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Brains remain unrivaled computing device
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Neuromorphic Computing
• Considered as the third generation of neural networks.
• Mimic the operation of biological brain:
• Neuron communicates via action potentials (spikes),
• Neuron integrates the action potentials into its membrane potential,
• Once the membrane potential crosses the threshold, neuron fires (issues spikes)
• Action potentials travel from upstream neuron to downstream neuron via axon-dendrite-

synapse
• The connections between neurons have different strengths (weights)
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Neuromorphic Computing: Benefits
• Near Data/Memory Computing
• Sparse connections (spatial and temporal)
• On-chip learning without weight movement and data storage
• Power and area efficient:
• No floating-point unit
• No multiplication (discuss later)
• No off-chip DRAM
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Notable existing works
• Neurogrid by Stanford University:

• Mixed signal neuron design: capacitor as neuron to integrate the incoming spikes (current).
• Firing by voltage comparator

• BrainscaleS (European Union project):
• Also mixed signal neuron design with leaky function (leak current)
• Hierarchical routing structure 

• SpikNNaker by University of Manchester:
• One million ARM968 cores system 
• Each core simulation 1000 neurons
• Supercomputer-like structure

• TrueNorth by IBM:
• 2D-Network-on-Chip based system
• Integrate and Fire neuron (digital)
• 256 neuron per node, 256 input, 64k synapses/node
• 1-bit weight, offline learning

• Loihi by Intel:
• 2D-Network-on-Chip based system
• Programmable neuron model (digital)
• Variable bit width for weight
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A comparison between human brain and largescale system
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Our neuromorphic platform
• Hardware: 
• A completed neuromorphic system
• Neuron: Leaky-Integrate-and-Fire (LIF) model in fully parallel mode
• Synapses: parallel SRAMs
• Axon: 3D-Network-on-Chip communication
• Learning: off-chip (ANN-SNN conversion), on-chip (bio-plausible STDP)

• Software:
• Mapping neuromorphic to hardware using Genetic Algorithm
• Tolerating faults in neurons using Genetic Algorithm
• Ternary weight training for MLP and CNN
• Application: SNN controller for multi AES-cores system
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Our platform
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Architecture of the neuromorphic system
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Leaky Integrated and Fire Neuron
• Computation:

𝑉! 𝑡 = 𝑉! 𝑡 − 1 +'
"

𝑤",!𝑥" 𝑡 − 1 − 𝜆

• 𝑉! 𝑡 : the membrane potential of neuron 
j at time step  t
• 𝑤",!: the synapse weight between neuron 
i and neuron j
• 𝑥"(𝑡 − 1): the output of the presynaptic 

neuron i
• 𝜆: leaky value.

• The output of a neuron is:

𝑥! 𝑡 = .
1 𝑖𝑓 𝑉! 𝑡 > 𝑉$%&'(
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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On-chip interconnect

• Use our 3D Network-on-Chip platform: stacking 3D-IC, 3D-Mesh topology, inter-
layer using through-silicon-vias (TSV)
• Two types of packets:
• Spike packet: include the AER for PE (SNPC) and neuron.

• Spike packet also includes mask for sparsity
• Memory access: to read and write memory. 
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Hardware Implementation
• Hardware Architecture:
• Designed in Verilog HDL
• Designed with commercial CAD 

tools with NANGATE45nm
• TSV integration using FreePDK3D45
• OpenRAM for SRAM generation
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Layout of a 2x2 NoC-based SNN layer with migration support. A 
tile’s size is 790µm × 1580µm.
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[1] Initial mapping
• When deploying, initial mapping (placing neurons and connecting them) is one of 

the major problems
• NoC mapping is NP-completed problem

• We provide a Genetic-Algorithm based solution:
• Optimize for communication cost.
• Could be easily extended.
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[1] Initial mapping for SNN using Genetic Algorithm
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𝑑!": distance between neuron i and 
neuron j
𝑐!": connection between neuron i and 
neuron j

Abderazek Ben Abdallah, Khanh N. Dang, “Towards Robust Cognitive 3D Brain-inspired Cross-paradigm System”, Frontiers in 
Neuroscience, Frontiers, Volume 15, pp. 795, 2021. [DOI: 10.3389/fnins.2021.690208]

https://doi.org/10.3389/fnins.2021.690208


Crossover and Mutation
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Crossover Mutation



Initial mapping with GA

• Genetic Algorithm Result for initial mapping. (A) 4 × 4 × 4 NoC-based, 256 neurons/node. (B) 6 × 6 × 6 NoC-based, 
256 neurons/node. (C) 8 × 8 × 8 NoC-based, 256 neurons/node.(D) 10 × 10 × 10 NoC-based, 256 neurons/node.

