
ORIGINAL RESEARCH
published: 25 June 2021

doi: 10.3389/fnins.2021.690208

Frontiers in Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 690208

Edited by:

Hong Qu,

University of Electronic Science and

Technology of China, China

Reviewed by:

Xiaoling Luo,

University of Electronic Science and

Technology of China, China

Simeon A. Bamford,

Italian Institute of Technology (IIT), Italy

*Correspondence:

Abderazek Ben Abdallah

benab@u-aizu.ac.jp

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 April 2021

Accepted: 04 June 2021

Published: 25 June 2021

Citation:

Ben Abdallah A and Dang KN (2021)

Toward Robust Cognitive 3D

Brain-Inspired Cross-Paradigm

System. Front. Neurosci. 15:690208.

doi: 10.3389/fnins.2021.690208

Toward Robust Cognitive 3D
Brain-Inspired Cross-Paradigm
System
Abderazek Ben Abdallah 1* and Khanh N. Dang 1,2

1 Adaptive Systems Laboratory, Graduate School of Computer Science and Engineering, The University of Aizu,

Aizu-Wakamatsu, Japan, 2 VNU Key Laboratory for Smart Integrated Systems (SISLAB), VNU University of Engineering and

Technology, Vietnam National University, Hanoi, Vietnam

Spiking Neuromorphic systems have been introduced as promising platforms for

energy-efficient spiking neural network (SNNs) execution. SNNs incorporate neuronal

and synaptic states in addition to the variant time scale into their computational

model. Since each neuron in these networks is connected to many others, high

bandwidth is required. Moreover, since the spike times are used to encode information

in SNN, a precise communication latency is also needed, although SNN is tolerant

to the spike delay variation in some limits when it is seen as a whole. The two-

dimensional packet-switched network-on-chip was proposed as a solution to provide

a scalable interconnect fabric in large-scale spike-based neural networks. The 3D-ICs

have also attracted a lot of attention as a potential solution to resolve the interconnect

bottleneck. Combining these two emerging technologies provides a new horizon for IC

design to satisfy the high requirements of low power and small footprint in emerging

AI applications. Moreover, although fault-tolerance is a natural feature of biological

systems, integrating many computation and memory units into neuromorphic chips

confronts the reliability issue, where a defective part can affect the overall system’s

performance. This paper presents the design and simulation of R-NASH-a reliable

three-dimensional digital neuromorphic system geared explicitly toward the 3D-ICs

biological brain’s three-dimensional structure, where information in the network is

represented by sparse patterns of spike timing and learning is based on the local

spike-timing-dependent-plasticity rule. Our platform enables high integration density

and small spike delay of spiking networks and features a scalable design. R-NASH

is a design based on the Through-Silicon-Via technology, facilitating spiking neural

network implementation on clustered neurons based on Network-on-Chip. We provide

a memory interface with the host CPU, allowing for online training and inference

of spiking neural networks. Moreover, R-NASH supports fault recovery with graceful

performance degradation.

Keywords: spiking neural network, neuromorphic, 3D-ICs, fault-tolerance, mapping algorithm

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.690208
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.690208&domain=pdf&date_stamp=2021-06-25
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:benab@u-aizu.ac.jp
https://doi.org/10.3389/fnins.2021.690208
https://www.frontiersin.org/articles/10.3389/fnins.2021.690208/full

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

1. INTRODUCTION

The brain-inspired computing paradigm takes inspiration from
the biological brain to develop energy-efficient computing
systems for future information processing capable of efficiently
executing highly complicated tasks, such as decision-making and
perception. Spiking neural networks (SNNs) attempt to mimic
the information processing in the mammalian brain based on
parallel arrays of neurons that communicate via spike events.
Different from the typical multi-layer perceptron networks,
where neurons fire at each propagation cycle, the neurons in SNN
model fire only when a membrane potential reaches a specific
value. In SNN, information is encoded using various encoding
schemes, such as coincidence coding, rate coding, or temporal
coding (Levin et al., 2014). SNN typically employs the integrate-
and-fire neuron model in which a neuron generates voltage
spikes (roughly 1 ms in duration per spike) that can travel down
nerve fibers if they receive enough stimuli from other neurons
with the presence of external stimuli. These pulses may vary in
amplitude, shape, and duration, but they are generally treated
as identical events. To better model the dynamics of the ion
channel in a biological neuron, which is nonlinear and stochastic,
the Hodgkin-Huxley (Goldwyn et al., 2011) conductance-based
neuron is often used. However, the Hodgkin-Huxley model is too
complicated to be used for a large-scale simulation or hardware
implementation.

Software simulation of SNN (Hazan et al., 2018; Stimberg
et al., 2019) is a flexible method for investigating the behavior
of neuronal systems. However, simulation of a large (deep)
SNN system in software is slow and cannot fully exploit
the overall system performance. An alternative approach is
a hardware implementation, which provides the possibility
to generate independent spikes accurately and simultaneously
output spikes in real time. Hardware implementations of SNNs
(neuromorphic) also have the advantage of computational
speedup over software simulations and can take full advantage
of their inherent parallelism. Specialized hardware architectures
with multiple neuro-cores could exploit the parallelism inherent
within neural networks to provide high processing speeds
with low power, which make SNNs suitable for embedded
neuromorphic devices and control applications (Vu et al.,
2019). In general, the neuromorphic hardware systems consist
of multiple nodes (or clusters of neurons) connected via an
on-chip communication infrastructure (Akopyan et al., 2015;
Ogbodo et al., 2020). Expansion using a multi-chip system and
off-chip interconnects is also a viable solution for scaling up
SNNs (Akopyan et al., 2015; Davies et al., 2018). In recent
years, integrating many neurons on a single chip while providing
efficient and accurate learning has been investigated (Schemmel
et al., 2010; Benjamin et al., 2014; Furber et al., 2014; Akopyan
et al., 2015; Davies et al., 2018).

The challenges that need to be solved toward designing
an efficient neuromorphic system include building a small-
size, parallel, and reconfigurable architecture with low-power
consumption, an efficient neuro-coding scheme, and an on-chip
learning capability. Moreover, since the number of neurons to
be connected is at least 103 times larger than the amount of PEs

(Processing Elements) that need to be interconnected on modern
multicore/multiprocessor SoC platforms (Furber, 2016), the on-
chip communication and routing network is another major
challenge. In a modern deep neural network (DNN) design,
one neural network layer is often a 2D structure. However,
the “mimicked” network is generally a 3D structure. Therefore,
mapping a 3D structure onto 2D circuits may result in either
multiple long wires between layers or congestion points (Vu et al.,
2019; Dang et al., 2020b; Ikechukwu et al., 2021).

An event-driven neuromorphic system relies on the arrival
of spikes (action potentials) to compute (Purves et al., 2008).
Therefore, the arrival times of action potentials are critical to
allow accurate and consistent outputs. Since the shared bus
is no longer suitable for multicore systems and point-to-point
interconnects cannot serve a high fanout wires (Lee et al.,
2008), moving to a new on-chip communication paradigm with
the ability to extend to multiple-chip interconnects is needed.
One of the consensuses of state-of-the-art architecture is to
utilize the parallelism and scalability of 2D Network-on-Chip
(NoCs) (Akopyan et al., 2015; Davies et al., 2018) and further
extend it to multichip systems. In this approach, the neurons
of the silicon brain are clustered into nodes that are attached to
micro-routers.

From another hand, semiconductor development is
confronting the end of Moore’s Law, which no longer allows us
to reduce the feature size as we reach the atomic scale. To get
to the “More than Moore” goal (Waldrop, 2016), heterogeneous
integration is a suitable approach to integrate more transistors
in the same die. One of the popular approaches is to stack the
conventional 2D wafers together to form a 3D-chip (Banerjee
et al., 2001). Another method is monolithic 3D-ICs that support
multiple silicon layers based on small vias (Panth et al., 2014).
The Through-Silicon Vias (TSVs) or Monolithic Intertier Vias
(MIVs) constitute one of the main interlayer communication
mediums. The 3D-Network-on-Chip (3D-NoC) (Ben Ahmed
and Ben Abdallah, 2013) is also a promising approach that can
further enhance the parallelism and scalability of multicore and
neuromorphic systems. Figure 1 illustrates a potential mapping
of an emulated silicon brain into 3D-ICs. Here, the anatomical
architecture of Spaun indicates large brain structures, and
their connectivity is illustrated with thick dark-yellow lines for
communication between elements of the cortex. In contrast,
thin lines show connectivity between Basal Ganglia and the
cortex (Eliasmith et al., 2012; Vu et al., 2019). However, despite
bringing several benefits of lower power, smaller footprints,
and low latency, the integration of a neuromorphic system into
3D-ICs was not well investigated.

This paper presents a reliable three-dimensional digital
neuromorphic system, named R-NASH, geared explicitly toward
the 3D-ICs biological brain’s three-dimensional structure,
where information in the network is represented by sparse
patterns of spike timing and learning is based on the local
spike timing-dependent plasticity rule. R-NASH is based on
the Through-Silicon-Via technology, facilitating the spiking
neural network implementation on clustered neurons based
on Network-on-Chip. Morever, R-NASH features efficient
spiking neuron mapping algorithms to map the neurons into

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 1 | Neuro-inspired 3D silicon brain. (A) The anatomical architecture of Spaun indicates major brain structures and their connectivity. (B) The architecture of

Spaun, where thick dark-yellow lines illustrate communication between elements of the cortex while thin lines show connectivity between Basal Ganglia and the

cortex. (C) A possible mapping of a Spaun system into 3D-IC.

suitable R-NASH clusters based on a genetic algorithm (GA).
Furthermore, R-NASH supports faults recovery with graceful
performance degradation.

The rest of this paper is organized as follows: section 2 presents
related works. section 3 describes the proposed R-NASHplatform
and presents the neuron mapping method based a graph-based
algorithm. section 4 presents the evaluation results. Finally,
section 5 concludes this paper.

