141-9331/© 2024 Elsevier B.V. All rights reserved.

A light-weight neuromorphic controlling clock gating based
multi-core cryptography platform

Pham-Khoi Dong a, Khanh N. Dang b, Duy-Anh Nguyen a, Xuan-Tu Tran a,*

a VNU Information Technology Institute, Vietnam National University, Hanoi (VNU), Hanoi 123106, Vietnam
b Adaptive Systems Laboratory, Graduate School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Fukushima, 965-8580, Japan

A R T I C L E I N F O

Keywords:
AES
High-throughput
Multi-core
Cryptography
Spiking neural network
Neuromorphic
Brain-inspired computing

A B S T R A C T

While speeding up cryptography tasks can be accomplished by using a multi-core architecture to parallelize
computation, one of the major challenges is optimizing power consumption. In principle, depending on the
computation workload, individual cores can be turned off to save power during operation. However, too few
active cores may lead to computational bottlenecks. In this work, we propose a novel platform named Spike-
MCryptCores: a low-power multi-core AES platform with a neuromorphic controller. The proposed Spike-
MCryptCores platform is composed of multiple AES cores, each core is equipped with a clock-gating scheme
for reducing its power consumption while being idle. To optimize the power consumption of the whole platform,
we use a neuromorphic controller. Therefore, a comprehensive framework to generate a data set, train the neural
network, and produce hardware configuration for the Spiking Neural Network (SNN), a brain-inspired computing
paradigm, is also presented in this paper. Moreover, Spike-MCryptCores integrates the hardware SNN inside its
architecture to support low-cost and low-latency adaptations. The results show that implemented SNN controller
occupies only 2.3 % of the overall area cost while providing the ability to reduce power consumption signifi
cantly. The lightweight SNN controller model is trained and tested with up to 95 % accuracy. The maximum
difference between the predicted number of cores and the ideal one from the label is one unit only. Under 24 test
scenarios, a SNN controller with clock-gating helps Spike-MCryptCores reducing the power consumption by 48.6
% on the average; by 67 % for the best-case scenario, and by 39 % for the worst-case scenario.

1. Introduction

Cryptography has been used for thousands of years to hide secret
messages, with the first known evidence found in an inscription carved
around 1900 BC in Egypt. Evidence of cryptography can be seen in major
early civilizations, such as "Arthshashtra" in India. Julius Caesar used a
substitution cipher to convey secret messages to his army generals,
known as the Caesar cipher. In the 16th century, Vigenere designed a
cipher that used an encryption key, which could be broken by using the
frequency of letters in the language. Hebern designed an electro-
mechanical contraption called the Hebern rotor machine in the 19th
century, which used a single rotor embedded in a rotating disc to encode
a substitution table. The Engima machine was invented by German en
gineer Arthur Scherbius at the end of World War I and was heavily used
by German forces during the Second World War. The Enigma machine
used multiple or more rotors, with the key being the initial setting of the
rotors. Post-World War II, cryptography attracted commercial attention,

with businesses trying to secure their data from competitors. IBM
formed a "crypto group" headed by Horst-Feistel in the 1970s and
designed a cipher called Lucifer. In 1973, the Nation Bureau of Stan
dards (now NIST) in the US requested proposals for a block cipher,
which was accepted and named DES or the Data Encryption Standard.
However, DES was broken by an exhaustive search attack in 1997 due to
its small size.

The Advanced Encryption Standard (AES) was developed by Belgian
cryptographers, Vincent Rijmen and Joan Daemen, and later published by
the National Institute of Standards and Technology (NIST) in 2001 [1].
The AES is now widely regarded as the most popular symmetric cryp
tosystem with a huge variety of applications.

With the emergence of distributed computing [2,3] and the rise of
big data [4], the need for secure and rapid data transmission has become
ubiquitous [5]. Encryption is a technique that manipulates image data to
prevent illegal access. Over the past two decades, various encryption
algorithms have been developed for digital image security. These

* Corresponding author.
E-mail address: tutx@vnu.edu.vn (X.-T. Tran).

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

https://doi.org/10.1016/j.micpro.2024.105040
Received 16 September 2023; Received in revised form 27 November 2023; Accepted 22 February 2024

mailto:tutx@vnu.edu.vn
www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2024.105040
https://doi.org/10.1016/j.micpro.2024.105040
https://doi.org/10.1016/j.micpro.2024.105040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2024.105040&domain=pdf

Microprocessors and Microsystems 106 (2024) 105040

2

schemes are divided into full and partial encryption. Full encryption
uses a lot of resources and time, while partial encryption is computa
tionally efficient and suitable for real-time applications like teleconfer
encing and camera surveillance. In recent years, chaotic maps have
gained attention in various fields, including mathematics, physics,
computer science, and engineering due to their sensitivity, blanketing
nature, and topological transitivity [6–8]. propose a DNA key-based
visual image encryption scheme using quantum chaotic map. Initial
conditions are computed from a DNA sequence, plaintext image, and
SHA-512 hash function. Three random vectors are generated, with two
used for correlation breaking and the third used in XORed operation.
The scheme is designed to resist cryptographic attacks by transforming
the ciphertext into a visually encrypted image. The diffused image is
divided into Least Significant Bit (LSBs) and Most Significant Bits
(MSBs), and more DWT is applied to the carrier image. Experimental
analyses confirmed the scheme’s ability to withstand attacks and that it
is noise-resistant.

To ensure data security, it is imperative to protect the data using a
recognized security standard such as AES. Furthermore, large-scale
systems also demand high bandwidth and low latency capabilities to
process data in real-time. Consequently, the design of hardware
encryption modules and their integration into System-on-Chips (SoCs)
as accelerators has gained significant traction. Researchers have
explored various approaches to enhance the throughput of AES
encryption and decryption processes while designing AES hardware
accelerators [9–13].

Since the AES computation is performed separately for every 128 bits
of data, one natural approach to accelerate the process is to replicate the
AES core into multiple instances and perform the encoding parallelly
[14]. While this approach can indeed enhance the throughput, it does
come with several drawbacks:

• First, if the incoming data fully utilizes all the parallel cores, we can
benefit from the increased throughput. However, if incoming data is
sparse, such as only utilizing 30% of the cores, there are some
operating cores without any load (i.e., ‘no-load’ cores), resulting in
unnecessary power consumption without performing any
computations.

• Secondly, the power of ‘no-load’ cores can be significantly saved by
implementing clock-gating or power-gating techniques. However,
the process of turning ‘no-load’ cores on and off leads to many
challenges as it requires a certain number of clock cycles for readi
ness. Consequently, the system should adapt over a period of T cy
cles. However, the incoming data rate can vary, and the system must
decide on an optimal number of cores being activated or deactivated.
If too many cores are activated, unused cores will consume unnec
essary power. Conversely, if too few cores are activated, the system
will struggle to process all incoming data, resulting in bottlenecks in
the data flow. Hence, the system must employ a dedicated controller
to decide the number of cores to be turned on/off, and the efficiency
of this controller is crucial for the overall performance of the system.

• Thirdly, conventional control algorithms such as Fuzzy Logic or PID
can assist the system in adapting to specific scenarios. However,
these algorithms face two challenges: (1) they demand significant
resources, making it difficult to design dedicated hardware; and (2)
extending these algorithms to accommodate new scenarios is not
straightforward. Although Artificial Neural Network (ANN)-based
solutions offer flexibility, the hardware complexity associated with
ANN implementations can still present many issues. Alternatively,
Spiking Neural Network (SNN) utilizing the Leaky-Integrate-and-Fire
neuron model, a brain-inspired computing paradigm, can serve as a
viable option for the controller. SNNs offer a lower area cost while
delivering comparable performance. Due to their simplified
computation, hardware implementation of SNNs can be integrated
into our system with minimal area overhead. Moreover, as a neural

network approach, SNNs can be trained and adapted to various
scenarios.

• Fourthly, SNNs have demonstrated their efficacy in various domains,
including robotics, control systems, and computer vision. However,
to the best of our knowledge, no previous work has explored the
adaptation of multiple AES cores using SNNs. The primary challenges
in this context lie in data preparation, SNN training, and the imple
mentation of SNNs into dedicated hardware modules.

In this work, we address the aforementioned challenges by intro
ducing Spike-MCryptCores, a brain-inspired low-power multi-core AES
platform. The Spike-MCryptCores platform utilizes multiple AES cores to
enhance the total performance. To minimize power consumption, Spike-
MCryptCores uses a clock-gating scheme for each individual core. To
control the clock gating process effectively, Spike-MCryptCores employs
a controller based on spiking neural networks (SNNs) inspired by the
human brain. SNNs have garnered significant attention recently due to
their relative simplicity and low-power hardware characteristics
[15–18]. From a range of available neuron models, we have chosen the
Leaky-Integrate-and-Fire model due to its ability to strike a balance
between simplicity and bio-plausibility. The main contributions of this
work are as follows:

• We introduce an open-source platform that enables dataset prepa
ration, training, and testing of SNN (Spiking Neural Network) for
clock-gating control in a multiple AES cores system1. Additionally,
we propose a method for quantizing and generating hardware SNN
configurations that allows the system to have a dedicated controller
to adapt to different scenarios. The SNN achieves over 95 % accuracy
using a lightweight controller that occupies only 2.3 % of the total
system area cost.

• We develop a hardware architecture of the proposed a low-power
multi-core AES platform that incorporates two significant in
novations: (1) a tailored, cost-effective hardware architecture for
SNN that supports both input current and spike input modes for
system control, and (2) the integration of the SNN hardware into the
multi-core AES platform to establish a low-power multi-core AES
platform thanks to SNN-based clock-gating scheme. Consequently,
by implementing this architecture, power consumption can be
reduced by 39 % to 67 %, while the system incurs less than a 10 %
increase in area overhead.

To the best of our knowledge, this is the first-ever work on adapting a
brain-inspired computing model to reduce power consumption in a
multi-core system.

The remaining part of this paper is organized as follows. Section 2
reviews related works on single-core and multi-core AES architectures.
Section 3 presents our proposed parallelized multi-core architecture and
how it operates. In Section 4, we provide in detail the implementation of
the proposed architecture on a CMOS 45 nm technology and an evalu
ation of the SNN controller. Section 5 discusses some limitations of the
work. Finally, Section 6 offers concluding remarks.

