
Microprocessors and Microsystems 90 (2022) 104458

A
0

A
a
D
a

b

c

d

A

K
D
N
T
H

1

s
3
u
c
p
o

r
d
e
c
D
p
[
s

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

low-power, high-accuracy with fully on-chip ternary weight hardware
rchitecture for Deep Spiking Neural Networks
uy-Anh Nguyen a,b, Xuan-Tu Tran a,∗, Khanh N. Dang c, Francesca Iacopi d

VNU Information Technology Institute - Vietnam National University, Hanoi (VNU), Ha Noi 123106, Viet Nam
JTIRC, VNU-UET, Viet Nam
VNU Key Laboratory for Smart Integrated Systems (SISLAB), VNU-UET, Vietnam National University, Hanoi (VNU), Ha Noi 123106, Viet Nam
The University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia

R T I C L E I N F O

eywords:
eep Spiking Neural Network
euromorphic
ernary-weight quantization
ardware implementation

A B S T R A C T

Recently, Deep Spiking Neural Network (DSNN) has emerged as a promising neuromorphic approach for
various AI-based applications, such as image classification, speech recognition, robotic control etc. on edge
computing platforms. However, the state-of-the-art offline training algorithms for DSNNs are facing two major
challenges. Firstly, many timesteps are required to reach comparable accuracy with traditional frame-based
DNNs algorithms. Secondly, extensive memory requirements for weight storage make it impossible to store
all the weights on-chip for DSNNs with many layers. Thus the inference process requires continue access to
expensive off-chip memory, ultimately leading to performance degradation in terms of throughput and power
consumption. In this work, we propose a hardware-friendly training approach for DSNN that allows the weights
to be constrained to ternary format, hence reducing the memory footprints and the energy consumption.
Software simulations on MNIST and CIFAR10 datasets have shown that our training approach could reach
an accuracy of 97% for MNIST (3-layer fully connected networks) and 89.71% for CIFAR10 (VGG16). To
demonstrate the energy efficiency of our approach, we have proposed a neural processing module to implement
our trained DSNN. When implemented as a fixed, 3-layers fully-connected system, the system has reached
at energy efficiency of 74nJ/image with a classification accuracy of 97% for MNIST dataset. We have also
considered a scalable design to support more complex network topologies when we integrate the neural
processing module with a 3D Network-on-Chip.
. Introduction

Recently, Deep Neural Networks (DNNs) have contributed to the
uccess of many machine learning tasks such as image classification [1–
], object detection [4,5], natural language processing [6,7] and scene
nderstanding [8]. However, the inference phase on such deep and
omplex networks requires a significant amount of computational
ower and energy costs, thus limiting the application of such networks
n powerful GPUs or datacenter accelerators such as Google’s TPU [9].

Facing such challenges, the VLSI community has made considerable
esearch efforts to push the AI-related applications on various embed-
ed and mobile platforms. Notable research trends to optimize energy
fficiency include: (i) developing specialized dataflow to reduce power
onsumption from DRAM access [10–12]; (ii) reducing the size of
NNs models [13]; (iii) pruning redundant networks parameters while
reserving accuracy [14], quantization of weight and input activations
15,16]; and (iv) applying novel approximating computing paradigm
uch as computing in log-domain [17], in frequency-domain [18] or

∗ Corresponding author.
E-mail address: tutx@vnu.edu.vn (X.-T. Tran).

stochastic computing [19]. These techniques rely on the traditional
frame-based operations of DNNs, where each information frame is pro-
cessed sequentially, layer-by-layer until the final decision can be made.
This may result in long latency, especially for large DNNs architectures
and high volume frame inputs, and is not suitable for applications
where a fast, real-time decision is crucial.

Spiking Neural Networks (SNNs) has long been widely adopted as a
model to simulate and study the human brain’s behavior [20]. Recently,
SNNs have emerged as an energy-efficient computing paradigm for
inference tasks on DNNs architectures [21,22]. This is mainly due to
several reasons. Firstly, SNNs have an inherent event-based mode of
operations, with spike as the basic unit of communication between
neurons. A neuron is only active when input spikes arrive, and stay
idle otherwise, reducing the energy consumption. Next, SNNs could
reduce the inference latency and workload as the output classification
could be queried as soon as the first output spike arrives, instead of
waiting for the whole frame to be processed. Thirdly, efficient SNNs
vailable online 5 February 2022
141-9331/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.micpro.2022.104458
eceived 11 January 2021; Received in revised form 27 November 2021; Accepted
 19 January 2022

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:tutx@vnu.edu.vn
https://doi.org/10.1016/j.micpro.2022.104458
https://doi.org/10.1016/j.micpro.2022.104458
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104458&domain=pdf

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
architectures can be constructed with hardware-friendly Integrate-and-
Fire (IF) neuron models, replacing the expensive multiplication opera-
tion with addition. In addition to the energy-efficient feature, SNNs has
been reportedly proven to be equal in terms of recognition accuracy
with state-of-the-art DNN models [23,24].

Although SNNs hold many advantages over the traditional DNNs
architectures, finding efficient training algorithms for SNNs has been
the major challenge that hinders the widespread deployment of SNNs
in typical AI workload. The difficulties in training SNNs come from
the complex dynamics of each neuron and the non-differentiable spike
activations. The current training algorithms for SNNs can be broadly
classified into two categories. The first being the online learning meth-
ods with variants of Spike-Timing Dependent Plasticity (STDP) [25–
27]. This method is suitable for applications that require adaptation
to change in environments; however, it suffers from a great loss of
accuracy compared to DNNs. The second category is the offline learning
methods, where trainable SNNs parameters are obtained once in the
training phase and deployed in the inference phase. These include
pre-training adapted DNNs and convert them to SNNs [23,25,28,29]
and directly training SNNs with back-propagation-based supervised
learning methods [30]. These methods have been proven to be on-par
in terms of classification accuracy with state-of-the-art DNN’s architec-
tures on complex recognition dataset such as CIFAR-10 or ImageNet
dataset [23]. However, these offline-learning methods are currently
suffering from two major drawbacks. The first is the high inference
latency, as each inference requires many timesteps to reach high accu-
racy. The second is the high memory storage for network parameters
as the training algorithms usually requires high precision weights (32-b
floating-point [31] or 7-b fixed-point [32]). This could hinder the de-
ployment of such networks on embedded devices with limited on-chip
memory size and low-power consumption restraints.

In this work, we try to address the two aforementioned issues. Our
approach is to train the network such that it could perform well during
few timesteps, while still maintaining good accuracy. To reduce the size
of the DSNN model, the trained network parameters are constrained in
ternary format. Our main contributions in this work can be summarized
as:

• A hardware-oriented training procedure for SNNs with the net-
work parameters (i.e. weights and biases constrained to ternary
format). The training procedure has been applied to the image
recognition tasks with the MNIST and CIFAR datasets, with both
fully connected (FC) and convolutional topologies. The trained
SNNs has reached an accuracy of 97% with MNIST (3 layers FC
network) and 90% with CIFAR-10 (VGG16 network).

• An efficient neuromorphic processing core to support our trained
SNN with ternary weight. When implemented as a fixed, 3-layers
fully-connected architecture, the design could reduce the energy
consumption by 2.7× at iso-accuracy between 97% and 98% for
the MNIST dataset in comparison with other fully-connected SNN
hardware designs.

• To support scalable designs with large scale convolutional net-
works, we propose an approach to incorporate our neuromorphic
processing core with a 3D Network-on-Chip.

Our paper is organized as follows. Section 2 presents the related works
on the existing training algorithms for SNNs and the weight quantiza-
tion methods for low-precision neural networks. Section 3 describes our
proposed Ternary Weight Spiking Neural Networks (TW-SNN) system.
Section 4 covers our proposed hardware architecture. Section 5 and VI
list the experimental results and discussion, while Section 7 concludes
the paper.
2