2. RELATED WORKS

In this section, we summarize the related works on neuromorphic
systems. One of the most crucial computing units for SNN is
neuron architecture. Due to its low complexity, Leaky-Integrate-
and-Fire (LIF) or Integrated-and-Fire (IF) have been the de facto
choice for hardware-based neuromorphic systems (Benjamin
et al., 2014; Akopyan et al., 2015; Davies et al., 2018; Frenkel
et al., 2018; Stimberg et al., 2019). However, there are several
variations in the neuron design. While mixed-analog-digital
neurons (Benjamin et al., 2014; Stimberg et al., 2019) can only
support a certain level of computing due to their primitive design,
full digital neurons can performmore complex computation with
the trade-off of larger area cost. Chen et al. (2018) use relative
leak on the current membrane potential instead of constant and
added bias on input. Work in Diehl and Cook (2015) (software)
uses adaptive thresholds that decaying overtime during learning.
These variations may affect the design’s area cost and timing;
however, they all follow the same principle as above. The work
in Frenkel et al. (2018) and Frenkel et al. (2019) supports loading
neuron parameters, such as membrane potential, threshold, and
so on.

Another major problem is the neuron communication
approach. Point-to-point or bus-based interconnects cannot
scale up to a large system (i.e., a million neurons and a billion
synapses). Therefore, adopting an on-chip and off-chip network
has been a consensus among state-of-the-art works (Benjamin
et al., 2014; Akopyan et al., 2015; Davies et al., 2018; Frenkel et al.,
2018; Stimberg et al., 2019).

Neurogrid by Stanford University is one of the early works
on simulating biological brains in real-time with millions of

neurons (Benjamin et al., 2014). Neurogrid is based on mixed-
analog-digital neuron design, where the neuron is based on a
capacitor that can be charged by incoming action potentials (or
spikes). The voltage of the capacitor is further put to a voltage
comparator to compare with the threshold voltage. Once the
comparator outputs “1,” which means the capacitor’s voltage has
crossed the threshold, the outcome is sent as the action potential,
and the capacitor is reset to ground voltage. The operation of
the neuron is approximately closed to the Integrate and Fire
model. The output is packetized with variable length flits to
send to an on-chip and off-chip tree-based communication fabric
that supports multi-casting (Benjamin et al., 2014). To allow
a better scalable design, Neurogrid follows an Address Event
Representation (AER), in which the addresses of their sources
represent spikes.

The next notable work is BrainScaleS (Schemmel et al.,
2010; Scholze et al., 2011) which is built with mixed-analog-
digital neurons. The structure of BrainScaleS’s neurons can
model the Leaky-Integrate-and-Fire as it supports the leaky
function. Communication of BrainScaleS is based on a so-called
hierarchical digital routing infrastructure. The on-chip and off-
chip communication also follow the AER protocol.

To support more complex neuron computation,
SpiNNaker (Furber et al., 2014) uses one million homogeneous
ARM968 processors for emulation. Each ARM processor can
simulate a thousand neurons that allow the system to save
up to a billion neurons. SpiNNaker uses a fully packetized
communication infrastructure built on a folded two-dimensional
toroidal mesh where each node can communicate with six
neighbors. The SpiNNaker system is also based on the AER
format with table-based multi-casting support.

TrueNorth (Akopyan et al., 2015) and Loihi (Davies et al.,
2018) are the two fully digital neuromorphic chips designed by
IBM and Intel, respectively. Both TrueNorth and Loihi chips
are based on two-dimensional mesh topology interconnects,
which allow both on-chip and off-chip communications. While
TrueNorth has fixed LIF neurons, Loihi enables users to
program the neuron operation, supporting more detailed neural
computation. Unlike volatile analog neurons, digital neurons
can be stored and reloaded from memory. Therefore, both
TrueNorth and Loihi adopt the same fashion, allowing them

Frontiers in Neuroscience | www.frontiersin.org 3 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

to use one physical neuron to emulate multiple ones. Although
the performance is not like in parallel neuron method, the
current ASIC high frequency still enables them to operate close
to the biological speed. Due to their low-cost constraints, none
of these works support multicast, requiring them to utilize the
unicast approach.

Thanks to Network-on-Chips’ scalability and parallelism,
most of the state-of-the-art works have adopted one form of on-
chip/ff-chip communication. However, scaling using 3D-ICs has
not been well considered in previous neuromorphic chip designs.
For Deep Neural Networks, Joseph et al. (2021) claimed that
3D architectures could speedup 9.14× when compared to the
2D ones. Instead of using a 2D array of Multiple-Accumulation-
Units (MACs), the authors converted to the 3D structure by
using either through-silicon-vias (TSVs) or monolithic intertier
vias (MIVs). Previously, we have explored the ability to integrate
SNN into 3D-NoCs (Dang and Ben Abdallah, 2019; Ikechukwu
et al., 2021). Instead of using 2D-NoCs, we extend the NoC to
the third dimension, allowing the conventional neuron cluster
design to work with small changes in the routing mechanism. As
most of the state-of-the-art works still focus on dealing with 2D-
ICs neuromorphic systems, we observe that exploring to 3D-ICs
approach can bring several benefits such as smaller footprints and
small number of hops.

3. R-NASH PLATFORM DESIGN

The R-NASH platform design, shown in Figure 2, consists of
four phases. First, the software spiking neural network model
is developed with various configurable parameters, including
neurons, synapses, thresholds, learning types, and interconnects.
Then, the neurons mapping phase is performed based on four
main steps: (1) Transformation: convert the hardware parameters
to values that can be read and executed by the neuromorphic
hardware, (2) Clusterize: group and find the suitable mapping of
neurons, (3) Scheduling, and (4) Configuration. We use a genetic
algorithm (discussed later) to optimize the flow. As a highly
complex design, neuromorphic hardware is generally prone to
soft and permanent faults, leading to performance degradation.
Therefore, the run-time maintenance stage checks and recovers
from faults.

3.1. R-NASH Hardware Building Blocks
The overall architecture of the neuromorphic system, shown
in Figure 3, is based on a 3D-IC approach to model the
three-dimensional structure of the brain. The neurons and
their synapses are grouped into neuron clusters or nodes.
Instead of using a point-to-point neuron connection, we use a
packet-switched mesh-based 3D-Network-on-Chip architecture.
The inter-layer communication medium is Through-Silicon-
Via (Dang et al., 2020a), one of the advanced technologies
for stacking 3D-ICs. While a 3D-Mesh NoC handles the
communication, the computation is done by neuron clusters
(nodes) as shown in Figure 3D. The incoming spikes in AER
(Address-Event-Representation) protocol are stored in memory
and decoded to obtain the address and the read enable signal
for the weight memory. By reading the synapses from memory,

the system emulates the weighted spikes for LIF neuron inputs.
After receiving the address of the corresponding synapse and
the enable signal, a series of weighted inputs are sent to the
dedicated LIF neuron, which accumulates the value, subtracts the
leak, and checks the firing condition. The output spike is finally
stored in a postsynaptic SRAM and sent to the Network-on-Chip.
More details about the neuron clusters and the 3D NoC router
architectures are given in sections 3.1.1, 3.1.3, respectively.

3.1.1. Spiking Neural Processing Core (SNPC)
Figure 3D shows the architecture of the SNPC, which is
the backbone of the proposed neuromorphic system. The
SNPC consists of four major modules: (1) Network Interface,
which supports the communication via our 3D NoC; (2)
Crossbar, which supports the spikes decoding phase and extracts
the corresponding weights; (3) LIF array, which consists of
multiple LIF neurons functioning in a parallel; and (4) STDP
learning module.

Once a packet is fed to the network interface from the 3D-
NoC router, its information is decoded to decide the packet type.
There are two types of packets: (1) spikes (or action potentials)
and (2) memory access (read/write in single/burst). For the spike
flits under the AER format, the NI decodes the equivalent address
in the memory and sends it to the crossbar to obtain the weight.
Once a neuron of the the SNPC fires, its index or address
is encoded and sent to the 3D-NoC to emulate inter-neuron
communication. For memory access, the NI provides an interface
to read and write each neuron’s weight memory and parameters
in single and burst transaction mode.

TheNetwork Interface allows the neurons to communicate via
the on-chip network infrastructure. The spike (in AER format)
flit is converted to the address of the weight SRAM. A flit provides
the instruction and the required addresses to read/write to/from
the memory cells and registers in the neuron cluster. Here, the
memory access flits are issued by a master (or external host)
processor in the system. The NI supports two types of read/write
commands: single and burst. The individual read/write only
provides access to one element per request, while an argument of
length must follow the burst ones. The NI converts the requested
address to the local address of each weight memory or LIF array.
Figure 4 illustrates R-NASH’s flits. The first bit indicates whether
the flit is a spike (0) or memory access (1). With the spike flit,
it is followed by four fields: (1) destination node address (9-bit),
(2) neuron mask to allow the sparse connection (3-bit: 8 types
of sparse), (3) AER of the source node (9-bit) and (4) AER of
the neuron in the source node. Here, the AER of a firing neuron
is represented via two fields: node address and neuron address;
this allows the system to scale up to 8 × 8 × 8 3D-NoC nodes
(512 nodes) and 256 neurons/node. Since we only use 30 in 32-
bit 3D-NoC flit, we can extend the neuron ID field to 10-bit to
allow indexing 1,024 neurons/node, allowing the R-NASH system
to have 0.5 million neurons and 0.5 billion synapses. Large-scale
configuration can extend the field to support more bits in neuron
ID, PE ID, or NoC address.

For memory access spikes, there are four types: (1) single
read, (2) burst read, (3) single write, and (4) burst write.
The two-bit command field allows the system to inform

Frontiers in Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 2 | R-NASH platform. (A) SNN model. (B) Mapping into the neuromorphic hardware. (C) R-NASH hardware. (D) Run-time maintenance.

the slave node to understand whether the transaction is
done, kept, corrupted (need to rewrite/reread), or canceled.
Since R-NASH is byte-addressable, the command field is
followed by the address of memory/registers on the R-NASH
node (16-bit). With the single read, the NI sends the data
corresponding to the host node’s address. With the burst
read and write, the following flit consists of the length of
these transactions.