2. Related works

2.1. Advanced encryption standard implementations

The Advanced Encryption Standard (AES) algorithm was standard
ized by NIST in 2001. Since then, there have been many implementa
tions of the AES in both software and hardware. Software AES
implementations can be easily performed using a CPU. However, they
are generally considered to be less secure, slower, and more power-

1 Source code is available here: https://github.com/khanhdang/Spike-MC
ryptCores

P.-K. Dong et al.

https://github.com/khanhdang/Spike-MCryptCores
https://github.com/khanhdang/Spike-MCryptCores

Microprocessors and Microsystems 106 (2024) 105040

3

consuming [12,13]. To address the aforementioned issues,
hardware-based AES implementations offer viable solutions. For
resource-constrained devices, the AES is often implemented with basic
iterative, 8-bit, 16-bit, 32-bit, and 64-bit datapath width architectures
with one or two S-Boxes to optimize area overhead and minimize power
consumption [13,14,19,20]. The disadvantage of these architectures is
low throughput because of the use of loops. For applications that require
high bandwidth, AES hardware architectures are typically designed
using full-parallel modes [9–11], unroll architectures [21], or pipeline
architectures [22]. These architectures provide high performance but at
a high area cost and high energy consumption.

One of the common approaches to enhance the performance of the
AES implementation is to utilize multi-core AES [14,21,22]. Pammu
et al. [14] take advantage of a Multi-core Processor (AMP-MP) to ach
ieve high throughput while maintaining the security of an Advanced
Encryption Standard based on Counter with Chaining Mode (AES-CCM).
The proposed AMP-MP is implemented on a CMOS 65 nm processor with
an 8-bit asynchronous 9-core architecture. The authors of [23] provide a
novel parallelization technique for the Advanced Encryption Standard
based on the Galois/Counter Mode (AES-GCM). The method permits the
creation of scalable streaming cores capable of processing multiple
individually keyed packets each clock cycle on broad segmented buses.
Multi-FPGA systems are possible due to the architecture’s lack of
core-to-core communication requirements. Work in [24] describes an
efficient design technique for implementing AES on reconfigurable
hardware devices. The authors demonstrated how to overcome the
FPGA’s 100 Gbps speed limit by utilizing four AES cores and four binary
field multipliers. Four pipeline steps have been placed within the
multiplication in order to shorten the critical path of the GHASH oper
ation. The final GCM design is 44-layer and delivers 119 Gbps on Xilinx
Virtex-5 chips.

2.2. Low-power techniques

Many design techniques have been developed to reduce power
consumption, such as clock gating, power gating, multi-threshold
voltage CMOS cells, multi-VDD technique, dynamic voltage and fre
quency scaling (DVFS), etc. [25]. Clock gating is extremely beneficial for
lowering the power and energy consumption of digital devices. The
authors of [26] constructed and tested an energy recovery timed pipe
lined multiplier equipped with an inbuilt resonant clock generator that
generates a sinusoidal clock. The results indicate a 70 % decrease in
clock-tree power consumption and an overall power savings of 25–69 %
when compared to a multiplier employing a standard square-wave
clocking system and matching flip-flops (FF). Shmuel Wimer and col
leagues [27] describe a unique technique dubbed Look-Ahead Clock
Gating (LACG). This approach generates the clock enabling signals for
each FF one cycle ahead of time using the current cycle data for the FFs.
Not only it is likely to eliminate the bulk of redundant clock pulses, but it
also avoids the AGFF and data-driven timing limitations. Because the
LACGs are represented at the RTL level, the gating clock implementation
is much simplified. Additionally, the authors recommend employing a
single LACG for two FFs to save hardware overhead and power con
sumption. LACG was evaluated using a 22 nm technology process. The
testing findings indicate that this strategy saves 22.6 % of the clock
power and 12.5 % of the system’s total power usage.

Although there are numerous techniques for lowering power con
sumption, this work adopts clock-gating as the technique. Since the
Spike-MCryptCores utilize multiple AES cores, turning off the clock
signal of the unused core will help reduce the power consumption.
Obviously, other techniques can be integrated into our platform as later
discussed in Section 5.

2.3. Brain-inspired controlling methods

Brain-inspired computing approaches [28] have shown enormous

promise and success in in diverse of applications, such as image classi
fication, natural language processing, and self-driving systems. Many
existing works use a variety of these approaches to control system re
sources such as performance, energy consumption, and temperature.

Power consumption is one of the most challenging issues in the
design of multi-core systems. In [29], the authors used reinforcement
learning to control DVFS and the operation states. Experiments
demonstrate that the system improves energy efficiency. The authors of
[30] offered a new application scheduling and DVFS solution named
CARTAD that is based on reinforcement learning and is designed to
decrease system temperature while ensuring application latency. Jung
and Pedram [31] provided a power management framework for multi
processor systems based on supervised learning that assesses the sys
tem’s performance based on input characteristics and calculates the best
voltage–frequency setting using a precomputed policy table. In [32], the
authors presented a strategy based on online learning that utilizes
different experts’ processor clock frequency levels, which are then
picked at runtime based on power consumption and performance
penalty.

Moreover, Spiking Neural Networks (SNNs), which are considered
the third and most advanced neural network architecture, are directly
inspired by the operation of biological brains. SNNs can be implanted in
both hardware and software. However, thanks to the low complexity of
the Leaky-Integrate-and-Fire neuron model and synapses, SNN hard
ware has been a promising solution for power-efficient computing. Both
academics and industry have been investing in how to implement SNNs
in hardware architectures [33–39]. Unlike other techniques that require
high resources, SNNs are lightweight and can be integrated into the
controller like Spike-MCryptCores. SNNs have been applied to multiple
control applications such as robotics or decision making. In [40], the
authors use TrueNorth neuromorphic chip by IBM to perform a
closed-loop control. Path planning algorithm is also implemented in
[41] using spiking neural networks. Fischl et al. [42] have demonstrated
a self-driving robot using SNN.

Although SNNs (or neuromorphic computing) have shown their
potential in several applications [36,40,41]. Applying SNNs for practical
applications is still challenging. In [32], the authors went through deep
analyses to compare conventional neural networks with SNNs.

Despite applying SNNs for controlling and computer vision tasks
have been investigated, there is no work on how we can apply SNNs to
control on-chip systems. In this work, we will try to answer the question
of how we can train and implement lightweight SNNs to handle a con
trolling task within SoCs.

3. Spike-MCryptCores platform

In this section, we present the overview architecture of the proposed
low-power multi-core AES platform with a brain-inspired controller
(Spike-MCryptCores platform). Then, we will describe each module of
this platform in detail.

3.1. Platform overview

The overview diagram of the proposed low-power multi-core AES
platform (Spike-MCryptCores platform) is presented in Fig. 1.

In principle, the Spike-MCryptCores hardware architecture consists
of N homogeneous AES cores operating in parallel. Due to the incon
sistency of incoming data rates, there are chances that the incoming data
will not fully utilize all N cores. Because there are cores not being used,
Spike-MCryptCores will gate the clock to reduce the dynamic power
consumption. However, the process of turning on/off each core has
some delay and may mess up the order of the data. Therefore, we need to
provide a proper controller to efficiently manage the multi-core system.
In the Spike-MCryptCores platform, we use Spiking Neural Network
(SNN), a brain-inspired computing model, as the backbone of the
controller.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

4

3.1.1. Brain-inspired controlling
As the incoming data can be varied at different rates at different

times, we should apply a controlling mechanism to allow the system to
enable/disable core during operation. Brain-inspired methods have been
applied in robotic fields such as computer vision or decision making
[28]. Inspired by the efficiency and the ability to adapt to multiple
scenarios, the Spike-MCryptCores platform utilizes spiking neural net
works, a brain-inspired computing paradigm, as the backbone. SNN
computation is based on binary input (spikes/action potentials) and has
shown the ability to control complex tasks with energy efficiency.

Fig. 2 illustrates the computing model of SNNs. The structure of a
biological neuron is depicted in Fig. 2(a) where a neuron is connected to
others via an axon-synapse-dendrite connection. Once a neuron issues
an action potential (or spike), the spike is transmitted through the axon
and goes to downstream neurons through different synapses. The
incoming spike is received at a synapse and will be delivered to the core
of a neuron (soma) via dendrite. The strength of a connection between

neurons is usually considered as a weight in a conventional neural
network. Fig. 2(b) shows the spike graphs for an SNN neuron, incoming
spikes, usually considered as a binary value (current in biological
neuron) goes through a synapse with a synaptic weight that alters the
spike with different strengths. The weighted input will be integrated into
the neuron’s membrane potential. Once the membrane potential of a
neuron crosses the threshold, the neuron issues a spike and sends it to
the downstream neurons.

There are two basic ways of training an SNN model. The first method
is to train with an ANN model and then convert it to an SNN [43]. This
method provides the flexibility to allow designers to adapt to different
scenarios. The second method is to train SNN with bio-inspired learning
mechanisms [44,45] (STDP, SDSP) or ANN-like learning mechanisms (i.
e., backpropagation) [46]. Both methods have demonstrated that SNNs
can learn complex tasks. Furthermore, as a brain-inspired computing
paradigm, using SNN can offer the possibility to adopt bio-plausible
features.

3.1.2. Software and hardware parts
As illustrated in Fig. 1, the proposed platform comprises two major

components: software and hardware. Fig. 1(a) describes the process
performed on the software, including the following stages: (1) generate
training data based on different scenarios of input data and save it to
comma-separated values (.csv) files; (2) train the SNN model using the
data scenarios generated in Stage 1, evaluate the model, and generate
hyperparameters, weights, and biases for the Spike-MCryptCores hard
ware. The main role of the Software is to generate several common
scenarios of data and use them to train the SNN. With the trained SNN
model, the system can predict the behavior of the data rate and give a
suitable adaptation. In other words, the SNN model will predict the
number of AES cores needed to be turned on to encode the incoming
data. If too many cores are activated, there are unused cores and it will
waste power. On the other hand, if too few cores are activated, it will
create a bottleneck as the Spike-MCryptCores throughput is smaller than
the incoming data rate. Therefore, deciding the number of cores to be
activated can be crucial.

Fig. 1(b) illustrates the hardware block diagram of the Spike-
MCryptCores platform, including (1) Hardware SNN: controls the pro
cess of splitting and concatenating data (MUX, DEMUX) and on/off AES
cores; (2) DEMUX: Demultiplexer for input data; (3) MUX: Multiplexer
for output data; (4) I-FIFOs and O-FIFOs are Input Data Buffers and
Output Data Buffers, respectively; (5) AESCs: consists of N AES cores
(AESCs) operating in parallel. Note that the number of AES cores (N) can
be configured at the design phase. With the hardware configurations
generated by the Software, the hardware architecture of SNN can
perform the same prediction task, which allows it to generate a suitable
number of cores to be activated. Since the whole SNN inference can be
done on hardware in parallel, the system does not need any dedicated
CPU to perform the prediction. Moreover, thanks to the low complexity
and low power features of SNN, the whole controller can be power
efficient and will not create considerable overhead in terms of power
and area cost.

