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Enviromental Impact of AI computing

AI (Artificial Intelligence) applications (e.g., deep learning, data analysis,
large language models) require high-end devices, massive
computational power, resulting in high energy consumption:

• Embodied carbon emission ∗ and operational carbon emission is
challenging for the environment. AI’s carbon footprint is projected to
range from 2.1% to 3.9% of the total share of greenhouse gas (GHG)
emissions[1].

• Llama 3.1 [2] has 405 billion parameters, and requires approximately
3.8 x 1025 floating-point operations to train which translates into
energy consumption of around hundreds of MWh.

• NVIDIA and Amazon estimate that over 80% of their energy
consumption is for AI inference [3], while Google estimates that
inference accounts for around 60%[4].

A solution for green and sustainable AI is needed.
∗raw material extraction, manufacturing, transportation, installation, maintenance and end-of-life
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Complexity of AI models

Figure 1: Rapid power hungry of training for deep learnings. Source: Intel Labs[5].
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Nature-Inspiration Design

Figure 2: A brief comparison of Neuromorphic System and Conventional AI.
Source: Intel Labs[5].
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Neuromorphic Computing as a Solution

• Neuromorphic computing mimics the structure and functionality
of biological neural systems.

• Neuromorphic hardware uses event-driven processing, activating
components only when necessary, unlike traditional systems which are
always running.
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Figure 3: Biological Brain and Neuromorphic System.
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Neuromorphic vs von Neumann

• von Neumann architectures require back-and-forth data
transferring between memory and CPU/GPU: high latency and
energy consumption

• Neuromorphic architectures integrate memory and processing
units: minimal latency and energy.
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Figure 4: von Neumann vs Neuromorphic.
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Key Concepts of Neuromorphic Computing

• Input and output: events (or spikes).
• Communication: address event representation.
• Computation:

1 incoming spikes are multiplied with synaptic weights → weighted inputs
2 weighted inputs are accumulated to the membrane potential
3 once the membrane potential crosses the threshold, the neuron issues

outgoing spikes and reset the membrane potential.

Figure 5: Spiking Neuron Model.
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Neuromorphic Computing Platforms (1/2)

• Software Platform: compute neuromorphic system in von Neumann
machine using Machine Learning frameworks.

• Examples: BindsNet[6], NEST[7], Brian[8].
• Main objectives: neuroscience study and fast development of

neuromorphic algorithms.
• Hardware Platform: Compute neuromorphic system with

application-specific chips for neuromorphic.
• Examples: IBM TrueNorth[9], Intel Loihi[10], SpiNNaker[9] (SpiNNaker

use ARM processors), BrainScaleS[11], FPGA-based[12].
• Main objectives: low-power & low-latency inferences.
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Neuromorphic Computing Platforms (2/2)

Human Brain SpiNNaker[9] HiCANN/BrainScaleS[11] TrueNorth[9] Loihi[10]

Neurons 100 billion 1 billion ≈ 4 million 1 million 131,072
- using 1.4 kg 10 racks 20 wafers 1 chip 1 chip

Mean synapses per neuron 7,000 Prog. 224 256 1,000
Max synapses per neuron ≈ 15,000 Prog. 14,336 256 1,000

Energy per spike 8 fJ 4 nJ 0.1–10 nJ 26 pJ >23.6 pJ
- compared to brain 1 500,000 12,500–1,250,000 3,250 >2,950

Speed up 1 1 103 − 105 1 1
Run time plasticity Yes Prog. STDP No STDP
Neuron model Diverse Prog. Adaptive exponential LIF LIF

Table 1: Comparison of Neuromorphic Architectures

• The Human Brain has a massive scale in terms of neurons and
synapses.

• The Human Brain has exceptional energy consumption.
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Challenges and Research Directions

Although neuromorphic computing can offer low-power solutions, there are
some existing challenges to be addressed

• Training for Neuromorphic Systems: Designing effective training
algorithms for neuromorphic systems is challenging due to their
non-differentiable nature and reliance on event-driven spiking activity.

• Reaching Carbon-Neutrality or Net-Zero Computing: Achieving
carbon-neutrality in computing requires minimizing energy
consumption and adopting sustainable practices throughout the
hardware lifecycle, from design to operation and recycling.
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Toward Net-Zero Neuromorphic Design (1/2)
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Figure 6: Overview of our system: (a) 3D stacking memory with M layers; (b)
Approximate Stack Memory; (c) Computing Core; (d) LIF neuron.
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Toward Net-Zero Neuromorphic Design (2/2)

Our Neuromorphic Design†

• 3D-Integrated Circuit-based Stacking Memory: support weight
decomposition for approximation.

• Approximation Circuits for Neuron: support inaccurate adders with
low-power consumption.

• On-Chip Learning: Spike-timing-dependent plasticity.
• Neural Searching Platform: Evolutionary Algorithm to search for

approximate adders and approximation level in memory.