Figure 3B shows the block diagram of the Network Interface
(NI). The input spikes are classified into either input spikes or
memory accesses. With the memory accesses, the NI provides
an interface to read and write the data in all registers and
memory blocks of the node. The read instruction makes
the NI return the master processor value of the requested
address. With the network’s input spike, the NI decode phase
gets the weight SRAM address and feeds it to the weight
memory. For multi-layer SNNs or sparsity connections, the Flit

Extractor provides the read enable (RE) signal for different
layers or different links used in the weight memory. As a
result, a node can have multiple AERs at the same address
but for other neurons. The LIF array’s output spike is fed
into the AER decoder, which extracts the address of bit
one (firing neuron). This address is then serially sent to the
remap Look-Up-Table (LUT) to obtain the AER value of the
receiving nodes.

As explained in the previous subsection, the input spikes
(series of events determined by their timestamp and their
polarity) are decoded to the weight address and neuron mask
(read-enable signal) and fed to the crossbar. The crossbar is a set
of SRAMs where each SRAM stores all synapses associated with
a single neuron. The neuron mask signal is used to discard the
unused weighted spike. After getting the address and the enable
signal, the crossbar reads the synapses from the memory and
sends them to the LIF array.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 3 | R-NASH architecture. (A) Neuromorphic System. (B) Network-Interface. (C) 3D-Router. (D) SNPC Core.

FIGURE 4 | R-NASH flit formats. (A) AER flit format. (B) Memory access flit format.

To exploit the temporal correlation, the Leaky-Integrate-and-
Fire (LIF) neuron model is selected for the proposed R-NASH
architecture. Figure 5 shows the architecture of a LIF neuron.
The weighted spike inputs (i_wspike) are fed into an adder
and register structure for accumulation. At the end of each
time step, the leak’s inverted value is also fed to the adder to

reduce the membrane potential. The neuron firing condition is
then validated by confirming that the membrane potential has
exceeded the neuron firing threshold. After the neuron fires,
it sets the refractory countdown and stops working until the
countdown is over. The period of this countdown is the refractory
period. Theoretically, a LIF or IF computation is expressed with

Frontiers in Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 5 | Temporal lif neuron model architecture.

the the equation below:

Vj(t) = Vj(t − 1)+
∑

i

wi,j × xi(t − 1)− λ (1)

Where, Vj(t) is the membrane potential of neuron j at time step
t, wi,j is the synapse weight between presynaptic neuron i and
postsynaptic neuron j, xi(t− 1) is the output spike of presynaptic
neuron i, and λ is the leak constant (λ = 0 for IF). The output of
the neuron j is described by the equation bellow:

xj(t) =

{

1, if Vj(t) ≥ Vt

0, otherwise
(2)

At the crossbar, the input spikes are multiplied with the weights
to have weighted inputs. These weighted inputs are accumulated
as the membrane potential, and when the accumulated value
exceeds the threshold, a spike is fired. The memory module
handles the multiplication of the input spikes and the weight
of synapses. Since the input spike is binary, there is no actual
multiplication hardware. Therefore, a simple register and adder
is used to perform the accumulation.

3.1.2. Controlling
There are two phases for controlling the R-NASH node: (1)
training and (2) inference. If the training mode is enabled, the
system enters the learning phases after each time step. If there is a
postsynaptic spike of the emulated training time step, the weight
is adjusted. Otherwise, the system skips to the next timestep. In
the inference process, R-NASH starts with the synchronization of
the timestep. Each node’s registers are accessible via interfaces;

therefore, the system can indicate, confirm, and change each
node’s timestep. Since the definition of timestep is loosely defined,
it helps the LIF array to switch from the integration to the
leaky phase. In other words, neurons can operate at different
timesteps if needed. The operation of the SNPC follows four
phases: (1) loading spikes, (2) integrating, (3) leak and firing, and
(4) learning (if enabled). The first phase is for downloading spikes
from presynaptic neurons via the interconnect. Due to the input
cache’s limited size, the spike is decoded and sent directly to the
crossbar. On the other hand, it is packed to a spike vector for
learning purposes due to its compactness in memory footprint.

3.1.3. Fault-Tolerant Communication Network
R-NASH is based on a 3D-NoC that supports various fault-
tolerance in input buffers, crossbar, routing hardware and
pipeline (Dang et al., 2020b). The spike-based communication
interconnect (3D-NoC) exploits temporal sparsity and consists
of multiple routers (R) to handle the communication between
the neuron custers (Dang and Ben Abdallah, 2019). Two types
of flit are supported. The first type is the spike between neurons
in AER format. The AER format flit is converted into the address
of the weight SRAM. The second type of flit is memory access.
To read and write to the memory cells and registers in the
neuron cluster, a flit provides the instruction and the required
arguments. Here, the memory access flits are issued by a master
(or external host) processor in the system. We support two
types of read/write commands: single and burst. The individual
read/write only provides access to one element per request, while
a lengthy argument must follow the burst ones. The NI converts

Frontiers in Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

the requested address to the local address of each weight memory
or LIF array. The architecture of the NI is shown in Figure 3B.

The LIF array’s output spike is fed into the AER decoder,
which extracts the address of one bit (firing neuron). This address
is then serially sent to the remap Look-Up-Table (LUT) to obtain
the AER value in the receiving nodes.

3.2. R-NASH Learning
R-NASH system supports two learning methods: (1) off-chip
learning based on a straightforward approach to load the
parameters of a pre-trained ANN and map them to an equivalent
accurate SNN, and (2) online learning based on STDP approach.
For off-chip learning, we adopt the method in Diehl et al. (2015).
The feed-forward neural network is a fully connected model with
a RELU (rectified linear units) activation function. It is trained
as usual using back-propagation with zero bias throughout the
training. When the training is complete, we map the network’s
RELU weights to the IF (Integrate and Fire) network. After that,
the weights are normalized and converted to SNN. Finally, the
converted weights are mapped to our R-NASHmodel to perform
inference. Note that there is no refractory and leaky used in this
conversion. After being normalized, the weights are quantized
into a fixed bit format and loaded to the R-NASH system via
a host CPU. In particular, we use 8-bit as the de-facto format
in our system. However, adopting a smaller bit-width makes it
possible to reduce the overall area cost because memories take up
a significant portion of the system.

Since the offline learning can be performed with different
approaches such as conversion from ANN/CNN (Rueckauer
et al., 2017; Sengupta et al., 2019), learning directly with SNN (Yin
et al., 2017; Wu et al., 2018), or bio-inspired learning (Hazan
et al., 2018) (i.e., STDP, SDSP), different approaches can be
adopted for our R-NASH system. Despite being able to load
pre-trained weights and parameters to perform inference on
our R-NASH, online learning is also supported. Here, the
online unsupervised STDP with winner-take-all mechanism is
adopted (Diehl and Cook, 2015). Once a neuron fires, it goes
to the refractory mode, and an inhibitory spike is broadcasted
to others to reduce the membrane potential. Figure 6 shows our
system using STDP learning. The input spikes can be stored in
SRAM and loaded to the system or generated by the host CPU.
Our 3D-NoC interconnect performs the transmission of spikes.
Once a neuron fires, it sends the spike to the host CPU to be
counted. At the end, the label with the maximum number of
spikes become the selected label.

Figure 7 shows the online STDP learning block. To reduce
complexity, we only adopt a simple STDPmode where the weight
of synapses are adjusted to a fixed value based on the presynaptic
spike’s relative arrival time. If the presynaptic spike from neuron
i arrives before the event of a postsynaptic spike of neuron j, the
synapse weight between neuron i and j (wij) is increased by a fixed
1w value. On the other hand, if the event of the presynaptic spike
from neuron i arrives after the event of a postsynaptic spike of
neuron j, the weight is reduced by a fixed 1w value.

R-NASH implements various reconfiguration using two
methods: (1) adaptive threshold: once the neuron fires, its
threshold is increased by a specific range, but decays if the neuron

doesn’t fire, (2) weight normalization: the average weights of a
neuron are unchanged during the learning period. However, due
to hardware architecture limitations, R-NASH cannot deliver a
high resolution like the floating-point computation unit of CPU
or GPU. For adaptive threshold, we use an additional adder in
the LIF neuron to adjust the threshold. The adjustment value
(1Thres.) in Figure 5 is selected based on whether the neuron
fires or not. As the neuron fires, the threshold is increased until
it reaches its maximum value. Otherwise, it decays until it reach
its minimum value. By using an adaptive threshold, the neuron’s
firing pattern can balance with the incoming rates. Howbeit,
unbalanced weights can lead to a neuron with higher weight
values having amaximumfiring rate, which consequently inhibits
other neurons from firing. This makes the system fail to learn in
a winner-take-all mechanism.

The updating mechanism of the STDP learning is shown in
Figure 8. Here, we illustrate with 16 timesteps and fixed weight
change to reduce the overall complexity.

3.3. Genetic Algorithm for Neurons
Mapping on R-NASH Hardware
This section presents the mapping method of the R-NASH
system. As we break the neuromorphic system into groups of
neurons connected via a Network-on-Chip, dividing and placing
are essential issues since they can heavily affect the overall system
performance. For instance, placing two connected neurons far
apart can lead to a critical delay path in the system. Consequently,
the system needs to wait for the spike to travel a long distance
before forwarding it. This also increases the power consumption
and introduces more thermal dissipation in the packet-switching
network. When addressing the issues of mapping, several design
factors, including computation, communication, and memory,
must be carefully considered. Since the computation on-chip
is embedded in nodes with this architecture, we can quickly
realize that communication is the most critical problem. If the
data is not fed fast enough to the parallel computation unit,
the system encounters a communication bottle-neck. Since the
multi-core system’s mapping issue is NP-hard (non-deterministic
polynomial-time hard), we propose an optimization method
using a simple Genetic Algorithm (GA) because ILP is NP-
complete and the heuristic search is factorial. At the beginning,
the algorithm randomizes K mapping solutions. After having
K mapping solutions, it enters G generations of improvement.
In each generation, the GA performs several steps as shown
in Algorithm 1. During the G generations, the algorithm
first removes the incorrect mappings (i.e., requires more
computing units than the designed node or has not mapped all
computations). The GA algorithm computes the cost function as
the following communication cost:

Fcost =

W
∑

i=0,j=0

dij × cij (3)

where dij and cij are the distance and the connection status
between neuron i and j. Since the data transfer is in a multi-
cast manner at each node, cij is the connection between two PEs.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 6 | On-chip STDP learning model.