3.2. Software design for platform

As described in Section 3.1, Fig. 1(a) is a process diagram of software
implementation, consisting of two main stages. The purpose of the
software is to generate possible scenarios from the input data. These
scenarios are used to train the SNN model and then generate the SNN
hardware configuration.

3.2.1. Stage 1: generate data to train
As we mentioned above, there are several approaches to training an

SNN. In this work, we will train an ANN using supervised learning and
convert the ANN to SNN [43]. By using the conversion method, we must
prepare the data consisting of inputs and labels for training/testing.

Fig. 1. Spike-MCryptCores platform (a) Software and (b) Hardware.

Fig. 2. Spiking neural network computing model: a) Biological neuron; (b)
Spiking neuron.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

5

In this section, we discuss in detail how to use the Python pro
gramming language to create data scenarios for SNN training. Usually,
data can be collected from realistic datasets. However, as it is difficult to
manage the quality of data (which could be redundant and randomized),
we decided to generate a synthetic dataset for training and testing.
Although we use this synthetic data set, designers can collect realistic
data rates and use them for training/testing.

Data scenarios transform according to functions such as exponential,
sine, tan, step, sawtooth functions, and so on (The details of the pre
defined data scenarios are presented in TABLE A in the Supplemental
Document). Please note that designers can add or remove functions to
adapt the system to different scenarios. Actual data can also be recorded
and used to train the SNN as well. In this work, we also added a random
case (see Fig. 4(m)) as an example of user define cases.

First, we prepare the data in the form of given functions. The data
rate (Data(t)) is counted during the sampling time T (T is the number of
system clocks per each sampling). T can be changed to suit the design of
the system (e.g., T = 100, 128, 256, 512, or 1024). Based on the value of
Data(t), the software will calculate inputs and labels.

Algorithm 1 presents the data generation algorithm for the SNN
training process. The inputs of the algorithm are:

• num_of_core: number of AES cores;
• samp_of_data: number of data samples generated for each scenario;
• clock_in_sample: number of system clocks in each sample (T).
• gen_function: the function used to generate data.

The outputs of the algorithm are: Data(t), Data(t-1), Data(t-2), Data
(t-3), Delta(t-1), Delta(t-2), Delta(t-3), Residual(t-1), Enable_cores(t) and
gen_data. While gen_data the binary array indicates the incoming data for
Spike-MCryptCores, the other outputs are described in Table 1. Note that
the first eight values are the inputs and the last one (Enable_cores(t)) is
the label for training and testing of the SNN.

To understand how the data is generated, we would like to illustrate
the case of the exponential function in Fig. 3. The horizontal axis is time.
For convenience of calculation, we choose the sampling period T = 100
clock cycles. There are two graphs in the chart. The black graph repre
sents 100 input data samples. The traffic rate is the number of data
blocks contained in T = 100 clock cycles (one data block is 128 bits).
Traffic rate is changed each interval of 100 clock cycles. In this case, the
traffic rate is an exponential function. The red graph shows the number
of cores that need to be turned on to avoid data loss. In lines 1-3, the
Algorithm 1 loops from 0 to samp_of_data-1 and generate a series of Data
(t) (y(t) is a copy of Data(t)). The value of Data(t) is based on the gen_
function. For example, if t=80 the value Data(t) is 63 which means in T
cycles, the Spike-MCryptCores has 63 incoming data blocks.

From lines 4 to 9 in Algorithm 1, the algorithm generates randomly
the data for each T cycles. The gen data[t][i] will be generated randomly
between 0 and 1 (0: no incoming data block, 1: has incoming data

block). The second loop will break once it reaches Data(t) incoming data
blocks in T cycles (as y[t] down to zero).

Finally, the algorithm calculates the remained values using the
equations in Table 1 (line 9) and returns the calculated values (line 10).
The value of enable cores for exponential function can be seen in Fig. 3.

As can be seen in Table 1, Stage 1 basically gives the history of data
rates as inputs, and the correct number of cores should be activated as
the label. The key idea is to let SNN predict the proper number of cores
by knowing the history of the data rate. As the data rates usually go
serially by proper patterns (or functions), the SNN can predict the
number of cores. If the data rates are randomized, there is less chance
that SNN can predict. In this work, we only consider the four previous
sampling periods as the history of SNN training. Obviously, we can even
extend or reduce the range. Based on our experimental results reported
in Section 4.3, having eight inputs for training and testing can obtain
more than 95% accuracy with the SNN model of 8-5-11.

Fig. 4 illustrates the data scenarios. Each scenario consists of
sample of data = 100, and clock in sample = 100. The Data (t) takes
values from 0 to 100; enable core(t) takes values from 0 to
number of core (number of core = 10 is the number of AESCs in the
Spike-MCryptCores platform).

In the data set, we have two types of functions. The first type is just
the standalone functions as in Fig. 4(a-l). The second type is the com
bination of the functions and randomization. Fig. 4(m) first shows a
random function. Then, we combine the random function with the
function in Fig. 4(a-l). As the data rates might vary and we try to mimic
those behaviors.

3.2.2. Stage 2: SNN network models and learning algorithm
With the data rate scenarios generated as in Stage 1, we can use the

inputs and labels to train our SNN network. A normal SNN network is
defined by the neuron models, the learning rules for the synapse, and the
overall topology for the connection between layers of neurons [47]. In
this work, we use a feedforward, fully-connected topology of neurons
with one hidden layer and one readout layer to determine the required
number of AES cores for operations, as shown in Fig. 5. The hidden layer
has M neurons, while the readout layer has 11 neurons to represent the
11 possible cases for the number of activating cores (0 to 10). The
number of hidden layers can be increased to have a more complex
model.

However, as we aim to maintain a low-cost SNN controller and a
single hidden layer can provide good accuracy, the SNN model will only
use a single hidden layer. Spike-MCryptCores also supports creating
different numbers of neurons in a hidden layer and changing the number
of hidden layers.

Fig. 6 depicts a basic Leaky Integrate-and-Fire (LIF) neuron, con
sisting of its synapses, soma, and axon. The synapses serve as the link
between two neurons. When a neuron receives input spikes from neu
rons in the preceding layer, the input spikes are scaled according to the
weighted synapse strength, and the weighted inputs are incorporated
into the membrane potential at the soma of the neuron. Once the
membrane potential exceeds a predefined threshold, the neuron will fire
and create an output spike, which is then communicated to the neuron in
the next layer through the axon.

We select the conductance-based Leaky-Integrate-and-Fire (LIF)
neuron’s models since it has low complexity while still maintaining
effective computation capabilities. For the hidden layer, the neurons
have analog current input. The neurons in both layers used a reset-by-
subtraction method. The dynamics of the LIF neurons are captured in
Eq. (1).

Algorithm 1
Generate data for training

1 Input: num_of_core, samp_of_data, clock_in_sample, gen_function
Output: Data(t), Data(t-1), Data(t-2), Data(t-3), Delta(t-1), Delta(t-2), Delta(t-
3),
Residual(t-1), Enable_cores(t), gen_data
for t in 0 to samp_of_data-1:

2
3

y[t] = min(gen_function(i), clock_in_sample);
Data(t) =y[t];

4 for t in 0 to samp_of_data-1:
5 for i in 0 to clock_in_sample-1:
6
7
8

gen_data[t][i] = randomize(0,1);
y[t] = y[t] - gen_data[t][i];
if y[t] == 0: break;

9 calculate: Data(t-1), Data(t-2), Data(t-3), Delta(t-1), Delta(t-2), Delta(t-3),
Residual(t-1), Enable_cores(t) from equation in TABLE 1.

10 return

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

6

Vl
i [t]pre =

∑

j
wl

i,j × Ij[t] × Ol− 1
j [t] + Vl

i [t − 1]post + bl
i

Ol
j[t] =

⎧
⎨

⎩

1 f Vl
i [t] ≥ Vthreshold

0 otherwise

Vl
i [t]post =

⎧
⎨

⎩

Vl
i [t]pre if Ol

j[t] = 1

Vl
i [t]pre − Vthreshold if Ol

j[t] = 0

(1)

Where Vl
i [t]preand Vl

i [t]postdenote the pre and post-fire membrane po
tential of neuron-i at layer l at timestep t, while wl

i,j denotes the synaptic
weight between the pre-synaptic neuron-j and the post-synaptic neuron-
i, and bl

i is the bias term for neuron-i at each layer l. Each neuron will
integrate the product of wl

i,j and the input current Ij[t] from all neurons in
the previous layer. The bias term is added after the integration process is
completed. A neuron will emit a spike Ol

j[t] if the pre-fire membrane
potential crosses a certain threshold Vthreshold. After firing, the neuron will
reset to the post-fire potential by subtracting Vthreshold. The output spike is
sent to the downstream layer.

This work adopts the ANN-to-SNN conversion technique depicted in
[42] to train the network. The trained network then will go through a
Post-Training-Quantization (PTQ) process before being deployed with
the hardware model. The main reason why we would like to perform
quantization is that reducing to a fixed-point format could lead to less
hardware complexity.

An overview of the conversion technique and the PTQ process is
shown in Algorithm 2. The conversion from ANN-to-SNN starts with the
training of a fully-connected ANN with backpropagation. A weight

normalization process is then carried out with part of the training data to
ensure the ratio between the weights and the threshold is kept in bal
ance. For a detailed discussion on the weight normalization process, we
refer to the original paper in [48].

The trained SNN networks need to be quantized to fixed point format
Qi.f before the hardware evaluation step. The Qi.f fixed point format
used 1 sign bit, i bits for the integer part, and f bits for the fractional part.
It is able to represent numbers in the range of [− 2i; 2i − 2f] with a pre
cision of є = 2− f . We round the floating-point number x to its fixed-point
counterpart by the rounding to the nearest method, as depicted in
Equation (2):

Round(x) =

⎧
⎨

⎩

⌊x⌋ if ⌊x⌋ ≤ x < ⌊x⌋ +
є
2

⌊x⌋ + є if ⌊x⌋ +
є
2

≤ x < ⌊x⌋ + є
(2)

On this platform, we not only design the SNN model in software, but
also design the hardware architecture of this SNN to be integrated into
the controller of the Spike-MCryptCores. Details on the hardware ar
chitecture of SNN are shown in Section 3.3.