2. Related works

2.1. Training algorithms for SNNs

For traditional DNNs, the de-facto training procedure is based on
error back-propagation, which has proven to be fast and efficient.
In contrast, one of the major challenges in the study of SNNs is to
establish effective training procedure, especially for large and com-
plex datasets. The difficulties lie in the complex nature of neuronal
dynamics and the non-differentiable nature of the spike activities.
In the current literature, the training algorithms for SNNs could be
broadly classified into two major research trends. The first trend is
the online, unsupervised learning rule which usually based on some
forms of conventional STDP [25,27]. However, the major drawback of
this method is the degradation of classification accuracy in compari-
son with DNNs architecture, even on simple datasets such as MNIST.
This is due to the local nature of the STDP learning rule, where the
strength of the synapses between neurons is only updated based on
local information, without information from the classification targets
and neurons in further layers. In [25], the author has improved the
classification accuracy (up to 95% on MNIST) of unsupervised STDP-
based learning rule by adding lateral inhibition and adaptive threshold.
This method is also limited to very shallow networks, with simple
fully connected topology between the layers of neurons. To cope with
this problem, the author in [27] has introduced the latency-coding
scheme and reward-modulation mechanism for STDP. This has enabled
complicated network architecture such as convolution layer for SNNs,
and the author has reported an MNIST accuracy of 97.2%. However,
this method is also limited by the additional requirements of input
pre-processing, in the form of Differences-of-Gaussian (DoG) filters,
which could result in additional computational complexity. The second
trend is offline, supervised learning methods. One main approach is to
base on some pre-trained, adapted DNN architectures, and then convert
them to SNNs [23,24,31]. The adaptations usually involve removing
biases, using ReLU activation function, restricting average pooling, etc.
In [31], the author has introduced weight-threshold normalization to
maintain accuracy. In [24], the required adaptation are relaxed with
the introduction of the spiking version of common DNNs operations
such as adding biases, max-pooling, batch normalization or soft-max
operation. The authors have successfully converted CNN architectures
for CIFAR-10 dataset. The work in [31] has been extended in [23],
where the conversion methods have been successfully applied to the
ImageNet dataset. Another approach is to directly train the SNNs, based
on back-propagation supervised learning methods [30,32–34]. Since
the spike trains are non-differentiable, usually a differentiable proxy is
used; for example, the membrane potential [30], the spike count [33]
or some gradient estimators are utilized [32]. Recent works include
training Deep SNN with a novel Time-to-first-Spike Coding scheme [35]
or Bayesian Optimization [36], which also yield very good accuracy
results.

2.2. Weight quantization for low-precision neural networks

Recently, model compression methods for hardware implementa-
tion of neural networks have emerged as one hot research topic. Among
those methods, the weight and biases quantization scheme is widely
explored as there is an observation that many state-of-the-art DNNs
architectures could work relative well with low-precision network pa-
rameters [37]. DNNs with extreme quantization, i.e. 1-bit binary weight
and activations are the most discussed as it leads to 32× model com-
pression rate. BinaryConnect [38] is the first work to introduce DNNs
with binary weights. The advantage is that the floating-point multi-
plication operations are replaced by simple addition/subtraction op-

erations. XNOR-Net [16] further reduce the computational complexity

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.

A
s
𝑉
(

3
n

D
i
n
t
s
w
r

3

s
t

i
t

3

p
e

3

f

s
r
𝑊
b

by binarizing both the activations and the weights; hence the addi-
tion/subtraction circuits could be replaced by bit-wise XNOR and bit-
count operations. The aggressive binary quantization scheme sacrifices
inference accuracy in comparison with the full-precision counterpart.

To achieve higher accuracy than binary DNNs, DNNs inference with
ternary weights are introduced [39,40]. A ternary weight DNN has
three weight values of {−1, 0,+1}, so they can be fully represented
with 2-bit per weight. In [39], the author proposed Ternary Weight
Networks (TWN), where they used a scaling factor of 𝑊𝑙 and symmetric
thresholds of ±𝛥𝑙 to quantize the weights as {−𝑊𝑙 , 0,+𝑊𝑙} in layer
𝑙. The values of 𝛥𝑙 and 𝑊𝑙 are determined based on the statistics of
the floating-point weights �̃�𝑙. In [40], the author used two scaling fac-
tors {+𝑊 𝑝

𝑙 ,−𝑊
𝑛
𝑙 } to represent positive weights and negative weights.

Both scaling factors are trainable parameters in the networks, and the
threshold ±𝛥𝑙 is determined based on the maximum values of �̃�𝑙. For
conventional ternary weight DNN, the gradients in the backpropagation
process are only estimated from the ternary quantization function.
Recently, the quantization problem to reduce memory footprints for
SNNs is also an interesting research topic [41,42]. In [42] the author
proposed a quantization framework to quantize various parameters of
an SNN network to lower the memory footprint, while still be able to
maintain the accuracy.

2.3. Hardware architecture for large-scale SNNs

In this section, we summarize the related works on neuromorphic
systems for large-scale SNNs.

Neurogrid [43] by Stanford University if one of the earliest works
on simulating the human brain in real time. The system used a mixed-
signal design for each neuron, where the capacitor’s voltage is used to
capture the neuron’s membrane potential. The dynamics of the neurons
is closely related to the Integrate-and-Fire model. The communication is
handled with a tree-based Network-on-Chip that supports multi-casting.
To support more complex neuronal dynamics, SpiNNaker [44] took
the approach of using homogeneous ARM968 processors for emulation.
Each processor can simulate up to one thousand neurons, allowing the
system to scale up to simulating billions of neurons. The communica-
tion is based on a two-dimensional toroidal mesh where each node
can communicate with six neighbor nodes. The system also supports
table-based multi-cast.

Recently, two most notable works on digital based neuromorphic
systems are TrueNorth [21] and Loihi [22] designed by IBM and
Intel. Both systems utilized digital based neuron’s design, which is pro-
grammable hence allows more flexibility. The digital neuron can also
be time-multiplexed hence allowing one physical neurons to emulate
multiple ones. The communication in both systems are based on a
two dimensional mesh topology which support unicast only due to the
low-cost constraints.

3. Ternary weight spiking neural networks

3.1. Preliminaries

3.1.1. Spiking neuron models
The basic processing units in SNNs are neurons, which are in-

terconnected to form a large network. Fig. 1 shows a simple Leaky
Integrate-and -Fire (LIF) neuron, includes its synapses, soma and axon.

The synapses are the connection between two neurons. Each time a
neuron receives input spikes from the neurons in the previous layer, the
input spikes are scaled according to the weighted synapse strength, and
those weighted inputs are integrated into the membrane potential at the
neuron’s soma. Once the membrane potential crosses a predetermined
threshold value, the neuron will fire and produce an output spike,
which is transmitted to the neuron in the next layer via axon.

In this work, we adopt the discrete-time LIF neuron model from [32].
The model is based on the traditional ANN neuron’s with a special
3

𝑁

binary-activation function and the neuronal dynamics can be described
as:

𝑣𝐿𝑘 (𝑡) =
𝑚
∑

𝑖
𝑎𝐿−1𝑖 (𝑡)𝑤𝐿−1

𝑖,𝑘 + 𝑏𝐿𝑘 (1)

where 𝑣𝐿𝑘 (𝑡) is the membrane potential of neuron 𝑘 in layer 𝐿 at
timestep 𝑡, 𝑤𝐿−1

𝑖,𝑘 is the synaptic weight from neuron 𝑖 in layer 𝐿 − 1
to the neuron 𝑘 in layer 𝐿 and 𝑏𝐿𝑘 is a bias term for neuron 𝑘. The
binary-activation function 𝑎𝐿𝑘 (𝑡) is defined as:

𝑎𝐿𝑘 (𝑡) =

{

1 if 𝑣𝐿𝑘 (𝑡) > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 otherwise

(2)

t every timestep 𝑡, the neuron integrate all the incoming pre-synaptic
pikes and the bias term. If the membrane potential exceeds threshold
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the neuron fires (𝑎(𝑡) = 1), otherwise the neuron stays silent
𝑎(𝑡) = 0). After reset, the neuron’s membrane potential will reset to 0.

.1.2. Definition of time steps and inference latency in spiking neural
etworks

The main difference between the computation in SNN domain and
NN domain is the temporal information inherent to SNNs. The biolog-

cal neurons operate and evolve over time. To simulate SNN’s activities,
ormally the simulation time is discretized into a number of simulation
imesteps 𝑇 . The dynamics of the whole network will be simulated
equentially from start to end layers through each timestep. In this
ork, the inference latency is defined as the number of timesteps 𝑇

equired to reach a certain classification accuracy.

.1.3. Rate encoding for input
In this work, we focus on the image recognition applications. Pois-

on rate coding are used to convert the input pixel intensities to spike
rains. The input encoding process are described in Algorithm 1.
Algorithm 1: Input Encoding.
Data: Normalized input pixel intensities 𝐼 with zero mean and

unit standard deviation, number of simulation timesteps 𝑇
for 𝑡 ← 1 to 𝑇 do

Generate a uniform random number 𝑁 ∼ 𝑈 (0, 1)
if 𝑁 < 𝐼 then

𝑂(𝑡) ← 1
else

𝑂(𝑡) ← 0

return Output spike train 𝑂(𝑡)

The input spike rate is proportional to the input pixel intensity 𝐼 .
At every simulation timestep, a uniform random number 𝑁 ∼ 𝑈 (0, 1)
s generated, which is then compared against 𝐼 . A spike is produced if
he random number is less than the input pixel intensity.

.2. Analysis of memory storage and energy from memory access for SNNs

In this section, we justify the motivation to develop new training
rocedures for hardware friendly SNNs in term of memory storage and
nergy consumption.