1/25/22 ETLTC 2022 - Khanh N. Dang (VNU) 21

C

A B

We compare to the linear 
mapping method from 
SpiNNaker and implement it 
for the 3D topology to get 
Linear X, Linear XY, and Linear 
XYZ



[2] Fault-tolerant mapping
• After deploying, there is a probability of neuron failure (faults in memory, neuron 

or controller).

1/25/22 ETLTC 2022 - Khanh N. Dang (VNU) 22

Khanh N. Dang, Nguyen Anh Vu Doan, Abderazek Ben Abdallah “MigSpike: A Migration Based Algorithm and 
Architecture for Scalable Robust Neuromorphic Systems”, IEEE Transactions on Emerging Topics in Computing 
(TETC), in-press [DOI: 10.1109/TETC.2021.3136028]

https://doi.org/10.1109/TETC.2021.3136028
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[2] Fault-tolerant mapping with GA
• Similar to initial mapping, GA is also used to solve the fault-tolerant mapping.
• Two cost function: (1) migration cost: movement of neurons during the correction phase 

and (2) communication cost: travelling distance of spikes

• Crossover is performed by mixing two parents with adjustments to make sure the 
right amount of neuron being mapped.
• Mutation by reducing the migration cost
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Fault-tolerant Mapping Result

• Output mapping for migrated neurons 
with random fault patterns in 3D-NoCs. 
The system has 256 neurons per node; 
20% of neurons are spare with 1 
redundant node without any allocated 
neuron at 0% fault rate.
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[3] Training for SNN
• Training for Neuromorphic Systems:
• Spike-timing-dependent plasticity (STDP): a 

bio-plausible learning method 
• Support online learning with hardware STDP 

block.
• Limitation: single-layer (local) training and low 

accuracy for classification tasks
• ANN-SNN conversion:

• Train with ANN first.
• Convert to SNN by shifting the computation 

domain.
• Can be trained with deep neural networks and 

maintain high accuracy and low power features
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Spike-timing-dependent plasticity (STDP)
Learning Module



STDP for MNIST
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Network: 784:N with lateral inhibitory connections in the second layer.
N=100 à accuracy = 71.32%, N=400 à accuracy = 84.05%

Weight view



[3] Training SNN with ternary weight in ANN-SNN conversion
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• Neural networks system usually trained with float values (weight, bias) that 
requires 32 bit to represent.
• Quantization process can covert these values into fixed point format (8/16 bit) to 

reduce the storage and computation complexity.
• We can quantize it into ternary value (-α, 0, α) (α is fixed) that require 2-bit to 

represent. è This ternary process has been done with DNN. We proposed a 
training method for SNN.

Duy-Anh Nguyen, Xuan-Tu Tran, Khanh N. Dang, and Francesca Iacopi, “A Low-Power, High-Accuracy with Fully On-Chip 
Ternary Weight Hardware Architecture for Deep Spiking Neural Networks”, Microprocessors and Microsystems, 2022 (in-
press).



Training process with ternary weights
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Ternary process
• Ternary weight:

𝑤!"#$% = #𝛼×𝑆𝑖𝑔𝑛 𝑤!
&' 𝑖𝑓 𝑤!

&' ≥ Δ"(
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

• 𝛼 is	the	Mean	of	absolute	values:

𝛼 = 𝐸 𝑤!
&' ∀ 𝑤!

&' ≥ Δ"(
• Threshold:

Δ"( = 𝛽×max 𝑤!
&'

Note: 𝛽 = 0.01 in our experience.
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Fully Connected Network Models 
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Convolutional Neural Network Models
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CIFAR-10 dataset

Comparison using CIFAR-10 dataset

Energy breakdown for VGG16



[4] Application: Multi security-cores control with SNN
• The baseline slide system consists of 10 AES cores which allow extremely high 

bandwidth and adaption.
• To reduce the power consumption, we apply clock-gating and power-gating to 

each core.
• However, the decision process to turn on/turn off a core must be considered:
• Turn on too many core è waste power consumption.
• Turn off too many core è cannot satisfy the demanded throughput.