†“Energy-Efficient Spiking Neural Networks Using Approximate Neuron Circuits and 3D Stacking Memory”, https://
ieeexplore.ieee.org/document/10819545
“Power-aware Neuromorphic Architecture with Partial Voltage Scaling 3D Stacking Synaptic Memory” https://ieeexplore.
ieee.org/document/10269541
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Evaluation Results

Model MNIST Acc.(%) Arch. Tech. Energy per SOP (pJ) Energy per SOP
(pJ) (in 14nm)

TrueNorth [13] 91.94 2D 28nm 26 (0.775V) 4.902

Loihi [10] 96 2D 14nm
FinFET 23.6 (0.75V) 23.6

ODIN [14] 84.5 2D 28nm
FD-SOI 8.4 1.078

NASH [15] 79.4 3D 45nm 11.3 (1.1V) 0.648

[16]
95.35

3D 45nm
244.28 14.02

94.84 191.46 10.98
88.77 81.16 4.65

[17]
94.8

3D 45nm
20.33 1.167

93.9 13.28 0.762
77.6 8.374 0.48

Ours

97.741

3D 45nm

8.7971 0.5041

97.112 5.1632 0.2962

94.573 3.0573 0.1753

90.304 5.9004 0.3384

86.385 3.8985 0.2235

1 Case 1: Accurate implementation (four-layer model).
2 Case 2: VDD = 0.8V in UV3 mode using the configuration X1.
3 Case 3: VDD = 0.8V in UV-PG3 mode using the configuration X1.
4 Case 4: VDD = 0.7V in UV-PG1 mode using the configuration Y3.
5 Case 5: VDD = 0.8V in UV-PG3 mode using the configuration Y3.
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28.06% energy saving with similar accuracy
65.28% energy saving with 3.18% accuracy loss
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Distributed On-Chip Learning

• Train on-chip learning in remote
devices.

• Upload and synthesize the
sub-models into a single models.
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Figure 7: Ensemble STDP learning.c

c“EnsembleSTDP: Distributed in-situ Spike Timing De-
pendent Plasticity Learning in Spiking Neural Networks”, https:
//ieeexplore.ieee.org/document/10819516

Table 2: 300 neurons model and merging 5×100
neurons sub-models.

Model [18] Ours

#neurons 300 300 (5×100-200)

Training Time (minutes) 53.13 10.58

Classification Accuracy 88.87% 85.42%

Table 3: 300 neurons model and merging 2×250
neurons sub-models.

Model [18] Ours

#neurons 300 300 (2×250-200)

Training Time (minutes) 53.13 26.8

Classification Accuracy 88.87% 89.28%
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Energy Consumption

• Train with 60K images, 1000 neurons.
• Local Node: Low-power Intel Chip. 10 Nodes.
• Server Node: GPU 4070 GPU + Ryzen 7.

Table 4: Energy Consumption for Distributed STDP learning.

Model [18] on Server Ours: Local Node + Server

#neurons 1000 1000 (2×100)

Training Energy (Jules) 111,320 85,410
Data Transfer Energy (Jules) 17.82 2.4552

Merging Energy (Jules) 0 52.52
Total Energy (Jules) 111337.82 85464.97 (-23.24%)

• Local Node with an average power consumption of 2.19 Watt
• Can be offset by power harvesting (solar power). Estimate with

Quartz Solar Forecast → Carbon-neutrality in computing (training
and inferencing).
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Sustainable AI computing (1/2)

Besides the energy challenges, one of the critical issues is the hardware
lifecycle.

• Defective devices after manufacturing lead to wasted energy and
carbon emissions. According to Apple[19], 75% of carbon emissions
belong to manufacturing while 19% belong to operation.

• Aging and wear-out are also major concerns on environmental impact.
e-waste is a huge problem for the environement.

Our solutions:
• Reducing the embodied carbon footprint in manufacturing with yield

improvement.
• Extending lifetime expectancy with reliability improvement

approaches.
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Sustainable AI computing (2/2)
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Figure 8: (a) Original neuron allocation. (b) Faults occurrence. (c) Recovery solution.

Junkyard Computing (compute with inferior hardware)§:
• Study AI models to find critical and non-critical neurons and

memory blocks.
• Reallocate faulty neurons/memory blocks for non-critical ones.

§“NOMA: A Novel Reliability Improvement Methodology for 3-D IC-based Neuromorphic Systems”, IEEE Transactions on
Components, Packaging and Manufacturing Technology, 2024. https://ieeexplore.ieee.org/document/10738829/
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Results

Table 5: Comparison Results to Existing Works.

Our work ReSpawn [20] SoftSNN [21]
Network Size 784:256:256:10 784:400 784:400

Hardware Architecture 3-D SNN 2-D SNN 2-D SNN
Benchmark MNIST MNIST MNIST

Tolerance Technique Swapping Weights Fault-Aware Mapping Bound-and-
Protect

Bit Error Rate 0.10 0.10 0.10
Baseline Accuracy 97.78% ∼ 86%1 ∼ 86%1

Accuracy Loss 0.01-0.24% ∼ 10%1 ∼ 12%1

1 We calculated the accuracy loss based on the provided images.
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Maintain at most 0.24% accuracy loss at 10% error rate.
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Conclusion and Future Outlook

Conclusion:
• Neuromorphic computing provides a low-power, efficient solution

to the increasing energy demands of AI.
• Innovative designs, such as event-driven spiking neural networks and

approximate 3D-stacked memory, promise significant energy
savings.

• Towarding sustainable AI computing not just including energy
consumption but also managing device lifecycle.

Future Directions:
• Integrate sustainability goals into hardware lifecycle management.
• Tailor the approach on scheduling to efficiently off-set the carbon

emission.
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Thank you for your attention!
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