.2.1. Fully connected spiking neural networks
A typical connections between two consecutive layers in SNN with

ully connected topologies is shown in Fig. 2.
The input layer and output layer has 𝑁𝑖 and 𝑁𝑜 neurons, re-

pectively. The amount of connection weights between two layers is
epresented by 𝑁𝑤 = 𝑁𝑖×𝑁𝑜. Assume the weights are represented with

bits, the memory storage requirement to store the weights in local
uffer is

= 𝑁 ×𝑊 = 𝑁 ×𝑁 ×𝑊 (𝑏𝑖𝑡𝑠) (3)
𝑚𝑒𝑚𝑜𝑟𝑦 𝑤 𝑖 𝑜

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
Fig. 1. Illustration of a simple LIF neuron with its binary input and binary output spike trains, along with the membrane potential dynamics. The inputs spike are integrated
via synapses. The synapses strength determines the amount of integrated potential at the neuron body. If the potential crosses a threshold value 𝑉𝑡ℎ, the neuron will fire, and an
output spike will be carried by the axon to downstream neurons. Then the potential will be reset to a 𝑉𝑟𝑒𝑠𝑒𝑡 value.
Fig. 2. A typical connection between two layers in SNNs with fully connected topology.

To calculate the energy access, we assume that for each timestep we
have to reload the weights into the local buffer. With an input rate of
𝜌, if we only load the weights that corresponding to an input spike, the
memory access energy across 𝑇 timesteps is

𝐸𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑁𝑚𝑒𝑚𝑜𝑟𝑦 × 𝜌 × 𝑇 × 𝐸𝑏 (4)

where 𝐸𝑏 is the normalized energy to access 1 bit of memory.

3.2.2. Convolutional spiking neural networks
A typical connection between two consecutive layers in Convolu-

tional SNN is shown in Fig. 3.
The input layer consists of 𝑁𝑖𝑓 ×𝑁𝑖𝑥×𝑁𝑖𝑦 neurons. The kernel maps

between the input and output layers has the size of 𝑁𝑜𝑓×𝑁𝑖𝑓×𝑁𝑘𝑥×𝑁𝑘𝑦.
Assuming a stride size of 𝑆 and a zero padding size of P, the output
layer has the size of 𝑁𝑜𝑓 ×𝑁𝑜𝑥×𝑁𝑜𝑦, of which 𝑁𝑜𝑥 and 𝑁𝑜𝑦 are governed
by:

𝑁𝑜𝑥 =
𝑁𝑖𝑥 −𝑁𝑘𝑥 + 2 × 𝑃

𝑆
+ 1 (5)

𝑁𝑜𝑦 =
𝑁𝑖𝑦 −𝑁𝑘𝑦 + 2 × 𝑃

𝑆
+ 1 (6)

The convolution operations in Convolutional SNN are described in
Algorithm 2. In each time step, each neuron in the output layers will
4

Algorithm 2: Convolution operation in SNNs
Data: Number of time steps 𝑇 , current time step 𝑡, Input size

𝑁𝑖𝑓 ×𝑁𝑖𝑥 ×𝑁𝑖𝑦, Kernel Size 𝑁𝑜𝑓 ×𝑁𝑘𝑥 ×𝑁𝑘𝑦, Stride size 𝑆,
Membrane potential from previous time step 𝑉𝑡−1, Input
Spike from previous layer 𝐼𝐿−1, Weight values from previous
layer 𝑊𝐿−1, Convolution layer index 𝐿

for 𝑡 ← 1 to 𝑇 do
for 𝑛𝑜 ← 1 to 𝑁𝑜 do

for 𝑥, 𝑦 ← 1 to 𝑁𝑜𝑥, 𝑁𝑜𝑦 do
for 𝑛𝑖 ← 1 to 𝑁𝑖𝑓 do

for 𝑘𝑥, 𝑘𝑦 ← 1 to 𝑁𝑘𝑥, 𝑁𝑘𝑦 do
if 𝐼𝐿−1(𝑛𝑖;𝑆 × 𝑥 + 𝑘𝑥, 𝑆 × 𝑦 + 𝑘𝑦) = 1 then

𝑉𝐿(𝑡; 𝑛𝑜; 𝑥, 𝑦) += 𝑊𝐿−1,𝐿(𝑛𝑖, 𝑛𝑜; 𝑘𝑥, 𝑘𝑦)

return Membrane potentials of neurons in layer 𝐿 at timestep 𝑡 𝑉𝐿(𝑡)

integrate the incoming spikes into the membrane potentials through the
convolution with the kernel maps. The memory storage requirement
for weights depends on the data reuse scheme on a specific hardware
implementation. Assuming the weights are represented with 𝑊 bits and
all kernel maps are pre-loaded in local buffer before computation, the
memory storage to store the weights in local buffer is

𝑁𝑊𝑆𝐶𝑁𝑁
= 𝑁𝑖𝑓 ×𝑁𝑘𝑥 ×𝑁𝑘𝑦 ×𝑊 (𝑏𝑖𝑡𝑠) (7)

The energy access from weights again depends on the specific data
reuse strategy of a specific implementation. Assuming for each time
steps, the weights need to be reloaded and an input rate of 𝜌, the energy
access across 𝑇 time steps is

𝐸𝑊𝑆𝐶𝑁𝑁
= 𝑁𝑊𝑆𝐶𝑁𝑁

× 𝜌 × 𝑇 × 𝐸𝑏 (8)

where 𝐸𝑏 is the normalized energy to access 1 bit of memory.

3.3. Training of SNN with ternary weight

Our proposed training methodology for TW-SNN is shown in Algo-
rithm 3 and Fig. 4.

In this work, all TW-SNN models are trained from scratch. We first
initialize the full-precision weights with Kaiming Initialization [45].
Then we start the ternarization-aware training procedure in three

iterative steps. Firstly, the current full-precision weight is ternarized

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.

a
t
L
p
f

𝑤

w
w
e

𝛼

w
t
f

𝛥

Fig. 3. A typical connection between two layers in SNNs with convolutional topology.
Fig. 4. The training process of TW-SNN.
i
u
𝛥

w
t
a
𝐿

nd scaled according to the current layer’s weights statistics. Next,
he ternarized weights are used for inference to calculate the loss.
astly, the current full-precision weights will be updated with back-
ropagation based on the calculated loss. In the first step, the current
ull-precision weights are first saved and then ternarized as follows:

𝑡𝑒𝑟𝑛
𝐿 =

{

𝛼 × 𝑆𝑖𝑔𝑛(𝑤𝑓𝑝
𝐿) if |𝑤𝑓𝑝

𝐿 | ≥ 𝛥𝑡ℎ

0 if |𝑤𝑓𝑝
𝐿 | < 𝛥𝑡ℎ

(9)

here 𝑤𝑓𝑝
𝐿 and 𝑤𝑡𝑒𝑟𝑛

𝐿 denotes the full-precision weights and ternarized
eights of layer 𝐿, respectively. The scaling factor 𝛼 is calculated for
ach layer as:

= 𝐸(|𝑤𝑓𝑝
𝐿 |), ∀{|𝑤𝑓𝑝

𝐿 | ≥ 𝛥𝑡ℎ} (10)

hich is the mean of absolute value for all the full-precision weights
hat are greater than the threshold 𝛥𝑡ℎ. We set the threshold 𝛥𝑡ℎ as a
raction of the largest value of weights, as the works in [40]:

𝑓𝑝
5

𝑡ℎ = 𝛽 × 𝑚𝑎𝑥(|𝑤𝐿 |) (11)
nstead of 0.7 ×𝐸(𝑤𝑓𝑝
𝐿) as in [39]. The reason is that after each weight

pdates, there is a large variation of 𝐸(𝑤𝑓𝑝
𝐿), thus leading to unstable

𝑡ℎ. We set the value of 𝛽 = 0.01 in all our experiments.
In the next step, we perform the inference of the input mini-batch

ith the ternarized model from Step 1 and calculate the loss w.r.t
o targets. Since the inputs are binary input spikes, and the weights
re ternary values, the integration of the membrane potential in layer

can be expressed as a dot-product of vectorized input 𝐱𝑇𝐿 and the
ternarized weights 𝑤𝑡𝑒𝑟𝑛

𝐿 , which then can be easily realized through
simple addition/subtraction and multiplexer circuits, without the need
for expensive fixed or floating-point multiplier. We used the square-
hinged loss function [46] to calculate the loss in all our TW-SNN
models.