3.3. Hardware architecture of the platform

In Section 3.2, we have illustrated how we create synthetic data and
train the SNN model. The hardware architecture for the SNN is also
proposed. In this section, we will describe the hardware architecture of
Spike-MCryptCores.

Fig. 7 presents the detailed hardware architecture of the Spike-
MCryptCores platform, which includes the following modules:

• DEMUX: A demultiplexer with 1 input, N outputs, and DSEL control
signal. DEMUX is used to distribute the input data among each
module.

• I-FIFO: Input data buffers for AESCs. There are N I-FIFOs in the
hardware of the Spike-MCryptCores platform.

• AESC: There are N AESCs in the hardware of the Spike-MCryptCores
platform.

• Expand Key: The module generates subkeys for AESCs.
• O-FIFO: Output data buffers for AESCs. There are N O-FIFOs in the

hardware of the Spike-MCryptCores platform.
• MUX: A multiplexer with N inputs, 1 output, and MSEL control sig

nals. The MUX module is used to merge all the data from all the AES
cores into a single stream. The MSEL selection signal relies on DSEL
which allows it to keep the order of data.

Table 1
Calculation training data.

Fig. 3. An example of data scenarios: exponential function.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

7

• SNN Controller: This module will perform the prediction of the
number of cores to be turned on/off (by gating the clock of each AES
core). The module also generates control signals for DEMUX, I-FIFO,
AESC, O-FIFO, and MUX.

We would like to note that the Spike-MCryptCores platform operates
in two frequency domains. Sys_Clk is the clock signal of the system,
while Core_Clk is the clock signal of the AESCs. By having two clock
domains, the AES core can operate at a lower frequency while having N
cores can still provide high throughput to the system. Here, we fixed
Sys Clk = N × Core Clk to balance the throughput at the maximum rate
cases. I-FIFOs and O-FIFOs operate on both Sys_Clk and Core_Clk fre
quency domains.

Data_in has a data width of 128 bits. An example of input data has a
waveform as shown in Fig. 8. Here, there are times when there are a lot

Fig. 4. Data scenarios used during SNN training.

Fig. 5. Our SNN network with the feedforward topology.

Fig. 6. Leaky integrate-and-fire (LIF) neuron model.

Algorithm 2
SNN network models and learning algorithm

Input: Data training (.csv file)
Input: Labels (.csv file)
Output: Hyperparameters, weights, bias
Begin

1 S1: Train the ANN model.
2 S2: Weight Normalization
3 S3: Convert to SNN Network
4 S4: Quantize the SNN Parameters
5 S5: Quantized SNN Network (Qi.f)
6 S6: Testing for SNN Accuracy
7 S7: Calculate Hyperparameters, weights, and bias

End

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

8

of inputs, there are times when there is no input. For example, at the
clocks 1, 2, 5, 7 to 9, 12 to 16, 17, there is input data. At the clocks 0, 3,
4, 6, 10, 11, 16, 19, there is no data to the system. Therefore, the input
data rate can be different in scenarios for the same function.

I-FIFOs and O-FIFOs, which operate on two frequency domains
(Asynchronous FIFO), are data buffers that handle the conversion be
tween two clock domains (Core Clk and Sys Clk). Because AESCs operate
in parallel, their operating frequency is slower than that of the system (in
this work, we defined Core Clk = Sys Clk/N). I-FIFOs convert input
data from DEMUX (high speed) to AESCs (low speed). In contrast, O-
FIFOs convert data from AESCs (low speed) to MUX sets (high speed). By
having a depth of four data blocks, I-FIFOs and O-FIFOs help avoid data
loss due to delays during control with the SNN Controller.

3.3.1. SNN controler
In the previous sections, we presented the architecture for Spike-

MCryptCores with N AES cores. As the Spike-MCryptCores hardware
allows to turn on and turn off the clock signals to each of its AES cores,
the system needs to control the enable signal of each core. Here, we
designed the SNN controller with the ability to predict the suitable
number of cores and provide enable signals to each AES core. SNN’s
hyperparameters, weights, and biases are trained in the software model.

Algorithm 3 presents our proposed algorithm for the SNN Controller.
The algorithm consists of six phases: S1: counting data; S2: storing

values; S3: calculating parameters; S4: calculating the number of AESCs
to be turned on; S5: controlling MUXs, DEMUX FIFOs; and S6: con
trolling the AESCs. The block diagram for the controller is shown in
Fig. 9.

• S1 - Counting input data: Input data valid signal (Data_in_valid) is put
into Counter to count the number of data occurrences in time of T
cycles (T = 100, 128, 256, 512, 1024 Sys_Clock). The number of data
occurrences in period T is Data(t).

• S2 - Storing values: Data(t-1), Data(t-2), Data(t-3), Data(t-4) values
are saved to calculate the parameters in S3.

• S3 - Calculating the change of data at time t-1, t-2, and t-3 by the
corresponding equations in Table 1.

• S4 - Providing Inputs for hardware SNN. Based on the input values,
SNN calculates #Core - which is the number of AESCs that need to be
turned on at time T. At the end of phase S4, the SNN outputs the
number of cores being turned on.

• S5þS6 - SNN Controller uses the #Core value and the ‘Empty’, ‘Full’
signals of the I-FIFOs and O-FIFOs to output the DSEL signals that

Fig. 7. Hardware architecture of Spike-MCryptCores platform.

Fig. 8. Example of waveform graph of input data.

Algorithm 3
SNN controller

Input: data_in, Empty, Full
Output: #core
Output: DSEL, MSEL
Output: EN(0), EN(1),…, EN(N-1)
Begin

1 S1: Count for Data(t) each T cycles.
2 S2: Store Data(t), Data(t-1), Data(t-2), Data(t-3), Data(t-4).
3 S3: Calculate Delta(t-1), Delta(t-2),

Delta(t-3), Residual(t-1).
4 S4: Predict the number of cores being turned on by SNN hardware.
5 S5: Generate DSEL, MSEL signals
6 S6: Generate EN(0), EN(1),…, EN(N-1).

End Fig. 9. SNN controller diagram.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

9

control the DEMUXs and the MSELs that control the MUXs. The
controller also computes and outputs the WriteEn_in and ReadEn_in
signals to control the reading and writing of I-FIFOs and O-FIFOs. On
the other hand, the En(0) to En(N-1) signals are also generated by the
SNN Controller based on the number of cores to control the on/off
clock of the AESC(0) to AESC(N-1) cores.

Fig. 9 illustrates the architecture of the SNN controller. The data rate
is counted by a counter each T cycles. Then, the data rate is stored in the
register of Data(t-1), Data(t-2), Data(t-3), Data(t-4). The delta value is
calculated by subtracting a pair of data rate values. The eight inputs are
fed into SNN to predict the number of cores. As the input vector must be
normalized, here we counted for T = power of two cycles (i.e., 128, 256,
512) which allows the normalization converts to shift bit function. In the
other words, we can eliminate the normalization function.

The detailed architecture of the SNN is shown in Section 3.3.2. After
having the number of cores being turned on, the sub-controller will
generate the Enable signal and the DSEL/MSEL signal as in S5 and S6.

3.3.2. Hardware architecture for the SNN’s block
In Section 3.2, we have illustrated the data generations and how we

choose and train the SNN model. Obviously, the SNN can be performed
by a dedicated CPU within the system; however, it will introduce a
significant amount of area overhead. In our proposed Spike-
MCryptCores, we use a hardware SNN architecture to compute. We
also already quantized the SNN model to be ready for the hardware SNN.

Fig. 10 shows the hardware architecture for a single Processing
Element (PE) and the block diagram for the SNN network. The dynamics
of the LIF neurons are handled by the PE. Each PE consists of a simple
Multiply-and-Accumulate (MAC) which will integrate the inputs to the
neuron in each time step. The weights and the input current are kept at
8-b precision. It depends on the mode of operations, the PE could inte
grate the products of the input current and the weights (in the case of
analog input), or with only the weights (in the case of binary spiking
input). A comparator is used to give an output spike.

In conventional SNN architectures [37–39], the
Leaky-Integrate-and-Fire neuron is usually processed with binary inputs
(spikes). However, in this work, we decided to use the input current in
8-bit format and MAC to compute. The main reason is to reduce the
complexity of the design. If the design follows the spike-based approach,
the inputs (data and delta values) must be converted to spikes. While in
software this could be done easily, in hardware it requires a pseudo
random module (i.e., a linear feedback-shift register and a comparator)
for each input, which significantly requires more area cost. In this work,
we used currents as the input to reduce the pseudorandom module for
the first layer. For the following layers, we use spikes for computation.

This type of hybrid design can have a lower area cost and lower latency.
Neurons in the same layer are handled by the same PEs complex. The

number of PEs complexes and the number of neurons in each complex
are fixed by the network architecture. Each complex has a dedicated
SRAM buffer to store the trained SNN’s parameters such as weights and
bias. After each timestep, the output spikes are encoded into the
Address-Event-Representation (AER) format, which is a popular
encoding format for spikes in modern neuromorphic formats. With AER,
the address of each neuron is encoded to send to the next layer. In the
next layer, the incoming AER signals are used to load the correct weights
for integration. The layers communicate with each other through a
simple handshake protocol to ensure operations can be handled in a
pipelined, sequential fashion.

The details of DEMUX, MUX, I-FIFO, O-FIFO, AESC, and ExpandKey
are shown in the Supplemental document.

4. Results

In this section, we present the evaluation results of the Spike-
MCryptCores platform. We first describe the evaluation methodology.
Then, we present the hardware results in CMOS 45nm technology. In the
following part, we evaluate the training results with the SNN model. The
power consumption of the Spike-MCryptCores hardware is also
compared with that of the MCryptCores to highlight the benefits of the
SNN Controller. The hardware architecture of MCryptCores basically
consists of N AES cores without a clock gating feature and an SNN
controller.

4.1. Evaluation methodology

To generate data for SNN training, we use Algorithm 1 to generate
different data scenarios using the Python programming language. Input
data Data(t) are generated according to the scenarios of functions. The
algorithm then computes the Inputs and Labels as shown in Table 1.
Finally, the Inputs and Labels are saved to files for the training process.

For training and converting, we first train a fully-connected ANN
with backpropagation using the SpikingJelly framework [49]. A weight
normalization process is then carried out with part of the training data to
ensure the ratio between the weights and the threshold is kept in bal
ance. The trained network then goes through a
Post-Training-Quantization (PTQ) process before being deployed with
the hardware model. Weights and biases are downloaded to SNN
hardware later at the beginning of its operation.