FIGURE 7 | On-chip STDP learning architecture.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

Algorithm 1: Proposed Genetic Algorithm for Neurons
Mapping

// initialize phase
1 S1: load the system configuration;
2 S2: randomize the K mapping solutions;
// evolve phase

3 for (generation gi in 1 to G) do
4 S3: remove the wrong mapping solutions;
5 S4: calculate cost function (communication cost) for each

solution of the population;
6 S5: select the B best out of K solutions based on the cost

function;
7 S6:mutate the B best solutions to have new K solutions;

S6: crossover the new K solutions to have new population
;
S7: check if it satisfies the communication cost or does not
improve over several generations;

// finalize phase
8 S7: calculate cost function for each solution of the population;

9 S8: select the B = 1 best out of K solutions based on the cost
function;

FIGURE 8 | On-chip STDP learning mechanism.

B’s best communication cost are then selected out of K mapping
solutions.We can consider the communication cost as the reverse
of the fitness function.

After having B best solutions, they are crossed over to obtain K
solutions. Here, we keep the original B solutions and create a K-B
solution using the crossover. The crossover method is shown in
Figure 9A. Assuming the crossover probability is 0.4 (randomly
picked), the offspring takes 0.4 of a parent and 0.6 of another
parent to generate its mapping. Here, the neurons are clusterized
in groups (i.e., layers in multiple-layer networks) that could share
the pre-synaptic and post-synaptic neurons. Assuming there are
three groups in the system and Figure 9A shows two parents’
mapping with the configurations for three groups [G1, G2, G3]
as [100, 100, 50] and [40, 30, 80]. After the crossover process, an

offspring is generated as 60% of [100, 100, 50] plus 40% of [40,
30, 80] which is [76, 72, 62].

After the crossover generates K solutions, the GA mutates the
K solutions to generate mutated configurations (under a certain
probability). Figure 9B shows how we mutate a configuration.
Since the number of neurons mapped in each layer and in each
PE is constant, we must maintain it. In Figure 9B we describe a
case where the G3 of the node (0, 1, 0) is randomly mutated. To
maintain the number of neurons mapped, we randomize the G2
of the node (0, 2, 3) for processing. We find that the minimum
of two configurations is 30, which means we can reduce both
configurations by 30. Meanwhile, by reducing G3 of (0, 1, 0) by
30, we increase G2 by 30, and G3 of (0, 2, 3) by 30. Note that the
reduction value can be randomized between 0 and 30. However,
our experiment works best with the minimum one.

After mutation, we re-update the configuration to match
the number of unused neurons. Then, we check whether we
satisfy the communication cost in the specification. If the
communication cost is good enough, we can end the mapping.
The GA is also completed after G generations.

3.4. Run-Time Maintenance
As previously discussed, robustness is the primary target of
R-NASH neuromorphic hardware. Therefore, R-NASH also
provides a comprehensive set of fault-tolerance features. In
general, there are three significant parts of the R-NASH system
that need to be protected: (1) data integrity, (2) interconnect, and
(3) computing engine. First, we discuss how R-NASH protects
against data corruption. Then we describe the fault tolerance
feature for the communication in R-NASH.

3.4.1. Reliability Issue of Large Scale Neuromorphic

System
Naturally, spiking neural networks can deal with single or several
defective neurons during their operations. However, it will be
a critical issue if a considerable number of neurons failed. For
instance, defected neurons that consistently fire will affect the
overall accuracy of the system.

Assuming the failure probability of a single neuron is Pn
f
.

In other words, the healthy probability of a neuron is 1 − Pn
f
.

Assuming the system has N working neurons, its probability of
healthy is equal to the probability of having all N neuron healthy:

P
system

h
= (1− Pnf)

N (4)

Since we target a neuromorphic system with a large number
of neurons (i.e., N could be thousands or millions), the system’s
reliability becomes a challenging goal. Figure 10 illustrates the
overall system healthy probability under different neuron failure
probability and system scale. As we can observe, even with a low
failure probability as 10−6, when scaling to one million neurons,
the system’s survival rate is around 0.4. In summary, scaling up
the system leads to accumulated failure rates that introduce the
reliability issue.

Besides the accumulated failure rate, a large-scale system
and 3D-ICs also encounter thermal issues as the operating
temperature could be higher than conventional small-scale and

Frontiers in Neuroscience | www.frontiersin.org 10 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 9 | Crossover and mutation method for GA mapping. (A) Crossover. (B) Mutation.

FIGURE 10 | Reliability of large scale system.

2D-IC systems. In Dang et al. (2021), the normalized fault rate
analyses show by increasing the operating temperature from
70◦C to 90◦C; the fault rate is doubled. By accelerating the failure
rates (Pn

f
is increased), the system reliability can be lower.

Moreover, as non-volatile memory (NVM) technologies are
considered an emerging technology for neuromorphic systems,
it also introduces the reliability issue as NVM has low lifetime
reliability than conventional SRAM. In Zhao et al. (2020), the
authors present the reliability issue of the resistive crossbar for
neuromorphic systems.

3.4.2. Data Integrity Protection
One of the most basic protections in any highly reliable system
is to be resilient against data corruption. Here, we classify the
data into two types: (1) one-time load data and (2) transferring
data. While one-time load data such as weights and thresholds

are essential, their accuracy can be maintained by storing them
in on-chip SRAM or registers. Here, an error correction code
can be used to protect these types of data. However, from our
investigation we discovered that soft errors have little impact
on the overall accuracy. Therefore, these types of data can
be left unprotected and can periodically be written to ensure
correctness. The other type of data is the one that is transferred
among the system. In particular, spikes and synchronizations are
the significant types of flits. The initialization of the system is
also essential. Synchronization flits are critical since they ensure
the correctness of the system. To protect this type of data,
the interconnect supports two sets of SECDED (single error
correction, double error detection) (22, 16) (Hsiao, 1970). As
a result, in transferring 32-bit of data, the 3D-NoC needs to
transfer 44 bits, as this allows our R-NASH to be resilient against
one fault per set, and to be alert against two faults per set. In other

Frontiers in Neuroscience | www.frontiersin.org 11 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

words, our 3D-NoC allows 2-bit correction and 4-bit detection at
its best. By protecting the data, we can ensure the system works
with a good level of confidence.

3.4.3. Communication Protection
As we mentioned in the previous section, the data is
protected in our R-NASH system, thanks to two sets of
SECDED(22,16) (Hsiao, 1970). Moreover, R-NASH also protects
the communication infrastructure with the following features.
First, by protecting the defective buffer, a technique named
Random Access Buffer (Ahmed and Abdallah, 2014) is used
to isolate a faulty buffer from the read and write process.
Furthermore, if the crossbar is defective, there is a backup link
in the crossbar to allow communication (Ahmed and Abdallah,
2014). If the input port, output port, or the whole router is
defective, a fault-tolerant routing algorithm can recover the
system (Ahmed and Abdallah, 2014).

3.4.4. Fault-Tolerant Neurons Mapping Scheme
Another issue in large-scale neuromorphic architecture is the
fact that a given module can develop uncorrectable faults during
runtime. This means that the module is corrupted and cannot be
used to obtain even graceful accuracy degradation. Therefore, we
present a method to remap the neuromorphic system under such
faulty circumstances. To protect the faulty neural computing unit
against defects, we use two strategies: (1) a node of neuron has
some spare neurons (and their weight SRAM), and (2) there
is a spare node in the system. Once a neuron/node fails, R-
NASH can remap the neuron/node to the spare one and keep
its operation. Figure 11A shows an example of a layer in this
configuration. Here, each node has a different number of spare
neurons. Once there are failed ones, R-NASHmaps them to spare
neurons. Figure 11B shows the 25 faulty neurons of node (0, 0,
0) remapped into node (0, 3, 2). The number of spare neurons
in a node (0, 3, 2) is reduced from 256 to 231 neurons. Since
the mapping method already exists, we can use the usual SNN
mappingmethod for replacing neurons. However, the remapping
of SNN can provide an alternative approach, since there are new
factors in faulty situations. For instance, we might want to reduce
the downtime (repairing time) or limit memory transfer within
the system. On the other hand, disconnected regions due to faulty
network sections can be problematic for mapping. Due to these
reasons, we also consider the conventional method: (1) Greedy
Search: all faulty node run once to find the replacement; (2) Max-
flow min-cut: convert the problem to the multi-source multi-sink
problem; and (3) Genetic Algorithm by adjusting the existing
algorithm for mapping to obtain a more suitable solution. In the
scope of this paper, we present the adaptation of the Genetic
Algorithm for remapping. Note that three approaches are also
implemented and compared in the evaluation section. Besides the
communication cost in Equation (3), we introduce the migration
cost to reduce the repairing time of the system as follows:

Mcost =

W
∑

i=0,j=0

dij ×mij (5)

where mij is the number of migrating neurons between node i
and j. The main reason to adopt the migration cost is to reduce
the repair time due to the fact that reloading neuron weights
are expensive and can affect the real-timeliness of R-NASH. The
max-flow min-cut adaptation actually provides the optimal flow
solution, which means the lowest migration cost in the system.

Algorithm 2: Proposed Genetic Algorithm for remapping
SNN

// initialize phase
1 S1: build the unmapped and free neurons per node;
2 S2: randomize the K mapping solutions;
// evolve phase

3 for (generation gi in 1 to G) do
4 S3: calculate cost function for each solution of the

population;
5 S4: select the B best out of K solutions based on the cost

function;
6 S5:mutate the B best solutions to have new K solutions ;
7 S6: crossover the new K solutions to have new population;

// finalize phase
8 S7: calculate cost function for each solution of the population;

9 S8: select the B = 1 best out of K solutions based on the cost
function;

Algorithm 2 shows the proposed Remapping Genetic
Algorithm. It consists of three phases: (1) initialize, (2) evolve,
and (3) finalize. The initialize phase starts with the first step S1

where the number of unmapped and free neurons are counted
and sent from each node of the system. Figure 11A illustrates an
example of a layer after the initial phase. Based on these values,
the second step S2 generates K mapping solutions randomly (i.e.,
Figure 11B). This step randomizes a node with free neurons and
a node with unmapped neurons from the values in S1. At the
end of step S2, the algorithm generatesK legal mapping solutions.
They are not optimal solutions and need to be optimized.