In the last step, the full-precision weights are restored and updated
with back-propagation. However, the activation function in Eq. (2)
and the ternarization function in Eq. (9) are not differentiable, hence
blocking the back-propagation of the error signals. To enable the
back-propagation based training of the network, we apply a ‘‘straight-

through estimator’’ [47] to estimate gradient of the activation function

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.

w
i
𝑖

a

l
𝑏
o
E
T

o
m
a
s
s

4

w
n
1
o
t
o
p

S
T
s
o
c
a
D
w
a
a
r
r
f
1
a

4

s
m
i
s

T
a
R
I
f
t
o
S
o
m
w

(
s
n
n
e
p
t
2
a
w
n

Algorithm 3: Training Procedure of TW-SNN.
Data: Number of training epochs 𝑁 , Ternarization threshold factor

𝛽
Weight Initialization
for 𝑖 ← 1 to 𝑁 do

1. Statistical Weight Ternarization

• Save the full-precision weights
• Calculate weight scaling factor 𝛼
• Calculate the threshold 𝛥𝑡ℎ

• Calculate the ternarized weight 𝑤𝑡𝑒𝑟𝑛
𝐿

2. Inference with ternarized weights

• Inference with the activation function in Eq. (2)
• Calculate the loss w.r.t to targets

3. Update weights with back-propagation

• Restore the full-precision weights
• Calculate the gradients
• Update the full-precision weights with

back-propagation

return Trained network parameters

as follows:

𝜕𝑔
𝜕𝑤

=

{

0.5 × 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 if 𝑣𝐿𝑘 (𝑡) > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 otherwise

(12)

and the gradient of the ternarization function as follows:

𝜕𝑔
𝜕𝑤

=

{

1 if |𝑤| ≤ 1
0 otherwise

(13)

For spiking convolution network, we replace the binary activation
function with a normal ReLU function, and calculate the gradients with
Eq. (13).

4. Proposed hardware architecture

4.1. Neural processing module

At the core of out proposed hardware architecture is the neu-
ral processing module, including the processing elements (PEs), the
Address-Event-Representation (AER) decoder and SRAM memory for
weight storage. The neural computation is processed parallely at each
PE. AERs represent the indexes of the input spikes and are used as the
SRAM addresses to load the correct weights from the weight memory
banks. Those weights will be integrated into the parallel PEs. After all
input AERs are processed, the PEs will generate output spike vectors to
the AER decoder blocks. The AER decoder blocks generate the output
AERs to the next layer.

In our TW-SNN algorithm, each neuron 𝑖 is connected via synapse
eight 𝑤𝑖,𝑗 to the neuron 𝑗 in the previous layer. In each timestep, after

ntegrating all the incoming spikes from the previous layer, the neuron
will add a bias term 𝑏𝑖. Both 𝑤𝑖,𝑗 and 𝑏𝑖 are represented with 2 bits of

precision and can take values as 𝑤𝑖,𝑗 ∈ {−𝑎, 0, 𝑎} and 𝑏𝑖 ∈ {−𝑏, 0, 𝑏}. 𝑎
nd 𝑏 are learnable parameters for each layer.

To take advantage of the fact that 𝑎 and 𝑏 are constant for each
ayer, we propose the PEs microarchitecture, as shown in Fig. 5. 𝑎 and

are represented as 8-bits constants, and the 2-bits weight from the
n-chip memory systems is used to select the correct weight constant.
ach PE is controlled with the 𝑖_𝑠𝑡𝑎𝑡𝑒 signal from the flow controller.
his will guarantee the correct operation in each stage of the SNN
6

c

perations. Each PEs has an 18-bit potential register to store the
embrane potential values. After integrating all the incoming spikes

nd the bias term, the PEs will check the fire condition, and output a
pike if the membrane potential crosses a threshold value. The output
pike is stored in a 1 bit D Flip-flop.

.2. Fixed 3-layers architecture

In order to compare the energy efficiency of our training approach
ith other low power, embedded SNN, we implemented a specific
euromorphic hardware with a fixed, 3 layers architecture (FC256-256-
0 configuration) for the MNIST task in TSMC 65 nm technology. The
verall block diagram is shown in Fig. 6. The architecture comprises of
hree specialized layer modules, which act as the basic building blocks
f the TW-SNN networks. Each module has 256, 256 and 10 parallel
rocessing elements (PEs), respectively.

In our design, all the ternary weight values are stored on-chip in
RAM banks. Fig. 7 shows the memory storage scheme in our design.
he weights between input 𝑖 and 256 PEs in layer 1 are stored in four
eparate SRAM banks. Each bank has 1024 words, with a word size
f 128 bits. Each word stores 64 different ternary value weights and
ould support up to 1024 inputs. This is enough for MNIST dataset,
s each image in the MNIST dataset has the size of 28 × 28 pixels.
uring inference, the 4 SRAM banks are read in parallel, fetching 64
eights per reading. Thanks to the small size of weights, we could store
ll the weights on-chip hence reduce the energy for off-chip DRAM
ccess during inference. Additionally, with parallel reads, we could also
educe the number of SRAM reads for each simulation timestep, further
educing the energy cost for SRAM access. The size of memory storage
or layer 1 is 64 kB. The size of memory storage for layer 2 and 3 is
6kB and 1kB as both layers support 256 inputs, and there are 256 PEs
nd 10 PEs in layer 2 and layer 3, respectively.

.3. Scalable design approach for TW-SNN

To support a scalable design for TW-SNN, which is a requirement
ince modern Deep SNNs with convolutional topologies may have
illions of neurons [48], we adopt the 3D-IC approach which was

ntroduced in our previous work [49]. The overall architecture of the
calable design approach is shown in Fig. 8.

The neural processing module are grouped into different nodes.
o facilitate the communication between neurons of different nodes,
packet-switched mesh-based 3D-Network-on-Chip is used. The 3D-

outer handles the transmission of data flits to/from the Network
nterface (NI) of the neural processing module. There are two types of
lits in the design: (1) Spike flits and (2) Memory access flits (read/write
o weights memory in single/burst mode). Fig. 9 shows the two types
f flits in our system. The first bit indicates whether the flit is a (1)
pike flit or a (2) Memory access flit. The spike flits is used to send the
utput spikes from a module to other neurons in the networks. The
emory access flits is used to read and write from/to each module
eight memory.

For the spike flit, bit 1–9 (9-bit) is the destination node address
support up to 512 nodes). Bits 13–21 (9-bit) show the AER of the
ource node while bits 22–29 (8-bit) show the neuron index hence each
ode support up to 28 = 256 neurons. When a neuron in a particular
ode receives a spike flit, the NI will decode the AER to obtain the
quivalent address in the weight memory banks. After finishing com-
utation, the output spikes will be encoded to AER format and sent to
he 3D-NoC by the NI. Our system supports up to 8 × 8 × 8 nodes and
56 neurons/node. For the memory access flits, four types of different
ccess types are supported (1) single read, (2) burst read, (3) single
rite and (4) burst write. The 2-bit command field informs the slave
ode to understand whether the transaction is done, kept, corrupted or

anceled.

Microprocessors and Microsystems 90 (2022) 104458

7

D.-A. Nguyen et al.

Fig. 5. Microarchitecture of a processing element.

Fig. 6. Overall block diagram of the TW-SNN hardware systems.

Fig. 7. The memory storage scheme: (a) Example of weights between input 𝑖 and 256 PEs in layer 1. (b) The 256 weights between input 𝑖 and 256 PEs are stored in four separate
SRAM banks.

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
Fig. 8. Scalable design architecture (a) Overall architecture (b) Network Interface (c) 3D-Router (d) Neural Processing Module.
Fig. 9. Flits formats.
5. Experimental results

5.1. Software evaluation results

The code to train our TW-SNN can be found at.1

5.1.1. Fully connected TW-SNN
We have trained our TW-SNNs with the PyTorch framework [50].

We have evaluated four different configurations of fully connected
layers, with one or two hidden layers, and with each layer having
256 or 1024 neurons. The last layer has 10 neurons, which act as the
classification layer. Dropout layer [51] is employed between the hidden
layer with a dropout ratio of 0.2. We trained the networks for 200
epochs with the learning rate starts at 1e-3 and exponentially decay
to 1e-5. The Adam optimizer [52] is used to train the network with
a batch size of 100. We have evaluated our trained TW-SNN on three
different datasets, namely the MNIST dataset [53] the Fashion MNIST
(FMNIST) dataset [54] and the EMNIST (letters) dataset [55]. Table 1
summarizes the network models used in our Pytorch simulation.

1 https://github.com/stanleynguyen7590/TW-SNN
8

Table 1
Summary of network models.

Network name Network type Network configuration Weight precision

FC256 Fully Connected 784-256-10 32b
FC256_TW Fully Connected 784-256–10 2b
FC256_256 Fully Connected 784-256-256–10 32b
FC256_256_TW Fully Connected 784-256-256–10 2b
FC1024 Fully Connected 784-1024–10 32b
FC1024_TW Fully Connected 784-1024–10 2b
FC1024_1024 Fully Connected 784-1024-1024–10 32b
FC1024_1024_TW Fully Connected 784-1024-1024–10 2b

We first demonstrate the classification accuracy of TW-SNN with
three different datasets.