For the hardware, we evaluate the hardware implementation results
of the Spike-MCryptCores architecture, such as area cost, power con
sumption, and layout. To highlight the effectiveness of the SNN
Controller, we evaluated 24 data samples as shown in Fig. 4.

In this work, we decide to have N = 10 core AES within the Spike-
MCryptCores. We pick it as a case study and obviously the system can
adapt to different numbers of cores.

4.2. Hardware evaluation results

The hardware architecture of Spike-MCryptCores is designed in
VHDL, simulated, and verified on ModelSim. We synthesize and analyze
power consumption and layout with Synopsys Design Compile, Prime

Fig. 10. Hardware architecture for the SNN system.

Table 2
Hardware complexity of the spike-MCryptCores.

Module Absolute Total (mm2) Percent (%)

Spike-MCryptCores 0.992 100
10 AES cores 0.898 90.5
DEMUX + I-FIFO 0.036 3.6
MUX + O-FIFO 0.036 3.6
SNN CONTROLLER 0.021 2.3

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

10

Time, and Cadence Innovus using the CMOS NANGATE 45 nm library.
Table 2 presents the hardware complexity of the modules in the

Spike-MCryptCores Platform. With an N = 10 AESCs configuration, the
area cost of the Spike-MCryptCores platform is 0.992 mm2. In which the
area cost for AESCs is 0.898 mm2, accounting for 90.5 %. Hardware costs
for DEMUX and MUX modules account for 7.2 %. While the SNN
controller has only 2.3 % of the total. It can be seen that with a very
small area cost, the SNN controller can predict the number of cores and
can turn on/off the clocks of the AESCs in accordance with the incoming
data rate.

Table 3 shows a summary of the power consumption of the Spike-
MCryptCores architecture using clock gating and the MCryptCores ar
chitecture not using clock gating. Both architectures operate at a clock
frequency of 50 MHz. In the absence of encrypted input, the SNN
Controller in the Spike-McryptCores architecture turns off the clock to
all AESCs. For the MCryptCores architecture, the clocks of the AESCs are
not disconnected. In this case, the power consumption of Spike-
MCryptCores is 24.5 mW and that of MCryptCores is 104.7 mW. Thus,
the power consumption of MCryptCores is 4 times higher than that of
Spike-MCryptCores. In case of the maximum incoming bandwidth, all
cores are enabled, the power consumption of Spike-MCryptCores is
173.7 mW and that of MCryptCores is 253.1 mW. In this case,
MCryptCore’s power consumption is still 1.4 times higher than Spike-
MCryptCores. This power reduction is thanks to the intensive clock
gating in the Spike-MCryptCores. In summary, the Spike-MCryptCores
architecture using clock gating technology can save from 31.4 to 76.6
% power consumption compared to the MCryptCores architecture
without clock gating technique.

Fig. 11 is the Layout and Floorplan of Spike-MCryptCores with di
mensions of 1200× . 1425 μm2 consisting of the following main mod
ules: AESCs (10 AESCs) that occupy the majority of the chip area (90.5
%), DEMUX and MUX that take up 7.2 %, and the rest is the SSN
Controller, accounting for only a small part (2.3 %) of the chip.

4.3. Evaluation of training results

The data prepared for the training process consists of 2500 data
samples and labels. This data is divided into 2 parts. Part 1: randomly
selecting 400 samples to test the accuracy of the training model. Part 2:
including the remaining 2100 samples used for training.

First, the data samples are trained with a fully connected (floating
point) ANN model. In this process, we went through an empirical pro
cess to choose the best ANN model to use. The training results with the
ANN model are converted to SNN (floating-point). To reduce the
complexity when transferring the model to hardware, perform Quanti
zation for quantization (8 bits). Finally, the SNN model (8 bits) is con
verted to hardware SNN.

Training results with different configurations such as 8-3-11, 8-5-11,
8-10-11, and 8-15-11 are presented in Table 4. It can be seen that the
accuracy of the SNN (quantized) is directly proportional to the number
of neurons in the hidden layer. With the SNN configuration with 3
hidden layers (8-3-11), the accuracy of the SNN is the lowest (89.29 %).
With the SNN configuration with 15 neurons at the hidden layer (8-15-
11), the accuracy is up to 97.27 %. However, when increasing the
number of neurons in the hidden layer, the hardware complexity of the
SNN also increases. Therefore, in this work, we chose the neural network
configuration as 8-5-11 to balance the accuracy and the complexity in
hardware implementation.

As the training accuracy is not 100 %, we consider the difference

Table 3
Implementation results of spike-MCryptCores and MCryptCores on 45nm CMOS technology.

Active
cores

Spike-MCryptCores with Clock gating MCryptCores without Clock gating Saving Power
(%)

CLK
(MHz)

Total Power
(mW)

Throughput
(Gbps)

Energy Efficiency
(Gbps/W)

Total Power
(mW)

Throughput
(Gbps)

Energy Efficiency
(Gbps/W)

No core 50 24.5 0 0 104.7 0 0 76.6
One core 50 39.9 6.4 160.3 119.5 6.4 53.6 66.6
Two cores 50 54.1 12.8 236.6 134.3 12.8 95.3 59.7
Three

cores
50 69.0 19.2 278.2 149.2 19.2 128.7 53.7

Four cores 50 83.9 25.6 305.1 164.1 25.6 156.0 48.9
Five cores 50 98.7 32.0 324.1 178.9 32.0 165.2 44.8
Six cores 50 113.6 38.4 338.2 193.7 38.4 184.1 41.4
Seven

cores
50 128.5 44.8 348.6 208.6 44.8 200.2 38.4

Eight
cores

50 143.5 51.2 356.8 223.7 51.2 228.8 35.9

Nine cores 50 158.3 57.6 363.9 238.6 57.6 241.4 33.7
Ten cores 50 173.7 64.0 368.4 253.1 64.0 252.8 31.4

Fig. 11. Spike-MCryptCores layout & floorplan

Table 4
Training results.

Network 8-3-11 8-5-11 8-10-11 8-15-11

ANN 95.82% 98.326% 95.81% 100%
SNN controller (32-bit) 89.29% 97.72% 95.67% 97.72%
SNN controller (8-bit) 89.29% 95.44% 96.58% 97.27%
Min Diff. (Prediction vs Label) -1 -1 -1 -1
Max Diff. (Prediction vs Label) +1 +1 +1 +1

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

11

between label and prediction of the SNN Controller (min & max diff) as
the key factor. According Table 4, the accuracy of the SNN controller (8-
bit) with configuration 8-5-11 is 95.44 %, thus the error rate of this
model is 4.56 %. However, in case the prediction is wrong, the difference
between the label and the prediction is only 1 unit. That is, if the model
predicts incorrectly, the deviation is also very small (the SNN controller
predicts less than one core or more than one core in comparison to the
label). The Spike-AES hardware has I-FIFO and O-FIFO modules at the
inputs and outputs of the AESCs, so data can be stabilized, and we can
expect small bottlenecks. Models 8-10-11 or models 8-15-11 can be
selected to improve accuracy to 96.58 % or 97.27 %; however, as the
hardware complexity also increases, we decide to use 8-5-11 as it gives
the best trade-off between accuracy and area cost.

Fig. 12 is a graph showing the results of training with the 8-5-11
neural network model. The model has 8 inputs, M = 5 hidden layers,
and 11 outputs. With the ANN model, the accuracy reaches 98.326 %,
with the SNN model the accuracy increases with timestep T and reaches
saturation with an accuracy of up to 100 % at T = 16. Please note that
since the spikes generated during the training of the SNN are randomly
generated using Poisson process, the accuracy may vary during the
inference time and the variation can be different by using different seeds
for random. We note that the peak at 100 % can be a random noise as it
drops lower after 17 timesteps. In general, we only consider the final
results as the controller only considers them.

Fig. 13 illustrates the test result with random values (1-100 in 2500).
We generated 2500 random data samples and tested them with the
trained model 8-5-11. The prediction accuracy of the SNN controller is
only 560/2500 (22.4 %). This result is predictable as the SNN cannot
deal with this type of change. It can be seen that the prediction graph of
the SNN controller is different from the ideal graph. Out of 2500 data
samples, 560 (22.4 %) samples are predicted as the same as the ideal
value, 1179 samples end up with one core difference, and 761 samples
have 2+ cores difference.

4.4. Evaluation of SNN controller performance

Since the Spike-MCryptCores utilize multiple AES cores with the
ability to turn off the clock signal of the unused core using an SNN
controller, it can significantly reduce the power consumption. On the
other hand, MCryptCores does not have a control mechanism to turn off
the clock signal of the unused core, it still consumes dynamic power
from the clock signals. To compare the power consumption of Spike-
MCryptCores vs MCryptCores (multi-AES cores with clock-gating and
SNN controller), we tested both platforms with the same input dataset of
24 scenarios. The results are shown in Fig. 15. Note that, besides the
overall power consumption, we also evaluate the residual value of the
Spike-MCryptCores. The residual will reflect how well the SNN
controller adapts to the scenarios. If the residual is negative, it means
there is an unused core. If the residual is positive, it means there are

residual data blocks not being processed after T cycles.
In the scenario where the input data is a sine function (Fig. 15(a)),

the power dissipation of the Spike-MCryptCores and MCryptCores are
also sine functions and correspond to the input data. However, the
average power consumption of Spike-MCryptCores (99.24 mW) is lower
than the average power consumption of MCryptCores (176.26 mW).
Thus, with the same sine data scenario, Spike-MCryptCores saves 45 %
power compared to MCryptCores. Same with other scenarios in Fig. 15.
Power consumption of Spike-MCryptCores is 39 % to 67 % lower than
MCryptCores.

In Fig. 15 (a) and (l), Spike-MCryptCores residual is -5 in most
samples, indicating that switching AESCs is not optimal, AESCs have not
used up their throughput. In Fig. 15(j) and (k), the Spike-MCryptCores
residual is zero in most samples, indicating that switching AESCs is
optimal, AESCs using their throughput to the maximum. In all scenarios
in Fig. 15, the data residual varies from -5 to +5. Although there is an
unused core or residual data block, the value is relatively small
(maximum 5 unused cycle cores or 5 residual data blocks in total N*T =
1000 cycle cores).

In Fig. 14, we present the average power of Spike-MCryptCores and
MCryptCores for all scenarios. Accordingly, the most evaluated data
scenario (best case) is the tan function. In this scenario, the power
consumption of the Spike-MCryptCores is 39.78 mW, while the power
consumption of the MCryptCores is 119.84 mW. Thus, with the same
data scenario as the tan function, the power consumption of Spike-
MCryptCores is only 33 % of that of MCryptCores. The worst-case data
scenario is the square_rand function. In this scenario, the power con
sumption of the Spike-MCryptCores is 126.86 mW, while the power
consumption of the MCryptCores is 206.95 mW. Thus, in this scenario,
the power consumption of Spike-MCryptCores is equal to 61 % of
MCryptCores.