In the evolve phase, the GA method iterates for G generations
where each generation repeats four steps. At first, step S3

compute the cost function for each solution. Here, we can adopt
only Mcost from Eq. 5. The communication cost Fcost is also
calculated for the selection step S4. In S4, the best B solutions
in K are ranked, and if they have similar Mcost values, their
Fcost are considered. Doing so preserves the simplicity of a single
objective optimization for GA, while still considering migration
and communication costs.

After getting B best solutions, it goes through two steps: S5-
crossover and S6-mutation. The crossover step S5 is performed
by mixing two random mapping solutions. It takes 50% of each
parent to generate offspring. By doing so, the offspring can inherit
the mappings of its two parents.

There are two types of mutations in the mutation step S6.
First, it finds an immediate random node between two random

Frontiers in Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 11 | Illustration of fault-tolerance remapping of the Genetic Algorithm. (A) Unmapped and free neurons per node. (B) A randomized mapping solution. (C)

Mutating by finding a shorter distance for a flow; (D) Mutate by swapping destination of a flow.

Frontiers in Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

nodes having a mapping flow. Here, we ensure the immediate
node having free neurons is closer to the source node than the
destination of the flow. For instance, Figure 11B shows the case
where the source node (0, 0, 0) has 25 unmapped neurons and all
are mapped to (0, 3, 2) — the destination node. Then, it finds the
immediate node (0, 2, 2) with two conditions: (1) there are free
neurons in the immediate node (0, 2, 2) and (2) the distance from
the source node (0, 0, 0) to the immediate node (0, 2, 2) is smaller
than the original flow [(0, 0, 0) to (0, 3, 2)]. The neurons are then
remapped to the immediate node instead of the destination. The
result can be seen in Figure 11C.

The second mutation is to swap the mapping to have a closer
migrating distance (smallerMcost). If there are two flows that can
have smaller migrating distance by swapping the destination, the
algorithm performs the swap. For instance, Figure 11C shows
unmapped neurons in node (0, 0, 0) being mapped to (0, 2, 2),
and unmapped neurons in node (0, 2, 0) beingmapped to (0, 0, 2).
Here, the migrating distances are four for both flows. However,
by switching the destination, we obtain a migrating distance of
two for both flows, as shown in Figure 11D. After G generations,
the algorithm finalizes by selecting only the best solution (step
S7 and S8). This solution is used to perform the mapping
method. Since the GA might take a long time to complete, we
can also allow early termination of the mapping and use the
best-found solution. In summary, this GAmethodology provides
an extension for the optimization problem of remapping faulty
neurons. While the mapping algorithm only focuses on the
communication cost, GA allows designers to take the migration
cost function for the optimization.

4. R-NASH EVALUATION RESULTS

In this section, we present the performance evaluation of the
proposed system. First, the initial mapping issue is addressed to
show the efficiency of the GA (genetic algorithm) model. Here,
we map multiple layer feed-forward networks to different 3D-
NoC sizes from 4 × 4 × 4 to 10 × 10 × 10. To understand the
effect of having different node sizes, we map the same system
into different node sizes (256, 128, 64, and 32 neurons per node)
and topologies. We also investigate the difference between 3D
and 2D topologies to illustrate the benefits of 3D structure.
To improve the robustness of the neuromorphic hardware, the
proposed fault-tolerant mapping is presented and compared
with conventional works like greedy search and max-flow min-
cut. Third, we present the hardware complexity for our system
with NANGATE 45nm and FreePDK45 TSV library. We then
present both offline and online training for the MNIST dataset
in our R-NASH neuromorphic hardware. For offline learning,
the offline trained weights of a multiple-layer feed-forward
neural network were converted and used for classification in R-
NASH. The task of online learning was performed using the
on-chip STDP with winner-take-all mechanism, thanks to the
inhibitory connections. Finally, we discuss the pros and cons of
our approach.

4.1. Initial Mapping Evaluation
In this section, we show our initial mapping evaluation. The input
configuration is fed to the platform, which helps generate the

TABLE 1 | Configuration for the mapping evaluation1.

Parameter Value

neurons per node (E) 256

nodes (N) 4× 4× 4 to 10× 10× 10

spare neurons (R) 0.2×X

spare node 1

faults (k) 0.05×X, 0.10×X, 0.15×X, and 0.20×X

SNN # layers 4

SNN configuration1 784:0.5*(W-10): 0.5*(W-10): 10

0 X: number of neurons in R-NASH. 1 MLP model. For example, the SNN configuration

for E=64 and 4× 4× 4 is 784:1633:1633:10.

3D-NoC mapping. A host PC later uses the output configuration
to configure the R-NASH.

4.1.1. Mapping Over Different 3D-NoC Sizes
To understand the GAmethod’s efficiency for initial mapping, we
first compare it with three linear mapping solutions. We adopt
the linear mapping method from SpiNNaker (Jin, 2010) and
implement it for the 3D topology to get Linear X, Linear XY, and
Linear XYZ, which represent the priority direction of the linear
mapping. The mapping configuration can be found in Table 1.
Note that there are fixed spare neurons (20% per node) and an
extra node (the highest index node) that are not used formapping
and can be used to tolerate faults later in section 4.2.

Here, we run GA with population K=100, the best B=5,
and the mutation rate of 0.5. Figure 12 shows the result of
GA in comparison with the linear mapping methods. With a
small network size of 4 × 4 × 4, after nearly 60 generations,
the GA saturates at a point, and the lowest communication
cost stays unchanged over the rest of the generations. The
final communication cost is lower than both manual mapping
solutions, and the overall cost is 0.4× the manual mapping.
With larger NoCs, it is easy to understand that it needs more
generations to be lower than the linear mapping. While 4× 4× 4
takes around 60 generation to converge, 6 × 6 × 6, 8 × 8 × 8,
and 10 × 10 × 10 need around 120, 180, and 320 generations,
respectively, to be stable. We can observe that linear mapping
methods have significantly higher communication costs in all
tested cases than the genetic algorithm ones.

4.1.2. Mapping Over Different Node Sizes
Figure 13 illustrates the mapping results over different node sizes
from 32 to 256. To maintain the same system size (the same
number of neurons), we vary the 3D-NoC size from 4 × 4 × 4
to 8 × 8 × 8. As we can observe in Figure 13, the smaller NoC
benefits the smaller distances between nodes, which can reduce
the communication cost. The smallest network size provides the
lowest communication cost (4039). By increasing the network’s
size and reducing the node’s size, the communication cost
keeps increasing. With 128, 64, and 32 neurons per node,
the communication costs are 21,768, 107,838, and 529,440,
respectively. We do not need to send multiple unicast flits
for spikes by placing neurons in the same layer into a node.
Instead, sending a single flit and distributing it to all nodes can

Frontiers in Neuroscience | www.frontiersin.org 14 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 12 | Genetic Algorithm Result for initial mapping. (A) 4× 4× 4 NoC-based, 256 neurons/node. (B) 6× 6× 6 NoC-based, 256 neurons/node. (C) 8× 8× 8

NoC-based, 256 neurons/node. (D) 10× 10× 10 NoC-based, 256 neurons/node.

significantly reduce the traffic. However, we would like to note
that scaling up the number of neurons per node is not unlimited
due to the limitation on crossbars and bottleneck on on-chip
communication. Moreover, having a large size node also leads to
the following main disadvantages: (1) lower operating frequency
due to a long critical path; (2) difficulty to place and route due
to complex structure and macro SRAM and (3) long distances
between nodes could also reduce the performance of the NoC.

Typically, the neuromorphic cluster varies between 256 and 1,024
neurons per node.

4.1.3. Comparison Between 3D and 2D in Initial

Mapping
We compare the communication cost between 3D-NoC-based
nerormorphic (3D-R-NASH) and 2D-NoC- based neuromorphic
(2D-R-NASH) systems under the same linearmapping andGA in

Frontiers in Neuroscience | www.frontiersin.org 15 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 13 | Genetic Algorithm Result of the initial mapping of 3D NoC-based. (A) 4× 4× 4, 256 neurons/node. (B) 4× 4× 8, 128 neurons/node. (C) 4× 8× 8, 64

neurons/node. (D) 8× 8× 8, 32 neurons/node.

Figure 14. We keep the same node size as 256 neurons per node
for a fair comparison and the change between the NoC sizes. We
compare 3D and 2D networks with the same number of nodes
(64, 128, 256, and 512).

As can be observed in Figure 14, mapping on a 3D structure
leads to a significantly smaller communication cost. In all test
cases (64, 128, 256, and 512 nodes), the performance of GA
on 3D is 1.4-2.0× smaller than the 2D ones. Even with linear
mappings (X, XY, or XYZ), 3D still dominates the 2D. This is

due to the nature of 3D bringing much shorter traversal paths
between regions of the chip. Spikes can travel much faster on 3D,
and this could be translated into better performance and lower
power in 3D.

4.2. Fault-Tolerant Mapping
In this section, the Genetic Algorithm for remapping is evaluated
and compared with 1-hop and N-hop Greedy Search (GS) and
MFMC: max-flow min-cut adaption to understand its efficiency.

Frontiers in Neuroscience | www.frontiersin.org 16 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 14 | Comparison between 3D and 2D mapping. (A) 64 nodes (4× 4× 4 and 8× 8) NoC-based, 256 neurons/node. (B) 128 nodes (4× 4× 8 and 8× 16)

NoC-based, 256 neurons/node. (C) 256 nodes (4× 8× 8 and 16× 16) NoC-based, 256 neurons/node. (D) 512 nodes (8× 8× 8 and 16× 32) NoC-based, 256

neurons/node.