Fig. 10 shows the classification accuracies of our trained TW-SNN
over 35 timesteps. The predicted label is based on the cumulative
number of output spikes from the last layer (the neuron in the last layer
with the most output spikes is selected as the classification output).
For a baseline comparison, we have trained an SNN similar to the
work in [32], without the ternary quantization process. It could be
seen that, over the three datasets, the classification accuracies are

https://github.com/stanleynguyen7590/TW-SNN

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
Fig. 10. Classification accuracy for different number of timesteps.
Fig. 11. Effect of Quantization on classification accuracy.
increasing with the number of hidden layer and the number of neurons
in each layer. TW-SNN also could reach accuracies of 70%–95% with
a fewer number of timesteps (1–3 timesteps). In comparison with the
floating-point accuracies, the quantization process only incurs a loss
of 0.2%–1.05% for the MNIST dataset, 1.68%%-1.84% for the FMNIST
dataset, 1.56%–3.8% for the EMNIST(letters) dataset.

To compare the classification accuracy between our proposed TW-
SNN and traditional DNNs systems, we have trained a DNN with
the same network configurations, in both floating-point weights and
ternary weights. The ternary-weight DNNs are trained with the quan-
tization process outlined in [39]. Fig. 11 shows that, TW-SNN reach
comparable accuracies with the corresponding DNNs architecture. In
comparison with the floating point DNNs architecture, TW-SNN incurs
a small loss of accuracy in the three datasets. The loss is decreased
with the increasing numbers of layers and neurons in each layer.
When compared to the ternary weights DNNs, our TW-SNN also incurs
negligible loss, up to 0.2% for the MNIST dataset, 2.4% for the FMNIST
dataset, and even performs better by 0.3% at the EMNIST (letters)
dataset with the FC1024_1024 configuration.

Fig. 12a demonstrates the advantages of TW-SNN in terms of re-
ducing the weight memory storage and reducing the inference latency
for MNIST dataset when compared to the works in [31,32]. The works
9

in [31,32] requires weight precision of 5 and 7 bits to reach an MNIST
accuracy of 97%, respectively. Our works only required 2 bits to repre-
sent the weights, results in a reduction of 2.5–3.5× in terms of memory
storage. Our works also reduce inference latency, as shown in Fig. 12b.
The proposed TW-SNN reach very good accuracy with even only one
timestep (96.7%) and reach saturated accuracy after three timesteps. In
comparison with [32], TW-SNN has similar inference latency with only
a slight loss of accuracy. The loss of accuracies is due to the ternary
weight quantization process. In comparison with [31], we reduced the
inference latency by 3.5× while having better accuracy. This is because
the conversion process in [31] does not take into account the temporal
information of the spiking neurons, hence leading to longer inference
latency.

5.1.2. Convolutional TW-SNN
To demonstrate the efficiency of our TW-SNN approach with convo-

lutional SNNs, we have trained and evaluated four different convolu-
tional SNN configuration based on the VGG deep neural network [48].
First we trained a normal DNN. We used the conversion method men-
tioned in [23] to obtain the 32b floating point results of the SNN.
Lastly, we trained the Convolutional SNN with our TW-SNN approach
to obtain the final result. Table 2 and Table 3 show the results and
comparison with other works for CIFAR-10 dataset.

To further emphasize the effects of simulation time steps to the clas-
sification accuracy, Fig. 13 shows the accuracy for VGG16 when simu-

lated over 250 timesteps. It can be seen that, the accuracy starts to hit

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.

T
t

Fig. 12. MNIST accuracies for different weight bitwidths and different timesteps, in comparison with prior works.
9
w
s
t
r
a

5

T

Table 2
Classification results for CIFAR10 dataset. Column-1 shows the type of architecture.
Column-2 shows the accuracy of a trained ANN model. Column-3 shows the accuracy
of an SNN when directly converted from ANN. Column-4 shows the accuracy when
trained with our TW-SNN approach.

Architecture DNN DNN-SNN (converted, 32b FP) TW-SNN (2b)

VGG5 88.61% 87.21% (𝑇 = 250) 85.10% (𝑇 = 250)
VGG9 90.26% 89.58% (𝑇 = 250) 87.58% (𝑇 = 250)
VGG13 91.38% 90.00% (𝑇 = 250) 89.47% (𝑇 = 250)
VGG16 91.63% 90.34% (𝑇 = 250) 89.71% (𝑇 = 250)

Fig. 13. Energy Efficiency versus Classification Accuracy for CIFAR10 dataset.

a saturation point around 200 timesteps, and has reached comparable
accuracy with other works at 250 timesteps.

5.2. Hardware evaluation results

5.2.1. Results for fixed, 3-layers TW-SNN implementation
The proposed hardware system for the fixed 3-layers architecture is

modeled in VHDL and implemented in TSMC 65 nm technology. The
weight memory systems are generated from a memory compiler, and
the design is synthesized and implemented with Synopsys tools. Fig. 14
shows the chip layout and specifications. The total post-layout core
area is 0.96 mm2, with 0.24 mm2 logic area and 0.72 mm2 memory.

he system is tested with the MNIST dataset, with a fully connected,
wo hidden layers, each with 256 neurons configuration. At a nominal
10
supply voltage of 1.2 V, our design has a target frequency of 167 MHz
and has a power consumption of 86 mW. The energy efficiency result
is obtained from Synopsys PrimeTime with data switching activity
information acquired from the post-layout simulation.

Table 4 shows a comparison to the state-of-the-art SNN hardware
designs. We have scaled the area and energy consumption rate of other
works to the 65 nm technology node at 𝑉𝐷𝐷 = 1.2𝑉 according to
the equations in [59]. In terms of MNIST classification accuracies, the
work by Whatmough et al. in [60] achieved the highest accuracies of
98.3%; however, the reported results are only based on a downsampled
version of MNIST dataset. The work by Tan et al. achieved the second-
highest accuracy of 98.01%; however, the author used convolutional
network topology, leading to more complex hardware designs. If we
only considered the fully connected feed-forward network topology,
our work reaches a comparable accuracy to the works by Yin et al. [32]
and Park et al. [61], with only a slight loss of 0.83%–0.9%. It is notable
that the work in [61] used an online, supervised training method. In
terms of the weight memory storage, the works in [62,63] used the least
amount of on-chip memory for weight storage. However, the weights
in [62] are not fully-stored on-chip, while the works in [63] does not
use parallel neurons for computations, hence could load a small number
of weights serially on each clock cycle. The works in [32,60,64] used
similar network topology as ours, with parallel neurons for computa-
tion. We achieved the smallest amount of weight memory storage of 81
kB thanks to the reduction in weight precision.

Fig. 15 shows the comparison of accuracy vs. energy and system’s
throughput among this work and the state-of-the-art works. The ability
to reduce the inference latency helps our design to improve the energy
efficiency to 74nJ/prediction at a maximum throughput of 1.207M pre-
dictions/second. Our work achieves the lowest energy per prediction
with a reduction of 2.7× energy per prediction at iso-accuracy of 97%–
8% compared to the best results reported in literature [32]. Also,
hile we keep the lowest energy per prediction, if we consider the

ystem’s throughput, we achieve the second-highest throughput, second
o only the work in [32]. Note that our energy results and the energy
esults in [32,62,64] are based on post-layout simulation, while others
re based on chip measurement results.

.2.2. Results for one node in our scalable implementation
We have also synthesized a node in our scalable design approach.

able 5 shows the synthesized results.

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
Table 3
Comparison of this work with other SNN models on CIFAR10 dataset.

Model Training method Architecture Accuracy Timesteps

Hunsberger et al. (2015) [56] DNN-SNN Conversion 2 Conv, 2 Linear 82.95% 6000
Cao et al. (2015) [28] DNN-SNN Conversion 3 Conv, 2 Linear 77.43% 400
Sengupta et al. (2019) [23] DNN-SNN Conversion VGG16 91.55% 2500
Lee et al. (2020) [57] Spiking Backpropagation VGG9 90.45% 100
Park et al. (2019) [58] DNN-SNN Conversion VGG16 91.41% 793
This work TW-SNN VGG16 89.71% 250
Fig. 14. Chip layout and specifications.
Table 4
Hardware Implementation Results compared with the state-of-the-art SNN hardware design.

Author Zheng [64] Whatmough [60] Frenkel [63] Yin [32] Park [61] Chuang [62] Nguyen

Publication ISCAS (2018) ISSCC (2017) TBioCAS (2019) BioCAS (2018) ISSCC (2019) DAC (2020) This work (2020)
Implementation Digital Digital Digital Digital Digital Digital Digital
Technology 65 nm 28 nm 28 nm 28 nm 65 nm 90 nm 65 nm
Core area(mm2) 1.1 5.76 0.086 1.65 10.08 2.073 0.96
Scaled Core area (mm2) 1.1 18.58 0.277 5.32 10.08 1.09 0.96
Estimated gate count (Logic Only) NA NA NA 2213K NA 225K 206K
Weight bitwidth 16b 8b/16b 4b 7b 8b 1b 2b
On-chip memory 358.3 KB 1024 KB 36 KB 289 KB N.A 12.75 KB 81 KB
Learning algorithm Online Offline Online Offline Online Offline Offline
MNIST accuracy 91% 98.3%

(downsampled)
85%
(downsampled)

97.9% 97.83% 98.01% 97%

Frequency 167 MHz 667 MHz 75-100 MHz 163 MHz 20 MHz 100 MHz 167 MHz
Scaled energy/prediction 112 nJ 225 nJ 95 nJ 187 nJ 622 nJ 4991 nJ 74 nJ
Throughput (Predictions/s) 0.076M N.A N.A 1.526M - 0.09125M 0.1M 0.01M-0.0019M 1.207M-0.075M
Table 5
Hardware complexity of one node in our scalable design approach.

