
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012
2759

PAPER Special Section on Parallel and Distributed Computing and Networking

Blocked United Algorithm for the All-Pairs Shortest Paths Problem
on Hybrid CPU-GPU Systems

Kazuya MATSUMOTO†a), Naohito NAKASATO†, Nonmembers, and Stanislav G. SEDUKHIN†, Member

SUMMARY This paper presents a blocked united algorithm for the all-
pairs shortest paths (APSP) problem. This algorithm simultaneously com-
putes both the shortest-path distance matrix and the shortest-path construc-
tion matrix for a graph. It is designed for a high-speed APSP solution on
hybrid CPU-GPU systems. In our implementation, two most compute in-
tensive parts of the algorithm are performed on the GPU. The first part is
to solve the APSP sub-problem for a block of sub-matrices, and the other
part is a matrix-matrix “multiplication” for the APSP problem. Moreover,
the amount of data communication between CPU (host) memory and GPU
memory is reduced by reusing blocks once sent to the GPU. When a prob-
lem size (the number of vertices in a graph) is large enough compared to a
block size, our implementation of the blocked algorithm requires CPU �
GPU exchanging of three blocks during a block computation on the GPU.
We measured the performance of the algorithm implementation on two dif-
ferent CPU-GPU systems. A system containing an Intel Sandy Bridge CPU
(Core i7 2600K) and an AMD Cayman GPU (Radeon HD 6970) achieves
the performance up to 1.1 TFlop/s in a single precision.
key words: all-pairs shortest paths problem, path construction, Floyd-
Warshall algorithm, blocked algorithm, hybrid CPU-GPU systems

1. Introduction

The all-pairs shortest paths (APSP) problem is to find the
shortest paths between all-pairs of vertices in a weighted
graph [1], [2]. The problem is one of the most fundamen-
tal graph problems, and there are applications of the APSP
problem in bioinformatics, social networking, traffic rout-
ing, etc. The APSP problem is an instance of a general
framework in the so called algebraic path problem [3], [4]
which covers several graph, matrix, and language process-
ing problems. It means that acceleration of the APSP prob-
lem leads to acceleration of all these problems.

A well-known solution of the APSP problem is to apply
the classical Floyd-Warshall (FW) algorithm [5], [6]. The
FW algorithm requires O(n3) operations on O(n2) mem-
ory space, where n is the number of vertices in a graph.
Blocked algorithms of the FW algorithm were proposed to
efficiently utilize hierarchical memory structures of current
processors [7]–[9]. For a high-speed solution of the APSP
problem, different variants of the blocked algorithms have
been implemented on CPUs [10]–[12], GPUs [13]–[17], and
an FPGA [18].

The previous studies, however, presented implementa-
tions of blocked APSP algorithms only for computing the

Manuscript received January 10, 2012.
Manuscript revised May 27, 2012.
†The authors are with Distributed Parallel Processing Labo-

ratory, the University of Aizu, Aizu-Wakamatsu-shi, 965–8580
Japan.

a) E-mail: d8121101@u-aizu.ac.jp
DOI: 10.1587/transinf.E95.D.2759

shortest-path distance matrix. In the APSP problem, con-
struction of a path with the shortest distance is required in
many cases. Buluç et al. [14] mentioned a possibility to con-
struct the shortest paths by using a matrix which keeps an in-
termediate vertex between every pair of vertices. To our best
knowledge, there have been no report on implementations of
a blocked APSP algorithm for computing both the shortest-
path distance matrix and the shortest-path construction ma-
trix. We consider high-speed solutions on GPUs as the most
prominent because the massively parallel architecture and
the high memory bandwidth of GPUs meet requirements for
a fast implementation of blocked APSP algorithms.

This paper introduces a blocked united APSP algo-
rithm for computing both matrices at the same time. The
presented united algorithm is an extension of the blocked al-
gorithm for a hybrid CPU-GPU system designed in our pre-
vious study [17]. The proposed united algorithm can solve
the APSP problem of a graph whose required memory size
is larger than the capacity of GPU memory. In the algorithm,
there are two most compute intensive parts (kernels), both of
which run on the GPU. The first kernel is to solve the APSP
sub-problem for a block of sub-matrices. The other kernel
is a matrix-matrix “multiplication” for the APSP problem.
For high utilization of the GPU kernels, we optimized data
communication between CPU (host) and GPU. We have
evaluated the performance of our APSP implementation on
two different systems containing an Intel CPU and an AMD
GPU. We show comparison results among our APSP imple-
mentations on the CPU-GPU systems and implementations
only on a CPU or a GPU.