The average power consumption of Spike-MCryptCores in 24 data
scenarios is 84.85 mW, while with MCryptCores is 164.93 mW. Thus, the
average Power Consumption of Spike-MCryptCores in 24 data scenarios
is equal to 51.4 % of MCryptCores. Spike-MCryptCores achieves
controllability as expected. The control accuracy is up to 95.44 %. In
4.56 % of the error samples, the difference is ±1 number of cores. In the
above scenarios, the scenario with a low data rate (e.g., a tan function
scenario) is highly energy efficient. In the best case (tan scenario), the
power consumption of Spike-MCryptCores is only 33 % of that of
MCryptCores. The average of 24 Spike-MCryptCores scenarios saves up
to 51.4 % energy compared to MCryptCores.

Table 5 shows the comparison between our method and other low-
power solution for System-on-Chip. Here, our method achieves a
maximum of 67.0 % while other DVFS can only achieve up to 51 %.
Work in [49] also uses clock gating and obtains a comparable result. In

Fig. 12. ANN and SNN Accuracy using 8-5-11 configuration.

Fig. 13. SNN control test result with random values (1 to 100 in 2500).

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

12

summary, our platform shows an approach to reducing power con
sumption with comparable efficiency. Please also note that in compar
ison to other methods, SNN allows more flexibility with the ability to
retrain to adapt to new scenarios.

5. Discussion

In the previous sections, we have shown the Spike-MCryptCores
platform with the ability to train and adapt to different data rates to
optimize the power consumption of the system. Although the results
show Spike-MCryptCores can decrease from 39% to 67% of the power
consumption, there are some limitations of the system we would like to
point out.

First, the system relies on offline training and still cannot perform
adaption during its operation (i.e., realize the underperformed cases and
adapt the SNN). This is due to the lack of an online training algorithm for
multiple layer perceptron for SNN. If designers would like to have online
training, there are two solutions: (1) use a dedicated CPU to collect data
and train the SNN, and (2) use a bio-plausible Spike-Timing Dependent
Plasticity (STDP) online learning. Although training is computation and
memory intensive, with a small model like ours, it is totally possible to
train. Our open-source training program on Google Collab takes around
20 s to train our model with 100 epochs. Therefore, it is possible to train
the system once it finds out that the SNN cannot deal with the data rates.
The second approach is of course to adopt a bio-plausible learning al
gorithm such as STDP [37]. However, STDP learning is a local learning
approach and usually works with a single layer. In order to adapt to
different scenarios, a single layer of a plural number of neurons with
lateral inhibitory can be used. Once a pattern is recognized by one of the
neurons due to its compatible weight, it issues inhibitory spikes to other
neurons which further allows it to continue to fire [41]. By indicating
the most firing neuron, the system can indicate the possible control
method. This could be one of the future works for our group to provide
the ability to adjust the system online.

Second, the Spike-MCryptCores platform is still not optimal in terms

of residual status. This could be easily explained by the fact that the
control is not perfect, and the system needs to rely on input and output
buffers to stabilize the connection as the data input varies randomly.
However, as we tested with 24 cases, there was no data loss, and the
Spike-MCryptCores still reduced the power consumption significantly.
One of the potential solutions for this is to provide handshaking between
the Spike-MCryptCores and the module that sends the data. This could
help eliminate the Input and Output FIFO. However, it may lead to long
latencies and create a chain of postponement in computation/commu
nication. Data dependencies could be problematic as the output of Spike-
MCryptCores is needed for the other tasks.

Third, we can easily realize that despite the Spike-MCryptCores
platform being designed for multiple AES cores, the method can be
applied for other computing applications as long as the cores are iden
tical and exchangeable. However, there are two main reasons why AES
computation can be treated differently. The first reason is that the
encoding process for AES is separated for each 128-bit. For other ap
plications, the tasks could be dependent on each other and could lead to
idle cores under load. Adapting this to other applications must be
investigated carefully. The second reason is the high complexity of AES.
As shown in the hardware complexity results, the 10 core AES takes
nearly 1 mm2, which allows us to have flexibility in designing SNN (2.3
% of the whole area cost). Because of these two reasons, we believe the
AES applications can be engineered to fit with the bio-inspired
controller. This work could be a pilot for other works on how we use
SNN for controlling on-chip applications.

Forth, although the clock-gating may reduce up to 67 % of the power
consumption, we are aware of the other low power techniques such as
power gating or dynamic voltage-frequency scaling (DVFS). The power
gating can be used as it cuts off the power of the module, and we can use
the SNN control for this approach. DVFS can provide more choices for us
to adapt to the system. Both of the approaches are considered future
works, and we believe the SNN can adapt to them.

Fifth, the prepared data set in this work is synthetic and we are aware
of the possibility of having realistic cases that are not in our scenarios.
However, the SNN can be easily extended with new data in the data set,
and we already provide random cases for the training. Since the software
platform is open source, designers can adapt the method to other data
rates and scenarios.

Sixth, while implementing the multi-core system like Spike-
MCryptCores, we use MUX and DEMUX to distribute the data and
collect the encoded data from each core. However, this approach can be
limited due to the fan-out of the DEMUX. Alternatively, there are several
communication paradigms to help communicate between cores, like
buses or Network-on-Chips (NoCs). Work in [14] utilizes an asynchro
nous Network-on-Chip to deliver its data flow. Apparently, adopting
NoCs can enhance the scalability of our system. Our research group has
been working on NoCs [55] and this is one of our future research
projects.

Seventh, in this work, we use a feedforward, fully-connected topol
ogy without exploiting the sparsity in the connections. For more
complicated models, exploiting the sparsity to reduce the complexity of
the SNN can be important; however, since our model is lightweight and
only take 2.3 % of the area cost, exploiting the sparsity connection will
be future work.

Eighth, synchronous communication is used between the layers of
the SNN of this work. However, using asynchronicity in communication
can also be utilized [35,36]. Regardless of the design choice, this work
proves the idea of using SNN can be applied, and using synchronous or
asynchronous communication will not affect the overall accuracy.

Although Spike-MCryptCores has the above limitations, the evalua
tion still shows that it is extremely efficient in power consumption.

6. Conclusion

In this paper, we have proposed Spike-MCryptCores platform – a low

Fig. 14. Compare the average power consumption of Spike-MCryptCores and
MCryptCores.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

13

power multi-core AES platform with a neuromorphic controller. Spike-
MCryptCores consists of a software part that allows designing,
training, and testing SNNs for controller and a hardware part that con
sists of multiple AES cores controlled by the SNN hardware counterpart.
The software architecture for SNN has successfully trained with more
than 95 % accuracy with only a single hidden layer of 5 neurons and
only one core difference from the label in the error cases. The proposed
platform only has 7.6 % area overhead for multiplexer, demultiplexer,
and asynchronous FIFO. Furthermore, the SNN controller only occupies
2.3 % of the area of the system, which is insignificant. With the SNN
controller, the system can reduce power consumption by 67 to 39 % in
comparison to the parallel AES core. In summary, the Spike-
MCryptCores has introduced a novel method to design and control
multiple-core systems with extremely small overhead and high
accuracy.

In future works, we would like to adapt the Spike-MCryptCores to
different types of multi-core applications. Furthermore, extending
Spike-MCryptCores with other low power techniques such as power
gating or dynamic voltage-frequency scaling can be useful.

NoCs can enhance scalability in multi-core systems like Spike-
MCryptCores by utilizing asynchronous Network-on-Chips for data
flow. This approach, unlike MUX and DEMUX, can be limited by fan-out
issues, making NoCs a promising future research project.

The system relies on offline training and cannot adapt due to the lack
of an online training algorithm for multiple layer perceptron for SNN.
Two solutions are using a dedicated CPU for data collection and training
the SNN or using bio-plausible Spike-Timing Dependent Plasticity
(STDP) online learning. STDP is a local learning approach with a single
layer but can be used to adapt to different scenarios. By indicating the
most firing neuron, the system can indicate possible control methods,
potentially allowing for online adjustment. This could be one of the
future works for our group to provide the ability to adjust the system
online.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

Fig. 15. Spike-MCryptCores vs MCryptCores power consumption comparison with different data scenarios.

P.-K. Dong et al.

Microprocessors and Microsystems 106 (2024) 105040

14

the work reported in this paper.

Data availability

No data was used for the research described in the article.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.micpro.2024.105040.

References

[1] N. I. of S. and Technology, Advanced Encryption Standard (AES), U.S. Department
of Commerce, Federal Information Processing Standard (FIPS) 197, 2001, https://
doi.org/10.6028/NIST.FIPS.197.

[2] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, D.S. Nikolopoulos, Challenges
and opportunities in edge computing, in: 2016 IEEE International Conference on
Smart Cloud (SmartCloud), 2016, pp. 20–26, https://doi.org/10.1109/
SmartCloud.2016.18.

[3] A. Botta, W. Donato, V. Persico, A. Pescapè, Integration of cloud computing and
internet of things: a survey, Future Gener. Comput. Syst. 56 (2015), https://doi.
org/10.1016/j.future.2015.09.021.

[4] J. Lichtman, H. Pfister, N. Shavit, The big data challenges of connectomics, Nat.
Neurosci. 17 (2014) 1448–1454, https://doi.org/10.1038/nn.3837.

[5] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, W. Lv, Edge computing security: state of the
art and challenges, in: Proc. IEEE, 2019, pp. 1–24, https://doi.org/10.1109/
JPROC.2019.2918437.

[6] J.S. Khan, J. Ahmad, S. Ahmed, H. Siddiqa, S. Abbasi, S. Kayhan, DNA key based
visual chaotic image encryption, J. Intell. Fuzzy Syst. (2019) 1–13, https://doi.org/
10.3233/JIFS-182778.

[7] Intelligent Computing S.F. Abbasi, J. Ahmad, J.S. Khan, M.A. Khan, S.A. Sheikh,
Visual meaningful encryption scheme using intertwinning logistic map, in: K. Arai,
S. Kapoor, R. Bhatia (Eds.), Advances in Intelligent Systems and Computing,
Springer International Publishing, Cham, 2019, pp. 764–773, https://doi.org/
10.1007/978-3-030-01177-2_56.