The fault-tolerant mapping is written in Python as it reuses the
configuration from the initial mapping phase. Fault information
from R-NASH is an input for this fault-tolerant mapping. The
Greedy Search runs each node once and looks for a spare node

within one (1) hop range or in the entire system (N-hop) with
the shortest distance. On the other hand, the MFMC adaption
solves the maximum flow from faulty neurons to spare neurons;
therefore, MFMC provides the most optimal solution in terms of

Frontiers in Neuroscience | www.frontiersin.org 17 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 15 | Output mapping for the migrated neurons with random fault patterns in 3D-NoCs. The system has 256 neurons per node; 20% of the neurons are

spares with 1 redundant node without any allocated neuron at 0% fault rate. (A) 5% defect rate. (B) 10% defect rate. (C) 15% defect rate. (D) 20% defect rate.

migration cost. The configuration of the evaluation is shown in
Table 1. In this evaluation, we measure three major parameters:
(1) mapping rate: the ability to map the faulty neurons to the
spare ones; (2) average spike transmission cost (Fcost): the average
distance of all connections and (3) Migration cost Mcost : the
amount of read/write neurons needed to adapt the system.

Figure 15 illustrates the results for the proposed system for
3D-NoC configurations (see Table 1). As shown in Figure 15,
our GA method can map all faulty neurons to the spare ones
regardless of the size or topology. We have to note that the
MFMC algorithm is not optimal for communication costs and
1-hop Greedy Search can only map around 60% (around 80%
with the worst cases) of the faulty neurons. This is because 1-
hop Greedy Search only runs once in each node and looks for
one of its neighbor to map. Meanwhile, the N-hop Greedy Search
and Genetic Algorithm can map all neurons. The average Fcost
(communication cost) also varies between different approaches.
Since the 1-hop GS mostly fail to map the neurons, the average
communication distance per neuron is unchanged. For other
methods, the average Fcost fluctuates between different sizes.
However, as we can observe in Figure 15, they are reduced when

we increase the size of the NoC. This is because when we increase
the size of the NoC, the impact of moving neurons is reduced.
The effects are also smaller, with smaller fault rates (k values).
We can even notice the communication cost is maintained with
remapping. However, a slight reduction can be observed with
the migration-based algorithm. Also, GA seems to have a better
average Fcost since it optimizes Fcost as the second factor. In
conclusion, we have shown the efficiency of adapting the GA
(genetic algorithm) for solving the remapping problem. Although
the proposed GA in some cases still has a larger Fcost than
others, it has shown efficiency on both migration cost and
communication cost. Moreover, it shows efficiency even with
high defect rates where the communication cost is much lower.
On the other hand, using the max-flow min-cut to solve the
problem is also reasonable for such a situation.

4.3. Hardware Complexity
Table 2 shows the hardware complexity of the proposed R-NASH
node. The NI which supports the mapping method is integrated
with the neuron cluster and the 3D-NoC router. As shown
in Table 2, the additional LUTs for AER and Address take up

Frontiers in Neuroscience | www.frontiersin.org 18 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

TABLE 2 | Hardware complexity of the proposed R-NASH node.

Module
Area Max Freq.

(µm2) (MHz)

AER LUT 16,747 -

Network Interface Address LUT 20,768 -

Total 72,032 699.30

Neuron Cluster 205,608 751.87

64KB SRAM -

3D-NoC router (Dang et al., 2020b) 41,739 537.63

Vertical TSVs (up and down) 2,901.1136 -

23.35% and 28.83% of the Network Interface area respectively.
The overhead of these two LUTs is relatively small. On the
other hand, the NI, which supports migration techniques, only
occupies 25.95% of the tile area without the SRAM (neuron
cluster + network interface).

Figure 16 illustrates our sample layout for a 4× 4 NoC-based
SNN layer with migration support. The cluster’s configuration
is 256 spike inputs in AER format, 8-bit synapse weight, 32
physical neurons, 32 synapse crossbars for each cluster. Here,
each crossbar is implemented with a 256-bank 8-bit dual-port
SRAM using OpenRAM. We only integrate 32 neurons per node
to have a reasonable Place&Route time and a visual layout.
To support 3D-NoC inter-layer interconnect, we use TSV from
FreePDK3D45 with the size of 4.06µm2

×4.06µm2 and the Keep-
out-Zone is 15µm2

× 15µm2 for each TSV. As can be observed
in the layer’s layout, 80% of the area is for placing macro SRAM.
Since the design of the LIF neuron is light-weight, the most
complicated part is the crossbar.

Howbeit, the NI requires two dedicated SRAMs for converting
the AER from local value to a global one and a destination lookup
table. We can further optimize the design’s footprint by reducing
the bit-width of a synapse or using an alternative memory
approach (eDRAM, STT-RAM, ormemristor). Moreover, we add
more stacking layers dedicated to memory, which allows us to
have a smaller footprint.

4.4. System Validation
This section presents the result of online and offline training for
our R-NASH system. As the 3D-NoC aims to model a complex
neuromorphic system, the conventional MNIST classification
neural networks are too small tomap. Therefore, in the validation
section, we have scaled up the feed-forward neural network’s
hidden layer to map it into our R-NASH.We first show the offline
conversion from a feed-forward ANN to our SNN. The weight
and other parameters are loaded into the system using a memory
interface. Then, the online STDPmethod is presented. The initial
weights, which are randomized and normalized, are loaded in our
R-NASH system.

4.4.1. Offline Feed-Forward Network
For the offline training, we use the feed-forward network
784:1024:1024:10 and 784:1024:1024:1024:10 for the MNIST
dataset. We fixed the hidden layer to 1024 to fit the 10-bit SRAM

model for the hardware design. Here, we use a 3D-NoC of 4×4×4
with 64 neurons/node from the output of the initial mapping
in Figure 13. Since 2058 and 3,082 neurons are used in the two
networks, we reserve the remaining ones as the spare neurons
for tolerating potential defects. There is one spare node at (3, 3,
3) and spare neurons of around 31/32 for the first network and
2/3 for the second network in all active nodes. Although scaling
the 3D-NoC and the number of neurons per node can support
a bigger network-size, we only adopt the above feed-forward
size to avoid large SRAM models. Using sparse synapses could
reduce the SRAM size; however, we only target to validate R-
NASH’s operation. The training and inference phases in software
are written inMATLAB. The R-NASH is described and simulated
in Verilog HDL with the converted weight from the MATLAB
models.

Figure 17 shows the accuracy results of 784:1024:1024:10 on
the R-NASH system in comparison with the software version.
The R-NASH system uses an 8-bit signed weight representation
which gives similar results to the converted version in Matlab.
The total number of time steps is 350 (1 ms per time step in
the simulation). Here, we also evaluate the fixed point SNN in
software where we clip the least significant bit in representation.
We also consider our R-NASH, where 8-bit signed fixed-point
values are converted to an integer value to enable hardware
implementation. At first, we can easily see the drop in accuracy
when comparing the floating-point SNN and the fixed point ones.
The reductions are significant when the number of representing
bit is <5. The main reason is that the more extensive and deeper
network will accumulate the values’ differences, which results in
more inaccurate results. Nevertheless, we can easily see that an 8-
bit signed fixed point is the best for implementation and provides
nearly identical accuracy at the end with slower response time.

Figure 18 illustrates the case of three hidden layer network
(784:1024:1024:1024:10). Here, we can observe a similar behavior
as the first network. The R-NASH system provides a similar result
as the software in floating point. The 7-bit fixed point version
now can have final result of inference close to the floating point;
however, it needs over 100 time steps to converge.

In summary, R-NASH can perform inference of pretrained
and converted networks, and the result is identical to the software
version. Note that R-NASH saturates around the 55th time step
in both cases. If the system cuts the operation at this point, it
could save nearly 85% of the computation time. By using the
clock gating method (Mahmoodi et al., 2008), the energy could
be saved at zero data switching activity.

4.5. Unsupervised STDP
In this section, we evaluate the online STDPmethod for the same
MNIST benchmark. Here we adopt the network in Diehl and
Cook (2015) with the recurrent version that could be found in
the work of Hazan et al. (2018). Furthermore, we simplify the
architecture to be identical to the hardware implementation. The
network size of Diehl and Cook (2015) is 784:N:N while our
network is 784:N. Since the number of neurons is not significant
enough to scale to a 3D-NoC, we only use 1 × 4 × 4 3D-NoC
and 64 neurons/node. There are two versions with N = 100 and
N = 400, mapped into 2 and 4 nodes. Since there is no sparse

Frontiers in Neuroscience | www.frontiersin.org 19 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 16 | Layout of a 4× 4 R-NASH layer. A tile’s size is 790µm× 1, 580µm.

connection, the communication cost stays unchanged with any
neuron placements. The training and inference in software is
written in Python with our customized LIF neurons.

For testing purposes, we adopt the BindsNet (Hazan et al.,
2018) platform to build the RTL-like version of the LIF neuron
to train and test on our PC. After completing the testing
and debugging phase, the Verilog model train is performed
and compared with the golden reference software. In the
software model of SNN (Diehl and Cook, 2015), the authors
used the adaptive weight change (1w = w × learning_rate);
however, it is not suitable for our hardware STDP due to two
reasons: (1) the resolution of the weight (8-bit) is too small
to use the same principle and (2) the architecture for the
multiplication is too complicated. Therefore, we use the fixed
weight change here. We also evaluate the method for more
understanding.

Table 3 shows the accuracy of the software version of STDP
learning and our hardware STDP SNN. Comparing the R-NASH
model and the software (Diehl and Cook, 2015), we could

observe a drop in accuracy by using our RTL model. This is
due to the much simpler hardware model and lower resolution
(fixed 8-bit for weight, 16-bit for membrane potential, 16-bit for
normalizing).

Figure 19 illustrates the weight with N = 100 and the
input (output) spikes extracted from our R-NASH software
model. The weights have been adapted into the MNIST.
However, there are some drawbacks due to the hardware
model’s simplicity. For instance, there is some weight
with a similar distribution. As a result, these neurons fire
simultaneously and continue to fire during the following
time steps. Figure 19 illustrates that three neurons continue
to fire during the 350 simulated timesteps. Moreover, the
weights keep changing during the training time due to the
pure STDP without intervention. We can certainly observe
that some weights are mixed of two numbers (i.e., 8 and 5, 1
and 7).

Table 4 depicts the comparison between works on
neuromorphic systems with the MNIST dataset. For on-chip

Frontiers in Neuroscience | www.frontiersin.org 20 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

FIGURE 17 | Accuracy result of offline training for MNIST dataset with the network model 784:1024:1024:10.