Module Area (μm2) Max Freq. (MHz)

Network Interface
AER LUT 16,747 –
Address LUT 20,768 –
Total 72,032 699.30

Neuron cluster 205,608 751.87

3D-NoC router (Dang et al 2020) 41,739 537.63
Vertical TSVs (up and down) 2,901.1136 –

5.2.3. Estimation of energy efficiency for TW-SNN with VGG16 on CI-
FAR10 dataset

We would like to give an estimation to the energy efficiency of
our TW-SNN to show the potential energy savings that we can gain
during inference if we train SNN with our proposed training procedure.
Assuming a hardware architecture with a single core consists of 𝑁

physical spiking neurons, the energy required to process one single
11
input spike is given by:

𝐸spike = 𝐸logic + 𝐸memory access (14)

where 𝐸logic is the total energy consumption by the logic in the neu-
ron’s hardware and 𝐸memory access is the required energy to load the
corresponding weights from SRAM. 𝐸logic depends on the number of
neurons per core as:

𝐸logic = 𝑁 × 𝐸leakage + 𝐸switching (15)

where 𝐸leakage is the leakage energy for one neuron and 𝐸switching is the
energy from the switching activity when processing each input spike.
The energy from the memory access can be defined as:

𝐸memory access = 𝑊 × 𝐸bit (16)

where 𝑊 is the bitwidth of weights and 𝐸bit is the energy required to
read one bit of weight from SRAM. The total energy required to process
one layer in SNNs is given by (without any data reuse scheme):

𝐸 = 𝑁×𝐸 +𝐸 ×𝑁 +𝑊 ×𝐸 ×𝑁 (17)
logic leakage switching input spikes bit input spikes

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.

w
c
w
n
d
t
q
t
t
T
p
f
t
A
c
f

l
T

Fig. 15. Energy efficiency comparison with prior works.
Fig. 16. Energy consumption breakdown for VGG16 network. The network is quantized with different bitwidth, and was simulated for 250 timesteps.
here 𝑁𝑖𝑛𝑝𝑢𝑡𝑠𝑝𝑖𝑘𝑒𝑠 is the number of input spikes for the layer. To offer a
omparison with SNNs trained with full precision and other bitwidths
eights, we have used the conversion method in [23] to train a VGG16
etwork for CIFAR-10 and the post-training quantization (PTQ) method
escribed in [42] to quantize the weights to 8-bit and 16-bit. We run
he simulations for all the networks, with floating point weights and
uantized weights for 250 time steps, 10,000 test images and recorded
he number of input spikes for each layer. The digital LIF neuron model
o process fixed point weight is taken from our previous work [65].
o process ternary weights, we used the neural processing elements
roposed in Section 4.1. We run the post-synthesis simulation and
ind 𝐸leakage and 𝐸switching from Synopsys PrimeTime. We estimated
he energy to read 1-b of SRAM from the CACTI RAM’s model [66].
ssuming a fixed size of 𝑁 = 256 neurons for the neural processing
ore, the energy efficiency results are given detailed in the following
igures (see Figs. 16 and 17).

From the results, it could be seen that the energy consumption for a
arge convolutional SNN scale with the size of the convolutional layer.
he average energy cost to process one inference with CIFAR10 is
12
estimated to be 6.03e−02 𝑚𝐽/prediction. Also, from the total energy
consumption chart, we could see a gain of 4.12×-16.35× in terms
of energy efficiency when we are utilizing our TW-SNN procedure,
in comparison with other 8-b or 32-b baseline SNN network. When
compared with the energy cost/inference with the MNIST dataset, we
saw a similar gain of energy efficiency when compared with other
works with the same bitwidth for weight. The energy cost for CIFAR10
is much larger than for MNIST, but this is understandable since the
network size is much larger (VGG166 versus 3-layer MLP) and more
time steps are required (250 timesteps).

6. Discussion

In this section, we discuss the existing problems and the potential
solutions.

First, the used training method still incurs an accuracy loss over
other SNN training methods, and over other DNN of the same net-
work models. This is to be expected as our main goal is to develop
a hardware-friendly training approach which could reduce the mem-
ory and energy footprint when implemented on embedded platform.

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
Fig. 17. Energy Efficiency versus Classification Accuracy for CIFAR10 dataset.

However, methods to further increase the classification accuracy are
still needed. The reduction of inference latency on more complicated
network topologies remain an open research problem.

Second, the optimization of the neural processing module for other
topologies, such as convolution or residual networks is still need to
be investigated. Currently, one node in our scalable design still utilize
simple parallel processing for the neurons. This could be further opti-
mized as a specialized spiking neuron cluster for convolution, as the
convolution operations leave rooms for data-reuse opportunity.

Thirdly, one of the limitations of the current work lies in the fact
that the implemented hardware architecture only targets employing
a small sized, fully connected SNNs for supervised ternary weight
training for edge computing. The implementation of the scalable design
with NoC is left as future work to offer measurement results.

Lastly, even though our work has proposed method to reduce the
memory footprints of SNNs, however with the ever increasing size
of modern network architecture, and the needs to access memory for
every time steps, energy from memory access still dominates the energy
consumption. Utilizing new technologies such as In- or Near-Memory-
Computing is a promising solution [67,68].

7. Conclusion and future works

In this paper, we propose TW-SNN, a hardware friendly training
approach for SNNs, with network parameters constrained to ternary
value format. Extensive software simulations show that TW-SNN could
achieve an accuracy of 97% with the MNIST dataset and 89.71% for the
CIFAR10 dataset. To demonstrate the energy efficiency advantages of
our approach, we proposed a neural processing module to implement
our trained SNNs. When implemented as fixed, 3-layers neuromorphic
hardware architecture for the MNIST dataset, we achieved a 97.0%
accuracy at 74 nJ per prediction. To support a scalable design for more
complex network topologies, we have considered integrating our neural
processing module with a 3D Network-on-Chip.

For future works, as the inference of convolutional SNN may not be
optimized on the current neural processing module, we would like to in-
vestigate on the design of neural processing modules that are optimized
for the convolution operations. The impact on the energy efficiency
for the training phase with TW-SNN is also an interesting problem for
future research. Future works will also entail the fabrication of an IC
with suitable architecture for a full assessment of energy efficiency.
13
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work is partly supported by Vietnam National University,
Hanoi (VNU) through research project ‘‘Investigate and develop a
secure IoT platform’’ (Secu-IoT).

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: Proceedings Of The 25th International Con-
ference On Neural Information Processing Systems, vol. 1, NIPS’12, 2012, pp.
1097–1105.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: International Conference On Learning Representations,
2015.

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings Of The IEEE Conference On Computer Vision And Pattern
Recognition, 2016, pp. 770–778.

[4] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings Of The IEEE Conference On Computer
Vision And Pattern Recognition, 2016, pp. 779–788.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd:
Single shot multibox detector, in: European Conference On Computer Vision,
Springer, 2016, pp. 21–37.

[6] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural
architectures for named entity recognition, 2016, arXiv preprint arXiv:1603.
01360.

[7] K.M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, P.
Blunsom, Teaching machines to read and comprehend, in: Advances In Neural
Information Processing Systems, 2015, pp. 1693–1701.

[8] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features
for scene recognition using places database, in: Advances In Neural Information
Processing Systems, 2014, pp. 487–495.

[9] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C.R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S.
Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A.
Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A.
Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, D.H. Yoon, In-datacenter performance analysis of a tensor
processing unit, in: Proceedings Of The 44th Annual International Symposium
On Computer Architecture, in: ISCA ’17, ACM, New York, NY, USA, 2017, pp.
1–12.

[10] Y.H. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: An energy-efficient reconfig-
urable accelerator for deep convolutional neural networks, IEEE J. Solid-State
Circ. 52 (1) (2017) 127–138, http://dx.doi.org/10.1109/JSSC.2016.2616357.

[11] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, Y. Chen,
Dadiannao: A neural network supercomputer, IEEE Trans. Comput. 66 (1) (2017)
73–88, http://dx.doi.org/10.1109/TC.2016.2574353.

[12] Y. Ma, Y. Cao, S. Vrudhula, J. Seo, Optimizing the convolution operation to
accelerate deep neural networks on FPGA, IEEE Trans. Very Large Scale Integrat.
(VLSI) Syst. 26 (7) (2018) 1354–1367, http://dx.doi.org/10.1109/TVLSI.2018.
2815603.