[8] J.S. Khan, J. Ahmad, S.F. Abbasi, Arshad, S.K. Kayhan, DNA sequence based
medical image encryption scheme. 2018 10th Computer Science and Electronic
Engineering (CEEC), 2018, pp. 24–29, https://doi.org/10.1109/
CEEC.2018.8674221.

[9] A. Soltani, S. Sharifian, An ultra-high throughput and fully pipelined
implementation of AES algorithm on FPGA, Microprocess. Microsyst. 39 (7) (2015)
480–493, https://doi.org/10.1016/j.micpro.2015.07.005.

[10] K. Rahimunnisa, P. Karthigaikumar, N. Christy, S. Kumar, J. Jayakumar, PSP:
Parallel sub-pipelined architecture for high throughput AES on FPGA and ASIC,
Open Comput. Sci. 3 (4) (2013) 173–186, https://doi.org/10.2478/s13537-013-
0112-2.

[11] P. Liu, J. Hsiao, H. Chang, C. Lee, A 2.97 Gb/s DPA-resistant AES engine with self-
generated random sequence, in: 2011 Proceedings of the ESSCIRC (ESSCIRC),
2011, pp. 71–74, https://doi.org/10.1109/ESSCIRC.2011.6044917.

[12] K. Gaj, P. Chodowiec, FPGA and ASIC implementations of AES. Cryptographic
engineering, Springer, 2009, pp. 235–294.

[13] D.-H. Bui, D. Puschini, S. Bacles-Min, E. Beigne, X.-T. Tran, AES datapath
optimization strategies for low-power low-energy multisecurity-level internet-of-
things applications, IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 (12) (2017)
3281–3290, https://doi.org/10.1109/TVLSI.2017.2716386.

[14] A.A. Pammu, W. Ho, N.K.Z. Lwin, K. Chong, B. Gwee, A high throughput and
secure authentication-encryption aes-ccm algorithm on asynchronous multicore
processor, IEEE Trans. Inf. Forensics Secur. 14 (4) (2019) 1023–1036, https://doi.
org/10.1109/TIFS.2018.2869344.

[15] S. Davidson, S.B. Furber, Comparison of artificial and spiking neural networks on
digital hardware, Front. Neurosci. 15 (2021). Accessed: 2022. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2021.651141.

[16] S. Furber, Large-scale neuromorphic computing systems, J. Neural Eng. 13 (Aug.
2016), https://doi.org/10.1088/1741-2560/13/5/051001.

[17] C. Lee, S.S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based
backpropagation for training deep neural network architectures, Front. Neurosci.
14 (2020). Accessed: 2022. [Online]. Available: https://www.frontiersin.org/arti
cles/10.3389/fnins.2020.00119.

[18] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L.P. Shi, Direct training for spiking neural
networks: faster, larger, better, Proc. AAAI Conf. Artif. Intell. 33 (2019)
1311–1318, https://doi.org/10.1609/aaai.v33i01.33011311.

[19] W. Zhao, Y. Ha, M. Alioto, AES architectures for minimum-energy operation and
silicon demonstration in 65nm with lowest energy per encryption, in: 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), 2015, pp. 2349–2352,
https://doi.org/10.1109/ISCAS.2015.7169155.

[20] V.- Hoang, V.- Dao, C.- Pham, Design of ultra-low power AES encryption cores with
silicon demonstration in SOTB CMOS process, Electron. Lett. 53 (23) (2017)
1512–1514, https://doi.org/10.1049/el.2017.2151.

[21] P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,”
Jan. 2016, pp. 131–147. 10.1007/978-3-319-29078-2_8.

[22] S.K. Mathew, et al., 53 Gbps Native GF(24)
2 composite-field AES-encrypt/decrypt

accelerator for content-protection in 45 nm high-performance microprocessors,
IEEE J. Solid-State Circuits 46 (4) (2011) 767–776, https://doi.org/10.1109/
JSSC.2011.2108131.

[23] B. Buhrow, K. Fritz, B. Gilbert, E. Daniel, A highly parallel AES-GCM core for
authenticated encryption of 400 Gb/s network protocols, in: 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), 2015, pp. 1–7,
https://doi.org/10.1109/ReConFig.2015.7393321.

[24] L. Henzen, W. Fichtner, FPGA parallel-pipelined AES-GCM core for 100G Ethernet
applications, in: 2010 Proceedings of ESSCIRC, 2010, pp. 202–205, https://doi.
org/10.1109/ESSCIRC.2010.5619894.

[25] EDN, “Reducing IC power consumption: Low-power design techniques,” EDN.
Accessed: Feb. 16, 2022. [Online]. Available: https://www.edn.com/reducing-ic-
power-consumption-low-power-design-techniques/.

[26] H. Mahmoodi, V. Tirumalashetty, M. Cooke, K. Roy, Ultra low-power clocking
scheme using energy recovery and clock gating, IEEE Trans. Very Large Scale
Integr. VLSI Syst. 17 (1) (2009) 33–44, https://doi.org/10.1109/
TVLSI.2008.2008453.

[27] S. Wimer, A. Albahari, A look-ahead clock gating based on auto-gated flip-flops,
IEEE Trans. Circuits Syst. Regul. Pap. 61 (5) (2014) 1465–1472, https://doi.org/
10.1109/TCSI.2013.2289404.

[28] H. Qiao, J. Chen, X. Huang, A survey of brain-inspired intelligent robots:
integration of vision, decision, motion control, and musculoskeletal systems, IEEE
Trans. Cybern. (2021) 1–14, https://doi.org/10.1109/TCYB.2021.3071312.

[29] F.M.M. ul Islam, M. Lin, Hybrid DVFS scheduling for real-time systems based on
reinforcement learning, IEEE Syst. J. 11 (2) (2017) 931–940, https://doi.org/
10.1109/JSYST.2015.2446205.

[30] D. Liu, S.-G. Yang, Z. He, M. Zhao, W. Liu, CARTAD:compiler-assisted
reinforcement learning for thermal-aware task scheduling and DVFS on multicores,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2021) 1, https://doi.org/
10.1109/TCAD.2021.3095028. –1.

[31] H. Jung, M. Pedram, Supervised learning based power management for multicore
processors, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29 (9) (2010)
1395–1408, https://doi.org/10.1109/TCAD.2010.2059270.

[32] L. Deng, et al., Rethinking the performance comparison between SNNS and ANNS,
Neural Netw 121 (2020) 294–307, https://doi.org/10.1016/j.neunet.2019.09.005.
Tháng Một.

[33] C. Frenkel, M. Lefebvre, J.-D. Legat, D. Bol, A 0.086-mm2 12.7-pJ/SOP 64k-
Synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-
nm CMOS, IEEE Trans. Biomed. Circuits Syst. 13 (1) (2019) 145–158, https://doi.
org/10.1109/TBCAS.2018.2880425.

Table 5
Compare energy efficiency between algorithm models.

Work Technique Algorithm Platform Energy
reduction
(%)

Ababei et al.
[50]

Dynamic
voltage and
frequency
scaling
(DVFS)

Distributed
(DVFS)
algorithm

CMOS-65nm
(TSMC)

-
Maximum
50.0 %

Zakaria
et al.
[51]

Dynamic
voltage and
frequency
scaling
(DVFS)

Programmable
self-timed ring
(PSTR)

CMOS-45nm
(ST
Microelectronics)

-
Maximum
51.42 %

Chouchene
et al.
[52]

Clock
Gating

Open Compute
Project (OCP)

FPGA - Xilinx
Virtex5

-
Maximum
63.0 %
- Minimum
37.0 %

Pande et al.
[53]

Dynamic
voltage and
frequency
scaling
(DVFS)

Producer -
Consumer FIFO

CMOS-90nm
(TSMC)

-
Maximum
32.2 %

Phan et al.
[54]

Dynamic
voltage and
frequency
scaling
(DVFS)

Fuzzy logic
algorithm

CMOS-65nm
(TSMC)

-
Maximum
43.0 %

Our work Clock
Gating

Spiking Neural
Network (SNN)
controller

CMOS-45nm -
Maximum
67.0 %
- Minimum
39.0 %
- Average
48.6 %

P.-K. Dong et al.

https://doi.org/10.1016/j.micpro.2024.105040
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1038/nn.3837
https://doi.org/10.1109/JPROC.2019.2918437
https://doi.org/10.1109/JPROC.2019.2918437
https://doi.org/10.3233/JIFS-182778
https://doi.org/10.3233/JIFS-182778
https://doi.org/10.1007/978-3-030-01177-2_56
https://doi.org/10.1007/978-3-030-01177-2_56
https://doi.org/10.1109/CEEC.2018.8674221
https://doi.org/10.1109/CEEC.2018.8674221
https://doi.org/10.1016/j.micpro.2015.07.005
https://doi.org/10.2478/s13537-013-0112-2
https://doi.org/10.2478/s13537-013-0112-2
https://doi.org/10.1109/ESSCIRC.2011.6044917
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0012
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0012
https://doi.org/10.1109/TVLSI.2017.2716386
https://doi.org/10.1109/TIFS.2018.2869344
https://doi.org/10.1109/TIFS.2018.2869344
https://www.frontiersin.org/article/10.3389/fnins.2021.651141
https://doi.org/10.1088/1741-2560/13/5/051001
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1109/ISCAS.2015.7169155
https://doi.org/10.1049/el.2017.2151
http://doi.org/10.1007/978-3-319-29078-2_8
https://doi.org/10.1109/JSSC.2011.2108131
https://doi.org/10.1109/JSSC.2011.2108131
https://doi.org/10.1109/ReConFig.2015.7393321
https://doi.org/10.1109/ESSCIRC.2010.5619894
https://doi.org/10.1109/ESSCIRC.2010.5619894
https://www.edn.com/reducing-ic-power-consumption-low-power-design-techniques/
https://www.edn.com/reducing-ic-power-consumption-low-power-design-techniques/
https://doi.org/10.1109/TVLSI.2008.2008453
https://doi.org/10.1109/TVLSI.2008.2008453
https://doi.org/10.1109/TCSI.2013.2289404
https://doi.org/10.1109/TCSI.2013.2289404
https://doi.org/10.1109/TCYB.2021.3071312
https://doi.org/10.1109/JSYST.2015.2446205
https://doi.org/10.1109/JSYST.2015.2446205
https://doi.org/10.1109/TCAD.2021.3095028
https://doi.org/10.1109/TCAD.2021.3095028
https://doi.org/10.1109/TCAD.2010.2059270
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2018.2880425

Microprocessors and Microsystems 106 (2024) 105040

15

[34] C. Frenkel, J.-D. Legat, D. Bol, MorphIC: A 65-nm 738k-Synapse/mm2 quad-
core binary-weight digital neuromorphic processor with stochastic spike-driven
online learning, IEEE Trans. Biomed. Circuits Syst. 13 (5) (2019) 999–1010,
https://doi.org/10.1109/TBCAS.2019.2928793.