FIGURE 18 | Accuracy result of offline training for MNIST dataset with the network model 784:1024:1024:1024:10.

learning, our STDP learning accuracy with 100-neurons has
lower accuracy in contrast to other approaches. However, by
having 400 neurons in the model, its accuracy is compatible with

different online learning approaches. On the other hand, the
conversion from ANN dominates other learning methods with
around 98% accuracy.

Frontiers in Neuroscience | www.frontiersin.org 21 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

4.6. Discussion
We have presented the design and the platform of a novel 3D
neuromorphic system (R-NASH). Moreover, we demonstrated
the scalability of the proposed approach and its ability to tolerate
faults during run-time. In this section, we discuss the existing
problems and potential solutions:

First, the 3D-ICs are expected to have higher operating
temperatures than the 2D-ICs due to the silicon layers’
organization. In addition, 3D-ICs suffer from thermal
dissipation. Large-scale neuromorphic systems also introduce
high-density power consumption, which leads to high
temperature. Therefore, optimizing the operating temperature is
one of the critical issues. In Arka et al. (2021), the authors
presented a MOO approach to optimize the operating
temperature for 3D multi-core systems. As an optimization
method, the Genetic Algorithm can surely solve multiple
objective optimization (MOO) problems (i.e., using NSGA-II
Deb et al., 2002), however, as it is a complex issue, further
investigation is needed.

Second, the scalability of the address range in R-NASH is
currently limited to 3-bit per address. To have a better range,
having an extra bit to represent the address is necessary. For
instance, by adopting a 64-bit format for 3D NoC flit, the extra
32-bit can be distributed into address, neural mask, or AER fields.
In TrueNorth (Akopyan et al., 2015), the flit consists of the offset
between the source and the destination address; therefore, there
is virtually no limitation on the address range. However, this

TABLE 3 | Accuracy result of STDP learning for SNNs.

N Floating point software R-NASH

100 79.44% 71.32%

400 88.87 % 84.05%

way of addressing has two drawbacks: (1) the memory access
is no longer globally accessible as one node can only reach
a specific range, and (2) there are limited options for long-
range synapses. By having a limited access range of memories,
downloading weight for inference need a different mechanism.
Moreover, the fault-tolerance and the initial mapping issues are
also under constraints.

The STDP training has not been efficient so far for multiple
layer neural networks. In Lee et al. (2018), the authors have
presented a method to train the kernel of convolutional neural
network with STDP the updatemechanism is still complicated for
full-hardware implementation. In Shi et al. (2021), a hardware-
friendly method has been introduced; however, the procedure
is based on layer-based error backpropagation, which is not
bio-plausible. Consequently, STDP-basedmultiple-layer network
training is still an open problem for future researches.

In our R-NASH design, a neuron can send its spikes to a high
number of downstream neurons. The routing can bemulticasting
by replicating the flits during operation. In the NI, we also
support a relaying protocol that allows the incoming spikes to
be relayed to the nearby cores. However, there is a limitation
on the number of upstream neurons that can send spikes to
a neuron. Since the synaptic SRAM size is unchanged after
manufacture, the number of memory cells to store the weight
is limited. Consequently, it not possible to extend the size of
up-stream neurons.

Tree topology has been considered as more efficient than
mesh topology (Merolla et al., 2013) as the packet relayed peak
at O(n3/2) for unicast mesh and O(n) for the multicast tree. On
average, mesh unicast is still O(n3/2) while tree multicast drop
to O(n). Consequently, lesser packets are being relayed in tree
topology thanks to its natural structure. However, while shifting
to 3D-ICs, mesh topology can naturally extend into the third
dimension by simply adding the vertical connection (up and
down). Meanwhile, tree-topology inMerolla et al. (2013) support
left, right, and top directions, which cannot naturally extend into

FIGURE 19 | Illustration of the STDP learning model. (A) the final weights. (B) Illustration of input spikes for the first test image (number 8). (C) Illustration of output

spikes.

Frontiers in Neuroscience | www.frontiersin.org 22 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

TABLE 4 | Comparison result of MNIST accuracy on hardware neuromorphic systems.

Work Kim et al., 2015 Frenkel et al., 2018 Seo et al., 2011 Ours

Neuron Model IF LIF and Izhikevicz LIF LIF

Learning Stochastic On-chip On-chip On-chip ANN

Method gradient descent stochastic SDSP STDP STDP conversion

Configuration 4 cores 1 core 1 core 1/2 core 9/13 cores

neurons/core 64 256 256 256 256

Synapse precision 4,5,14 bit 4 bit 1 bit 8-bit

Accuracy (%) 84 84.5 77.2 79.4/ 84.5 98.2/98.8

Technology 65-nm 28-nm FD-SOI CMOS 45-nm SOI-CMOS 45-nm CMOS

Energy per SOP N/A 8.4pJ (0.55V) N/A 11.3pJ (1.1V)

the third dimension. Also, as mesh topology can provide escape
channels if there is faulty ports or faulty neuron, tree-topology is
extremely sensitive with fault as a single fault can cut a part of the
tree out of communication.

The problem of large fan-in and fan-out is an important
one to be addressed. Bamford et al. (2010) presented a method
tailored for the address-event receiver that allows a large
axonal fan-out structure for neuromorphic systems. The
technique can help solve the sizeable fan-in issue that our
neuromorphic system is limited on the SRAM size. Meanwhile,
Zamarreño-Ramos et al. (2012) shows a multicasting mesh for
AER that allows communication in neuromorphic systems via
2D-Mesh topology. Compared to our approach, this work
provides destination-driven routing, which is similar to our
routing but in 2D Mesh. They also offer source-driven routing
as a multicasting approach. This method requires a look-up to
help the router understand the branch structure of the routing
path. The source-driven routing can be efficient; however, it
requires a largememory block in each router for routing, which is
problematic for large-scale systems. Moreover, as we focus on the
fault-tolerant routing in this work, table-based routing has two
significant drawbacks. First, it introduces extra faulty elements.
The faulty routing tables change the routing path, which may
create a deadlock or livelock scenario. Second, any change in
neuron location leads to an extensive amount of table update in
the system.

5. CONCLUSION

In this work, we proposed and evaluated a reliable three-
dimensional digital neuromorphic system geared explicitly
toward the 3D-ICs biological brain’s three-dimensional structure
toward the design of a cross-paradigm system. Spike timing
patterns represent the information in the network, and learning
is based on the local spike-timing-dependent plasticity rule.
The proposed platform enables high integration density and
slight spike delay of spiking networks and features a scalable
design. R-NASH is a design based on the Through-Silicon-Via
technology, facilitating spiking neural network implementation
on clustered neurons based on Network-on-Chip. We provide
a memory interface with the host CPU, allowing for online

training and inference of spiking neural networks. Moreover, R-
NASH supports faults recovery using our fault-tolerant mapping
method by optimizing communication and migration costs.
We presented the functionality of the system by performing
the MNIST dataset classification. Moreover, the R-NASH
platform is also presented with the mapping method and fault-
tolerance features. The mapping method shows that it can
easily outperform manual mapping. On the other hand, we
also proposed a genetic algorithm for fault recovery in SNN.
Although the proposed work is expected to move neuromorphic
computing toward a real-world scenario on large-scale systems,
further optimization, such as bit-width reduction, low-power
optimization, is needed.

Future works for NASH would focus on real chip
fabrication and deployment in a real-world application
scenario, such as hand gesture recognition, prosthetic, and
robotic arm control. Multiple-objective optimization for
several costs such as communication, operating temperature
is also considered in our future works. In STDP learning,
keeping the weight dynamic is also an essential issue in our
future work to balance the area cost and neuron/weight
complexity.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AB initiated the research, produced the conceptual design
and framework. KD conceived and design the principles
of the R-NASH. KD wrote the R-NASH code and the
initial version of the manuscript. AB and KD contributed
to the revisions and produced the final manuscript.
Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by The University of Aizu, Japan.

Frontiers in Neuroscience | www.frontiersin.org 23 June 2021 | Volume 15 | Article 690208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

REFERENCES

Ahmed, A. B., and Abdallah, A. B. (2014). Graceful deadlock-free fault-tolerant

routing algorithm for 3D Network-on-Chip architectures. J. Parallel Distribut.

Comput. 74, 2229–2240. doi: 10.1016/j.jpdc.2014.01.002

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). TrueNorth: design and tool flow of a 65 mW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Arka, A. I., Joardar, B. K., Kim, R. G., Kim, D. H., Doppa, J. R., and Pande, P. P.

(2021). HeM3D: heterogeneous manycore architecture based on monolithic

3D vertical Integration. ACM Trans. Des. Autom. Electron. Syst. 26, 1–21.

doi: 10.1145/3424239

Bamford, S. A., Murray, A. F., and Willshaw, D. J. (2010). Large developing

receptive fields using a distributed and locally reprogrammable

address–event receiver. IEEE Trans. Neural Netw. 21, 286–304.

doi: 10.1109/TNN.2009.2036912

Banerjee, K., Souri, S. J., Kapur, P., and Saraswat, K. C. (2001). 3-D ICs: A novel

chip design for improving deep-submicrometer interconnect performance

and systems-on-chip integration. Proc. IEEE 89, 602–633. doi: 10.1109/5.9

29647

Ben Ahmed, A., and Ben Abdallah, A. (2013). Architecture and design

of high-throughput, low-latency, and fault-tolerant routing algorithm

for 3D-network-on-chip (3D-NoC). J. Supercomput. 66, 1507–1532.

doi: 10.1007/s11227-013-0940-9

Benjamin B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.

R., and Buss, J.-M. (2014). Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Chen, G. K., Kumar, R., Ekin Sumbul, H., Knag, P. C., and Krishnamurthy, R. K.

(2018). A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with

on-chip STDP learning and sparse weights in 10-nm finFET CMOS. IEEE J.