[13] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, MobileNets: EFficient convolutional neural networks for
mobile vision applications, 2017, arXiv:1704.04861.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE: Effi-
cient inference engine on compressed deep neural network, in: 2016 ACM/IEEE
43rd Annual International Symposium On Computer Architecture (ISCA), 2016,
pp. 243–254, http://dx.doi.org/10.1109/ISCA.2016.30.

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized neural
networks: Training neural networks with low precision weights and activations,
J. Mach. Learn. Res. 18 (1) (2017) 6869–6898.

[16] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: ImageNet
classification using binary convolutional neural networks, in: ECCV, 2016.

[17] D. Miyashita, E.H. Lee, B. Murmann, Convolutional neural networks using
logarithmic data representation, 2016, arXiv:1603.01025.

http://refhub.elsevier.com/S0141-9331(22)00030-8/sb5
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb5
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb5
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb5
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb5
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1603.01360
http://arxiv.org/abs/1603.01360
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb7
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb7
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb7
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb7
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb7
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb8
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb8
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb8
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb8
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb8
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb9
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/TC.2016.2574353
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1109/ISCA.2016.30
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb15
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb15
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb15
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb15
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb15
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb16
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb16
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb16
http://arxiv.org/abs/1603.01025

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
[18] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G.
Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, B. Yuan, Circnn: Accelerating and
compressing deep neural networks using block-CirculantWeight matrices, 2017,
arXiv:1708.08917.

[19] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, W.J. Gross, VLSI
implementation of deep neural network using integral stochastic computing,
IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 25 (10) (2017) 2688–2699,
http://dx.doi.org/10.1109/TVLSI.2017.2654298.

[20] W. Gerstner, W. Kistler, Spiking Neuron Models: An Introduction, Cambridge
University Press, New York, NY, USA, 2002.

[21] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J.B.
Kuang, R. Manohar, W.P. Risk, B. Jackson, D.S. Modha, TrueNorth: Design and
tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,
IEEE Trans. Comput.-Aided Des. Integrat. Circ. Syst. 34 (10) (2015) 1537–1557,
http://dx.doi.org/10.1109/TCAD.2015.2474396.

[22] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S.
McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, H.
Wang, Loihi: A neuromorphic manycore processor with on-chip learning, IEEE
Micro 38 (1) (2018) 82–99, http://dx.doi.org/10.1109/MM.2018.112130359.

[23] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural
networks: VGG and residual architectures, Front. Neurosci. 13 (2019) 95, http:
//dx.doi.org/10.3389/fnins.2019.00095.

[24] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, S.-C. Liu, Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification,
Front. Neurosci. 11 (2017) 682, http://dx.doi.org/10.3389/fnins.2017.00682.

[25] P. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity, Front. Comput. Neurosci. 9 (2015) 99, http://dx.doi.org/
10.3389/fncom.2015.00099.

[26] T. Masquelier, S.J. Thorpe, Unsupervised learning of visual features through
spike timing dependent plasticity, PLoS Comput. Biol. 3 (2) (2007) 1–11, http:
//dx.doi.org/10.1371/journal.pcbi.0030031.

[27] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S.J. Thorpe, T. Masquelier,
Bio-inspired digit recognition using reward-modulated spike-timing-dependent
plasticity in deep convolutional networks, Pattern Recognit. 94 (2019) 87–95.

[28] Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for
energy-efficient object recognition, Int. J. Comput. Vis. 113 (1) (2015) 54–66,
http://dx.doi.org/10.1007/s11263-014-0788-3.

[29] Y. Hu, H. Tang, Y. Wang, G. Pan, Spiking deep residual network, 2018, arXiv
preprint arXiv:1805.01352.

[30] J.H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using
backpropagation, Front. Neurosci. 10 (2016) 508, http://dx.doi.org/10.3389/
fnins.2016.00508.

[31] P.U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, M. Pfeiffer, Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing, in:
2015 International Joint Conference On Neural Networks (IJCNN), 2015, pp.
1–8, http://dx.doi.org/10.1109/IJCNN.2015.7280696.

[32] S. Yin, S.K. Venkataramanaiah, G.K. Chen, R. Krishnamurthy, Y. Cao, C.
Chakrabarti, J. Seo, Algorithm and hardware design of discrete-time spiking
neural networks based on back propagation with binary activations, in: 2017
IEEE Biomedical Circuits And Systems Conference (BioCAS), 2017, pp. 1–5.

[33] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backpropagation for
training high-performance spiking neural networks, Front. Neurosci. 12 (2018)
331, http://dx.doi.org/10.3389/fnins.2018.00331.

[34] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, L. Shi, Direct training for spiking neural
networks: Faster, larger, better, in: Proceedings Of The AAAI Conference On
Artificial Intelligence, vol. 33, 2019, pp. 1311–1318.

[35] S. Park, S. Kim, B. Na, S. Yoon, T2FSNN: deep spiking neural networks with time-
to-first-spike coding, in: 2020 57th ACM/IEEE Design Automation Conference
(DAC), IEEE, 2020, pp. 1–6.

[36] S. Kim, S. Park, B. Na, J. Kim, S. Yoon, Towards fast and accurate object
detection in bio-inspired spiking neural networks through Bayesian optimization,
IEEE Access 9 (2020) 2633–2643.

[37] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H. Yoo, UNPU: An energy-efficient
deep neural network accelerator with fully variable weight bit precision, IEEE
J. Solid-State Circ. 54 (1) (2019) 173–185.

[38] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural
networks with binary weights during propagations, in: Advances In Neural
Information Processing Systems, 2015, pp. 3123–3131.

[39] F. Li, B. Zhang, B. Liu, Ternary weight networks, 2016, arXiv preprint arXiv:
1605.04711.

[40] C. Zhu, S. Han, H. Mao, W.J. Dally, Trained ternary quantization, 2016, arXiv
preprint arXiv:1612.01064.

[41] R.V.W. Putra, M. Shafique, Fspinn: An optimization framework for memory-
efficient and energy-efficient spiking neural networks, IEEE Trans. Comput.-Aided
Des. Integrat. Circ. Syst. 39 (11) (2020) 3601–3613.

[42] R.V.W. Putra, M. Shafique, Q-spinn: A framework for quantizing spiking neural
networks, in: 2021 International Joint Conference On Neural Networks (IJCNN),
IEEE, 2021, pp. 1–8.
14
[43] B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.-
M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, K. Boahen, Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations, Proc.
IEEE 102 (5) (2014) 699–716.

[44] S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The spinnaker project, Proc. IEEE
102 (5) (2014) 652–665.

[45] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification, in: Proceedings Of The 2015
IEEE International Conference On Computer Vision (ICCV), in: ICCV ’15, IEEE
Computer Society, USA, 2015, pp. 1026–1034, http://dx.doi.org/10.1109/ICCV.
2015.123.

[46] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1, 2016, arXiv:1602.02830.

[47] Y. Bengio, N. Léonard, A. Courville, Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013, arXiv preprint arXiv:
1308.3432.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: 2015 IEEE
Conference On Computer Vision And Pattern Recognition (CVPR), 2015, pp. 1–9,
http://dx.doi.org/10.1109/CVPR.2015.7298594.

[49] A. Ben Abdallah, K.N. Dang, Toward robust cognitive 3D brain-inspired
cross-paradigm system, Front. Neurosci. 15 (2021) 795.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch:
An imperative style, high-performance deep learning library, in: Advances In
Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp.
8024–8035.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (1) (2014) 1929–1958.

[52] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International
Conference On Learning Representations (ICLR), 2015.

[53] The MNIST database of handwritten digits, URL http://yann.lecun.com/exdb/
mnist/.

[54] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv:cs.LG/1708.07747.

[55] G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, EMNIST: Extending MNIST to
handwritten letters, in: 2017 International Joint Conference On Neural Networks
(IJCNN), IEEE, 2017, pp. 2921–2926.

[56] E. Hunsberger, C. Eliasmith, Spiking deep networks with LIF neurons, 2015,
arXiv preprint arXiv:1510.08829.

[57] C. Lee, S.S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based
backpropagation for training deep neural network architectures, Front. Neurosci.
14 (2020) 119.

[58] S. Park, S. Kim, H. Choe, S. Yoon, Fast and efficient information transmission
with burst spikes in deep spiking neural networks, in: 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019.

[59] A. Stillmaker, B. Baas, Scaling equations for the accurate prediction of CMOS
device performance from 180 nm to 7 nm, Integrat. VLSI J. 58 (2017) 74–81,
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/.

[60] P.N. Whatmough, S.K. Lee, H. Lee, S. Rama, D. Brooks, G.Y. Wei, 14.3 A 28nm
SoC with a 1.2 GHz 568 nJ/prediction sparse deep-neural-network engine with
>0.1 timing error rate tolerance for IoT applications, in: 2017 IEEE International
Solid-State Circuits Conference (ISSCC), 2017, pp. 242–243, http://dx.doi.org/10.
1109/ISSCC.2017.7870351.