• We design our own dataset for the throughput adaptation and train SNN to 
control:
• SNN has low complexity à extremely small controller.
• Control the system (change the number of cores) in every T cycles
• Can be turn off to save power.
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Dong-Khoi Pham et al. “A Low-power multicore AES system with neuromorphic controller”, (submitted)



The software/hardware flows
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Example of training data (9 out of 27)
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SNN training and architecture
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SNN training: (a)The ANN-to-SNN conversion flow and (b)The quantization flow (8-bit)

SNN hardware architecture: 

Software model 8:5:11
Mean: average throughput in T cycles

Delta: difference between mean values
Buff: buffer status

Output (t-1): previous number of core



SNN control results
• Compare between with and without SNN controller
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Area Cost Full System

Modules Area (𝜇𝑚!) Percent

System 991,987.4234 100

MAESx10 897903.757 92.5

MAESx10/DEMUX1 35733.641 3.7

MAESx10/MUX 35811.313 3.7

SNN-CONTROLLER 22,537.3824 2.27

Floating point training per timestep

8-bit fixed point accuracy: 95%
Error cases are still acceptable with ±1 from the idea number of 

core
Area cost
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Conclusion
• We proposed a hardware architecture for neuromorphic computing:
• Support LIF neuron
• Clusterize neurons into node
• Connected via 3D-Network-on-Chip

• We support offline and online training for the neuromorphic system.
• Augmented algorithms:
• Initial mapping with Genetic Algorithm
• Fault-tolerant mapping Genetic Algorithm.

• Future works:
• Advanced memory technology: RRAM, STT-RAM, PWM.
• Advanced 3D-IC: monolithic 3D.
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Thank you for your attention!
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Backup Slides
Just in case ;)
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Notable existing works
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Learning for neuromorphic system
• Offline learning with backpropagation trained  ANN-to-SNN conversion:
• Feed-forward network is trained with back-propagation.
• Weight normalization and conversion is performed.
• Weights and parameters are exported to fixed bit format.
• Deploy by downloading the weights and parameters.

• Online learning with STDP (Spike-Timing-Dependent Plasticity):
• Follow the Hebbian learning rule and divide into Long-Term-Depression (LTD) and Long-

Term-Potentiation (LTP)
• LTP: if the spike on the synapse occurs before firing (cause the firing), the strength of 

synapse increase.
• LTD: if the spike on the synapse occurs after firing, the strength of synapse increase.
• Supported by hardware STDP block.
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Near Data Processing Approach

• The “integration” and “leaky” of LIF neuron is performed by an adder
• The most challenging part is the weighted input (product of input spikes and 

weight)
• Conventional ANN uses multipliers as a part of its MAC (multiplication and 

accumulation)
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𝑉) 𝑡 = 𝑉) 𝑡 − 1 +N
*

𝑤*,)𝑥* 𝑡 − 1 − 𝜆

Membrane 
potential 
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Near Data Processing Approach (cnt.)
• In our design, multiplication is converted to memory accessing
• 𝑥*(𝑡 − 1), as binary input, is converted to memory access.
• If 𝑥*(𝑡 − 1) = 0, no access (return 0)
• If 𝑥*(𝑡 − 1) = 1, By accessing the address of 𝑤*,), we can extract the value of 
𝑤*,)𝑥* 𝑡 − 1
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STDP
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STDP: update rule

• The adjustment window is 16 timesteps.
• If neuron j fires, STDP update initiates.
• Presynaptic neuron i fires within 1 to 8 timesteps before the firing time of neuron j è
𝑤!,# increases
• Presynaptic neuron i fires within 0 to 7 timesteps after the firing time of neuron j è
𝑤!,# decrease
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ANN-to-SNN conversion for MNIST

Network: 784:1024:1024:10
1/25/22 ETLTC 2022 - Khanh N. Dang (VNU) 48



STDP for MNIST
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Network: 784:N with lateral inhibitory connections in the second layer.
N=100 à accuracy = 71.32%, N=400 à accuracy = 84.05%



Fault-tolerant mapping: Execution time
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Initial mapping with GA: 2D vs 3D
• Comparison between 3D and 2D mapping. (A) 64 nodes 

(4 × 4 × 4 and 8 × 8) NoC-based, 256 neurons/node. (B) 
128 nodes (4 × 4 × 8 and 8 × 16) NoC-based, 256 
neurons/node. (C) 256 nodes (4 × 8 × 8 and 16 × 16) 
NoC-based, 256 neurons/node.(D) 512 nodes (8 × 8 × 8 
and 16 × 32) NoC-based, 256 neurons/node.
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Mapping solution: Max-Flow Min-Cut

• For all nodes, create a flow of migration with the capacity is the maximum migrating 
neurons they can perform.
• All neurons can travel 𝑑$%& hops à connect each node to all nodes in 𝑑$%& hops. 
• Flow from virtual source to each node: number of faulty neurons
• Flow from each node to virtual sink: number of spares
• Solve the max-flow problem using Ford-Fulkerson
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Example: input
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Example: output
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Mutation for GA in fault-tolerant mapping

1/25/22 ETLTC 2022 - Khanh N. Dang (VNU) 55