Solid State Circ. 54, 992–1002. doi: 10.1109/JSSC.2018.2884901

Dang K. N., Ahmed A. B., Abdallah A. B., and Tran X. (2020a). TSV-

OCT: a scalable online multiple-TSV defects localization for real-time 3-

D-IC systems. IEEE Trans. Very Large Scale Integ. Syst. 28, 672–685.

doi: 10.1109/TVLSI.2019.2948878

Dang K. N., Ahmed A. B., Okuyama Y., and Abdallah A. B. (2020b). Scalable

design methodology and online algorithm for TSV-cluster defects recovery in

highly reliable 3D-NoC systems. IEEE Trans. Emerg. Top. Comput. 8, 577–590.

doi: 10.1109/TETC.2017.2762407

Dang K. N., and Ben Abdallah A. (2019). “An efficient software-hardware

design framework for spiking neural network systems,” in 2019 International

Conference on Internet of Things, Embedded Systems and Communications

(IINTEC) (Gammarth), 155–162.

Dang, K. N., Ahmed, A. B., Abdallah, A. B., and Tran, X.-T. (2021). Hotcluster: a

thermal-aware defect recovery method for through-silicon-vias toward reliable

3-d ics systems. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 1.

doi: 10.1109/TCAD.2021.3069370

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6,

182–197. doi: 10.1109/4235.996017

Diehl P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Frenkel, C., Lefebvre, M., Legat, J.-D., and Bol, D. (2018). A 0.086-mm2 12.7-

pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic

processor in 28-nm CMOS. IEEE Trans. Biomed. Circ. Syst. 13, 145–158.

doi: 10.1109/TBCAS.2018.2880425

Frenkel, C., Legat, J., and Bol, D. (2019). MorphIC: a 65-nm 738k-Synapse/mm2

quad-core binary-weight digital neuromorphic processor with stochastic

spike-driven online learning. IEEE Tran. Biomed. Circ. Syst. 13, 999–1010.

doi: 10.1109/TBCAS.2019.2928793

Furber S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng. 13,

051001. doi: 10.1088/1741-2560/13/5/051001

Goldwyn, H. J., S Imennov, N., Famulare, M., and Shea-Brown, E. (2011).

Stochastic differential equation models for ion channel noise in Hodgkin-

Huxley neurons. Phys. Rev. E 83, 4190–4208. doi: 10.1103/PhysRevE.83.041908

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.

et al. (2018). BindsNET: a machine learning-oriented spiking neural networks

library in Python. Front. Neuroinforma. 12:89. doi: 10.1147/rd.144.0395

Hsiao, M.-Y. (1970). A class of optimal minimum odd-weight-column SEC-DED

codes. IBM J. Res. Dev. 14, 395–401.

Ikechukwu, M. O., Dang, K. N., and Abdallah, A. B. (2021). On the

design of a fault-tolerant scalable three dimensional noc-based digital

neuromorphic system with on-chip learning. IEEE Access. 9, 64331–64345.

doi: 10.1109/ACCESS.2021.3071089

Jin, X. (2010). Parallel Simulation of Neural Networks on Spinnaker Universal

Neuromorphic Hardware. The University of Manchester.

Joseph, J. M., Samajdar, A., Zhu, L., Leupers, R., Lim, S.-K., Pionteck, T., et al.

(2021). “Architecture, dataflow and physical design implications of 3D-ICs for

DNN-accelerators,” in International Symposium on Quality Electronic Design

(ISQED) (Santa Clara, CA), 1–7.

Kim, J. K., Knag, P., Chen, T., and Zhang, Z. (2015). “A 640m pixel/s 3.65 mw

sparse event-driven neuromorphic object recognition processor with on-chip

learning,” in 2015 Symposium on VLSI Circuits (VLSI Circuits) (Kyoto: IEEE),

C50–C51.

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2018). Deep spiking convolutional

neural network trained with unsupervised spike-timing-dependent plasticity.

IEEE Trans. Cogn. Dev. Syst. 11, 384–394. doi: 10.1109/TCDS.2018.2833071

Lee, H. G., Chang, N., Ogras, U. Y., and Marculescu, R. (2008). On-chip

communication architecture exploration: a quantitative evaluation of point-

to-point, bus, and network-on-chip approaches. ACM Trans. Design Autom.

Electr. Syst. 12, 1–20. doi: 10.1145/1255456.1255460

Levin, J. A., Rangan, V., and MALONE, E. C. (2014). Efficient Hardware

Implementation of Spiking Networks. Patent No. US 2014/0351190 A1, Filed

May 1, 2014, Pub. Date Nov. 27, 2014.

Mahmoodi, H., Tirumalashetty, V., Cooke, M., and Roy, K. (2008). Ultra low-

power clocking scheme using energy recovery and clock gating. IEEE Trans.

Very Large Scale Integr. Syst. 17, 33–44. doi: 10.1109/TVLSI.2008.2008453

Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M., and Boahen, K. (2013). Amulticast

tree router for multichip neuromorphic systems. IEEE Trans. Circ. Syst. I

Regular Papers 61, 820–833. doi: 10.1109/TCSI.2013.2284184

Ogbodo M., Vu T., Dang K., and Ben Abdallah A. (2020). “Light-weight spiking

neuron processing core for large-scale 3D-NoC based spiking neural network

processing systems,” in 2020 IEEE International Conference on Big Data and

Smart Computing (BigComp) (Busan), 133–139.

Panth, S. A., Samadi, K., Du, Y., and Lim, S. K. (2014). “Design and CAD

methodologies for low power gate-level monolithic 3D ICs,” in Proceedings of

the 2014 International Symposium on Low Power Electronics and Design (La

Jolla), CA, 171–176.

Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., LaMantia, A.-S., and

McNamara, J. (2008). Neuroscience. Sunderland, MA: Sinauer Associates.

Rueckauer, B„ Lungu, I. -A., Hu, Y., Pfeiffer, M., and Liu, S. -C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., Millner, S., et al.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (Paris), 1947–1950.

Scholze, S., Schiefer, S., Partzsch, J., Hartmann, S., Mayr, C., Höppner, S.,

et al. (2011). Vlsi implementation of a 2.8 gevent/s packet-based aer

Frontiers in Neuroscience | www.frontiersin.org 24 June 2021 | Volume 15 | Article 690208

https://doi.org/10.1016/j.jpdc.2014.01.002
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1145/3424239
https://doi.org/10.1109/TNN.2009.2036912
https://doi.org/10.1109/5.929647
https://doi.org/10.1007/s11227-013-0940-9
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JSSC.2018.2884901
https://doi.org/10.1109/TVLSI.2019.2948878
https://doi.org/10.1109/TETC.2017.2762407
https://doi.org/10.1109/TCAD.2021.3069370
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/4235.996017
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1126/science.1225266
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2019.2928793
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1103/PhysRevE.83.041908
https://doi.org/10.1147/rd.144.0395
https://doi.org/10.1109/ACCESS.2021.3071089
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.1145/1255456.1255460
https://doi.org/10.1109/TVLSI.2008.2008453
https://doi.org/10.1109/TCSI.2013.2284184
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ben Abdallah and Dang 3D Brain-Inspired Cross-Paradigm System

interface with routing and event sorting functionality. Front. Neurosci. 5:117.

doi: 10.3389/fnins.2011.00117

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Seo J., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K. et al. (2011).

“A 45 nm CMOS neuromorphic chip with a scalable architecture for learning

in networks of spiking neurons,” in 2011 IEEE Custom Integrated Circuits

Conference (CICC) (San Jose, CA), 1–4.

Shi, C., Wang, T., He, J., Zhang, J., Liu, L., and Wu, N. (2021). Deeptempo: a

hardware-friendly direct feedback alignment multi-layer tempotron learning

rule for deep spiking neural networks. IEEE Trans. Circ. Syst. II Exp. Briefs 68,

1581–1585. doi: 10.1109/TCSII.2021.3063784

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Vu, T. H., Okuyama, Y., and Ben Abdallah, A. (2019). Comprehensive analytic

performance assessment and K-means based multicast routing algorithm and

architecture for 3D-NoC of spiking neurons. J. Emerg. Technol. Comput. Syst.

15, 34:1–34:28. doi: 10.1145/3340963

Waldrop, M. M. (2016). More than moore. Nature 530, 144–148.

doi: 10.1038/530144a

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Yin, S., Venkataramanaiah, S. K., Chen, G. K., Krishnamurthy, R., Cao, Y.,

Chakrabarti, C., et al. (2017). “Algorithm and hardware design of discrete-

time spiking neural networks based on back propagation with binary

activations,” in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)

(IEEE), 1–5.

Zamarreño-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., and

Linares-Barranco, B. (2012). Multicasting mesh aer: a scalable assembly

approach for reconfigurable neuromorphic structured aer systems.

application to convnets. IEEE Trans. Biomed. Circ. Syst. 7, 82–102.

doi: 10.1109/TBCAS.2012.2195725

Zhao, M., Gao, B., Tang, J., Qian, H., and Wu, H. (2020). Reliability of analog

resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 7,

011301. doi: 10.1063/1.5124915

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ben Abdallah and Dang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 25 June 2021 | Volume 15 | Article 690208

https://doi.org/10.3389/fnins.2011.00117
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/TCSII.2021.3063784
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1145/3340963
https://doi.org/10.1038/530144a
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TBCAS.2012.2195725
https://doi.org/10.1063/1.5124915
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System
	1. Introduction
	2. Related Works
	3. R-NASH Platform Design
	3.1. R-NASH Hardware Building Blocks
	3.1.1. Spiking Neural Processing Core (SNPC)
	3.1.2. Controlling
	3.1.3. Fault-Tolerant Communication Network

	3.2. R-NASH Learning
	3.3. Genetic Algorithm for Neurons Mapping on R-NASH Hardware
	3.4. Run-Time Maintenance
	3.4.1. Reliability Issue of Large Scale Neuromorphic System
	3.4.2. Data Integrity Protection
	3.4.3. Communication Protection
	3.4.4. Fault-Tolerant Neurons Mapping Scheme

	4. R-NASH Evaluation Results
	4.1. Initial Mapping Evaluation
	4.1.1. Mapping Over Different 3D-NoC Sizes
	4.1.2. Mapping Over Different Node Sizes
	4.1.3. Comparison Between 3D and 2D in Initial Mapping

	4.2. Fault-Tolerant Mapping
	4.3. Hardware Complexity
	4.4. System Validation
	4.4.1. Offline Feed-Forward Network

	4.5. Unsupervised STDP
	4.6. Discussion

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