[61] J. Park, J. Lee, D. Jeon, A 65nm 236.5nJ/classification neuromorphic processor
with 7.5 overhead on-chip learning using direct spike-only feedback, in: 2019
IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 140–142.

[62] P.-Y. Chuang, P.-Y. Tan, C.-W. Wu, J.-M. Lu, A 90nm 103.14 tops/w binary-
weight spiking neural network cmos asic for real-time object classification, in:
2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020, pp.
1–6.

[63] C. Frenkel, M. Lefebvre, J. Legat, D. Bol, A 0.086-mm2 12.7-pj/SOP 64k-synapse
256-neuron online-learning digital spiking neuromorphic processor in 28-nm
CMOS, IEEE Trans. Biomed. Circ. Syst. 13 (1) (2019) 145–158.

[64] N. Zheng, P. Mazumder, A low-power hardware architecture for on-line super-
vised learning in multi-layer spiking neural networks, in: 2018 IEEE International
Symposium On Circuits And Systems (ISCAS), 2018, pp. 1–5, http://dx.doi.org/
10.1109/ISCAS.2018.8351516.

[65] D.-A. Nguyen, D.-H. Bui, F. Iacopi, X.-T. Tran, An efficient event-driven neu-
romorphic architecture for deep spiking neural networks, in: 2019 32nd IEEE
International System-On-Chip Conference (SOCC), IEEE, 2019, pp. 144–149.

[66] N. Muralimanohar, R. Balasubramonian, N.P. Jouppi, Cacti 6.0: A tool to model
large caches, HP Laborator. 27 (2009) 28.

[67] A. Agrawal, M. Ali, M. Koo, N. Rathi, A. Jaiswal, K. Roy, IMPULSE: A 65-nm
digital compute-in-memory macro with fused weights and membrane potential
for spike-based sequential learning tasks, IEEE Solid-State Circ. Lett. 4 (2021)
137–140, http://dx.doi.org/10.1109/LSSC.2021.3092727.

http://arxiv.org/abs/1708.08917
http://dx.doi.org/10.1109/TVLSI.2017.2654298
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb20
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb20
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb20
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://dx.doi.org/10.1371/journal.pcbi.0030031
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb27
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb27
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb27
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb27
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb27
http://dx.doi.org/10.1007/s11263-014-0788-3
http://arxiv.org/abs/1805.01352
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.1109/IJCNN.2015.7280696
http://dx.doi.org/10.3389/fnins.2018.00331
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb35
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb35
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb35
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb35
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb35
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb36
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb36
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb36
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb36
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb36
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb37
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb37
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb37
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb37
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb37
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb38
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb38
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb38
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb38
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb38
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1612.01064
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb41
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb41
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb41
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb41
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb41
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb42
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb42
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb42
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb42
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb42
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb43
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb44
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb44
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb44
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb49
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb49
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb49
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb50
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb51
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb51
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb51
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb51
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb51
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/cs.LG/1708.07747
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb55
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb55
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb55
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb55
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb55
http://arxiv.org/abs/1510.08829
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb57
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb57
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb57
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb57
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb57
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
http://dx.doi.org/10.1109/ISSCC.2017.7870351
http://dx.doi.org/10.1109/ISSCC.2017.7870351
http://dx.doi.org/10.1109/ISSCC.2017.7870351
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb62
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb63
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb63
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb63
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb63
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb63
http://dx.doi.org/10.1109/ISCAS.2018.8351516
http://dx.doi.org/10.1109/ISCAS.2018.8351516
http://dx.doi.org/10.1109/ISCAS.2018.8351516
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb65
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb65
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb65
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb65
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb65
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb66
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb66
http://refhub.elsevier.com/S0141-9331(22)00030-8/sb66
http://dx.doi.org/10.1109/LSSC.2021.3092727

Microprocessors and Microsystems 90 (2022) 104458D.-A. Nguyen et al.
[68] A. Agrawal, A. Ankit, K. Roy, SPARE: Spiking neural network accelera-
tion using ROM-embedded RAMs as in-memory-computation primitives, IEEE
Trans. Comput. 68 (8) (2019) 1190–1200, http://dx.doi.org/10.1109/TC.2018.
2867048.

Duy-Anh Nguyen is currently a Ph.D. student at VNU Uni-
versity of Engineering and Technology and Joint Technology
Innovation and Research Centre between Vietnam National
University Hanoi (VNU) and the University of Technology
Sydney. He received his Bachelor degree from Nanyang
Technological University, Singapore and Master degree from
Western Jiao Tong University, China. His research interest
includes system-on-chip design, hardware accelerator for
artificial intelligent.

Xuan-Tu Tran received a Ph.D. degree in 2008 from
Grenoble INP (at the CEA-LETI), France, in Micro Nano
Electronics. He is currently an associate professor at Viet-
nam National University, Hanoi (VNU), and the Director of
VNU Information Technology Institute. He was an invited
professor at the University Paris-Sud 11, France (2009,
2010, and 2015), University of Electro-Communication,
Tokyo (2019), Grenoble INP (2011), and adjunct professor
at University of Technology Sydney (2017–2020). He was
Director for the VNU Key Laboratory for Smart Integrated
Systems (SISLAB) from 2016 to 2021. His research interests
include design and test of systems-on-chips, networks-on-
chips, design-for-testability, asynchronous/synchronous VLSI
design, low power techniques, and hardware architectures
for multimedia applications. He has published 2 books, 2
patents and more than 100 peer-reviewed publications in
these areas. He is a Senior Member of the IEEE, IEEE
Circuits and Systems (CAS), IEEE Solid-State Circuits and
Systems (SSCS), member of IEICE, and the Executive Board
of the Radio Electronics Association of Vietnam (REV).
15
Khanh N. Dang is currently an assistant professor at VNU
Key Laboratory for Smart Integrated Systems, Vietnam Na-
tional University Hanoi (VNU), Hanoi Vietnam. He received
his B.Sc., M.Sc., and Ph.D. degree from VNU University
of Engineering and Technology, University of Paris-Sud
XI, and The University of Aizu, Japan in 2011, 2014,
and 2017, respectively. Dr. Khanh N. Dang was visiting
researcher at University of Aizu in 2019. His research in-
terests include System-on-Chips/Network-on-Chips, 3D-ICs,
and fault-tolerant systems.

Francesca Iacopi is a Professor of Electronics, Faculty of
Engineering and IT, University of Technology Sydney. She
has a M.Sc. in Physics from Roma La Sapienza University,
Italy (1996) and a Ph.D. in E.E./ Materials Science from
the Katholieke Universiteit Leuven, Belgium (2004). Trained
as a Physicist, after a start in Particle Physics (CMS@
LHC), I have gradually morphed into a Materials Scien-
tist/Engineer and Nanoelectronics expert with nearly 20
years’ experience in semiconductor Industry and Academia.
I am author of over 130 peer-reviewed publications and
holder of 9 US granted patents in the field of semiconductor
technology. I have achieved international reputation for
my contributions to the ITRS roadmap of materials and
processes for advanced semiconductor technologies across
the area of devices, interconnects and packaging. Her re-
search focus is the translation of basic scientific advances in
nanomaterials and novel device concepts into semiconductor
technologies. In particular, my seminal work at IMEC on
low-k dielectrics for on-chip interconnects over the 1999–
2009 decade together with Intel, AMD and other partners,
has guided the industrial uptake of porous dielectrics into
modern semiconductor microprocessors.

http://dx.doi.org/10.1109/TC.2018.2867048
http://dx.doi.org/10.1109/TC.2018.2867048
http://dx.doi.org/10.1109/TC.2018.2867048

	A low-power, high-accuracy with fully on-chip ternary weight hardware architecture for Deep Spiking Neural Networks
	Introduction
	Related works
	Training algorithms for SNNs
	Weight quantization for low-precision neural networks
	Hardware architecture for large-scale SNNs

	Ternary weight spiking neural networks
	Preliminaries
	Spiking neuron models
	Definition of time steps and inference latency in spiking neural networks
	Rate encoding for input

	Analysis of memory storage and energy from memory access for SNNs
	Fully connected spiking neural networks
	Convolutional spiking neural networks

	Training of SNN with ternary weight

	Proposed hardware architecture
	Neural processing module
	Fixed 3-layers architecture
	Scalable design approach for TW-SNN

	Experimental results
	Software evaluation results
	Fully connected TW-SNN
	Convolutional TW-SNN

	Hardware evaluation results
	Results for fixed, 3-layers TW-SNN implementation
	Results for one node in our scalable implementation
	Estimation of energy efficiency for TW-SNN with VGG16 on CIFAR10 dataset

	Discussion
	Conclusion and future works
	Declaration of competing interest
	Acknowledgment
	References