[35] D. Khodagholy, et al., NeuroGrid: recording action potentials from the surface of
the brain, Nat. Neurosci. 18 (2) (2015) 2, https://doi.org/10.1038/nn.3905. Art.
no.

[36] S. Schmitt, et al., Neuromorphic hardware in the loop: Training a deep spiking
network on the BrainScaleS wafer-scale system, in: 2017 International Joint
Conference on Neural Networks (IJCNN), 2017, pp. 2227–2234, https://doi.org/
10.1109/IJCNN.2017.7966125.

[37] A. Ben Abdallah, K.N. Dang, Toward robust cognitive 3D brain-inspired cross-
paradigm system, Front. Neurosci. 15 (2021). Accessed: Feb. 16, 2022. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2021.690208.

[38] F. Akopyan, et al., TrueNorth: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip, Comput.-Aided Des. Integr. Circuits Syst. IEEE
Trans. On 34 (2015) 1537–1557, https://doi.org/10.1109/TCAD.2015.2474396.

[39] M. Davies, et al., Advancing neuromorphic computing with Loihi: a survey of
results and outlook, in: Proc. IEEE 109, 2021, pp. 911–934, https://doi.org/
10.1109/JPROC.2021.3067593.

[40] T. Hwu, J. Isbell, N. Oros, J. Krichmar, A self-driving robot using deep
convolutional neural networks on neuromorphic hardware, in: 2017 International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 635–641, https://doi.
org/10.1109/IJCNN.2017.7965912.

[41] T. Hwu, A.Y. Wang, N. Oros, J.L. Krichmar, Adaptive robot path planning using a
spiking neuron algorithm with axonal delays, IEEE Trans. Cogn. Dev. Syst. 10 (2)
(2018) 126–137, https://doi.org/10.1109/TCDS.2017.2655539.

[42] K.D. Fischl, et al., Neuromorphic self-driving robot with retinomorphic vision and
spike-based processing/closed-loop control, in: 2017 51st Annual Conference on
Information Sciences and Systems (CISS), 2017, pp. 1–6, https://doi.org/10.1109/
CISS.2017.7926179.

[43] P.U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, M. Pfeiffer, Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing, in: 2015
International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8,
https://doi.org/10.1109/IJCNN.2015.7280696.

[44] P. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity, Front. Comput. Neurosci. 9 (2015). Accessed: Feb. 17, 2022.
[Online]. Available: https://www.frontiersin.org/article/10.3389/fncom.2
015.00099.

[45] N. Kasabov, Evolving spiking neural networks and neurogenetic systems for spatio-
and spectro-temporal data modelling and pattern recognition, in: J. Liu, C. Alippi,
B. Bouchon-Meunier, G.W. Greenwood, H.A. Abbass (Eds.), Advances in
Computational Intelligence: IEEE World Congress on Computational Intelligence,
WCCI 2012, Brisbane, Australia, June 10-15, 2012. Plenary/Invited Lectures,
Springer, Berlin, Heidelberg, 2012, pp. 234–260, https://doi.org/10.1007/978-3-
642-30687-7_12. Lecture Notes in Computer Science.

[46] J.H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using
backpropagation, Front. Neurosci. 10 (2016). Accessed: Feb. 17, 2022. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2016.00508.

[47] M. Pfeiffer, T. Pfeil, Deep learning with spiking neurons: opportunities and
challenges, Front. Neurosci. 12 (2018) 1–13.

[48] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, S.-C. Liu, Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification,
Front. Neurosci. 11 (2017) 1–12.

[49] Fang, Wei and Chen, Yanqi and Ding, Jianhao and Chen, Ding and Yu, Zhaofei and
Zhou, Huihui and Tian, Yonghong and other contributors, “SpikingJelly.” Feb. 15,
2022. Accessed: Feb. 16, 2022. [Online]. Available: https://github.com/fangwei
123456/spikingjelly.

[50] C. Ababei, N. Mastronarde, Benefits and costs of prediction based DVFS for NoCs at
router level, in: 2014 27th IEEE International System-on-Chip Conference (SOCC),
2014, pp. 255–260, https://doi.org/10.1109/SOCC.2014.6948937.

[51] H. Zakaria, L. Fesquet, Process variability robust energy-efficient control for nano-
scaled complex SoCs. 10th Edition of Faible Tension Faible Consommation
(FTFC’11), IEEE Computer Society, Marrakech, Morocco, 2011, pp. 95–98, https://
doi.org/10.1109/FTFC.2011.5948928.

[52] W. Chouchene, A. Brahim, A. Zitouni, N. Abid, R. Tourki, A low power network
interface for network on chip, in: Int. Multi-Conf. Syst. Signals Devices SSD11 -
Summ. Proc., 2011, https://doi.org/10.1109/SSD.2011.5767464.

[53] P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Performance evaluation and
design trade-offs for network-on-chip interconnect architectures, Comput. IEEE
Trans. On 54 (2005) 1025–1040, https://doi.org/10.1109/TC.2005.134.

[54] H.-P. Phan, X.-T. Tran, T. Yoneda, Power consumption estimation using VNOC2.0
simulator for a fuzzy-logic based low power Network-on-Chip, in: 2017 IEEE
International Conference on IC Design and Technology (ICICDT), 2017, pp. 1–4,
https://doi.org/10.1109/ICICDT.2017.7993515.

[55] K.N. Dang, M. Meyer, Y. Okuyama, A.B. Abdallah, A low-overhead soft–hard fault-
tolerant architecture, design and management scheme for reliable high-
performance many-core 3D-NoC systems, J. Supercomput. 73 (6) (2017)
2705–2729, https://doi.org/10.1007/s11227-016-1951-0.

PHAM-KHOI DONG received a Ph.D. degree at VNU Univer
sity of Engineering and Technology. He received his Bachelor
degree in Electronics and Telecommunications from Le Quy
Don Technical University and Master degree in Electronics and
Telecommunications from VNU University of Engineering and
Technology. His research interest includes system-on-chip
design, hardware accelerator for cryptography.

KHANH N. DANG is currently an associate professor of The
University of Aizu, Japan. He received his B.Sc., M.Sc., and Ph.
D. degree from Vietnam National University Hanoi (VNU),
University of Paris-XI, and The University of Aizu, Japan, in
2011, 2014, and 2017, respectively. He has served as a TPC co-
chair of several IEEE conferences such as MCSoC 2019/2021
and APCCAS 2020. His research interests include System-on
Chips/Network-on-Chips, 3D-ICs, neuromorphic computing,
and fault-tolerant system. Dr. Dang has published more than 30
peer-reviewed publications and 4 Japanese patent applica
tions. His also co-authors an incoming book titled “Neuro
morphic Computing Principles and Organization” on Springer
published in 2022.

DUY-ANH NGUYEN is currently a researcher at the Informa
tion Technology Institute, Vietnam National University, Hanoi.
He was a Ph.D. student at VNU University of Engineering and
Technology and Joint Technology Innovation and Research
Centre between Vietnam National University Hanoi (VNU) and
the University of Technology Sydney. He received his Bachelor
degree from Nanyang Technological University, Singapore and
Master degree from Southwest Jiao Tong University, China. His
research interest includes system-on-chip design, hardware
accelerator for artificial intelligent.

XUAN-TU TRAN received a Ph.D. degree in 2008 from Gre
noble INP (at the CEA-LETI), France, in Micro Nano Elec
tronics. He is currently a full professor at Vietnam National
University, Hanoi (VNU), and the Director of VNU Information
Technology Institute. He was an invited professor at the Uni
versity Paris-Sud 11, France (2009, 2010, and 2015), Univer
sity of Electro-Communication, Tokyo (2019), Grenoble INP
(2011), and adjunct professor at University of Technology
Sydney (2017–2023). He was Director for the VNU Key Labo
ratory for Smart Integrated Systems (SISLAB) from 2016 to
2021. His research interests include design and test of systems-
on-chips, networks-on- chips, design-for-testability, asynchro
nous/synchronous VLSI design, low power techniques, and

hardware architectures for multimedia applications. He has published 3 books, 4 patents
and more than 120 peer-reviewed publications in these areas. He is a Senior Member of the
IEEE, IEEE Circuits and Systems (CAS), IEEE Solid-State Circuits and Systems (SSCS),
member of IEICE, and the Executive Board of the Radio Electronics Association of Vietnam
(REV).

P.-K. Dong et al.

https://doi.org/10.1109/TBCAS.2019.2928793
https://doi.org/10.1038/nn.3905
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1109/IJCNN.2017.7966125
https://www.frontiersin.org/article/10.3389/fnins.2021.690208
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1109/TCDS.2017.2655539
https://doi.org/10.1109/CISS.2017.7926179
https://doi.org/10.1109/CISS.2017.7926179
https://doi.org/10.1109/IJCNN.2015.7280696
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://doi.org/10.1007/978-3-642-30687-7_12
https://doi.org/10.1007/978-3-642-30687-7_12
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0047
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0047
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0048
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0048
http://refhub.elsevier.com/S0141-9331(24)00035-8/sbref0048
https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.1109/SOCC.2014.6948937
https://doi.org/10.1109/FTFC.2011.5948928
https://doi.org/10.1109/FTFC.2011.5948928
https://doi.org/10.1109/SSD.2011.5767464
https://doi.org/10.1109/TC.2005.134
https://doi.org/10.1109/ICICDT.2017.7993515
https://doi.org/10.1007/s11227-016-1951-0

	A light-weight neuromorphic controlling clock gating based multi-core cryptography platform
	1 Introduction
	2 Related works
	2.1 Advanced encryption standard implementations
	2.2 Low-power techniques
	2.3 Brain-inspired controlling methods

	3 Spike-MCryptCores platform
	3.1 Platform overview
	3.1.1 Brain-inspired controlling
	3.1.2 Software and hardware parts

	3.2 Software design for platform
	3.2.1 Stage 1: generate data to train
	3.2.2 Stage 2: SNN network models and learning algorithm

	3.3 Hardware architecture of the platform
	3.3.1 SNN controler
	3.3.2 Hardware architecture for the SNN’s block

	4 Results
	4.1 Evaluation methodology
	4.2 Hardware evaluation results
	4.3 Evaluation of training results
	4.4 Evaluation of SNN controller performance

	5 Discussion
	6 Conclusion
	Declaration of competing interest
	Data availability
	Supplementary materials
	References