The rest of this paper is organized as follows. Section 2
describes the APSP problem and the Floyd-Warshall algo-
rithm. Section 3 presents our blocked united algorithm for
the APSP problem. Section 4 shows how we implemented
the blocked algorithm on the hybrid CPU-GPU systems and
benchmark results of the implementation. Section 5 con-
cludes this paper with a mention of future work.

2. All-Pairs Shortest Paths Problem

Let G = (V, E) be a weighted directed graph with a edge-
weight function w : E → R that assigns a real-valued weight
to each edge, where V = {1, 2, . . . , n} is a set of n vertices,
E ⊆ V × V is a set of edges, and R is a set of real numbers.
We use an adjacency matrix representation for the graph G.
In an adjacency matrix A = [ai, j], ai, j represents the corre-
sponding value of an edge (i, j).

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



2760
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

The input of the APSP problem is an n × n matrix
W = [wi, j] which contains edge weights of a given graph
G, where

wi, j =

{
weight of edge (i, j) if (i, j) ∈ E;
∞ if (i, j) � E.

Given a weight matrix W, we can compute a weight (or
distance) of the shortest paths between all-pairs of vertices.
The computed result is an n × n matrix D = [di, j] = [d(n)

i, j ],
where di, j denotes the shortest-path distance from i to j.
We can define each d(k)

i, j by the following recurrence equa-
tion [1]:

d(k)
i, j =

{
wi, j if k = 0;
min
(
d(k−1)

i, j , d
(k−1)
i,k + d(k−1)

k, j

)
if k ≥ 1.

(1)

Note that algorithms discussed in this paper allow existence
of negative-weight edges in a graph G but do not allow
negative-weight cycles.

To find the all-pairs shortest paths, it is required to com-
pute not only the shortest-path distance matrix D but addi-
tionally a shortest-path construction matrix C = [ci, j]. If at
least one shortest path exists between a vertex i and a ver-
tex j, then ci, j indicates the highest-numbered intermediate
vertex on the shortest path, and otherwise, it is undefined
(NULL). Initial values of a construction matrix are all un-
defined, i.e., all c(0)

i, j = NULL. The shortest-path construc-

tion matrix C = [ci, j] = [c(n)
i, j ] can be simultaneously com-

puted with computation of the shortest-path distance matrix
D = [di, j] = [d(n)

i, j ], and each c(k)
i, j is defined as the following

equation [2]:

c(k)
i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NULL if k = 0;
k if k ≥ 1 and d(k−1)

i, j > d(k−1)
i,k + d(k−1)

k, j ;

c(k−1)
i, j otherwise.

(2)

The Eqs. (1) and (2) lead to a dynamic-programming
solution known as Floyd-Warshall algorithm, which is
shown as Algorithm 1. In the following algorithm descrip-
tions, we eliminate superscripts used in the Eqs. (1) and
(2). The FW algorithm contains a three-nested loop which
is similar to the standard matrix-matrix multiply-add algo-
rithm, except the FW algorithm has stricter data dependen-
cies such that the outermost k-loop cannot be interchanged
with the other two inner loops. This FW Algorithm 1 re-
quires 4n3 operations (addition, comparison, and two con-
ditional assignments) on 2n2 data of the two matrices, and
our proposed blocked Algorithm 3 described later asymp-
totically requires the same number of operations.

After computing the shortest-path construction matrix
C by solving the APSP problem, the shortest paths between
all-pairs can be built. If di, j � ∞ and ci, j � NULL then there
exists an intermediate vertex ci, j such that the shortest path
from i to j is a shortest path from i to ci, j followed by a
shortest path from ci, j to j. The two sub-shortest paths can
be determined recursively. Algorithm 2 shows a recursive
procedure to print out all the intermediate vertices, in order,

Algorithm 1: Floyd-Warshall algorithm for comput-
ing both the shortest-path distance matrix D and the
shortest-path construction matrix C

1 FloydWarshall(n,D,C)
2 begin
3 for k ← 1 to n do
4 for all 1 ≤ i ≤ n do
5 for all 1 ≤ j ≤ n do
6 sum← di,k + dk, j;
7 if di, j > sum then
8 di, j ← sum;
9 ci, j ← k;

10 return {D,C};

Algorithm 2: Recursive procedure for printing out in-
termediate vertices of the shortest path between a pair
of vertices (i, j)

1 PrintIntermediateVertices(C, i, j)
2 begin
3 if Ci, j � NULL then
4 PrintIntermediateVertices(C, i, ci, j);
5 print Ci, j;
6 PrintIntermediateVertices(C, ci, j, j);

between a given pair of vertices i and j.
To construct the shortest paths, there are other methods

such as computing the predecessor matrix described in [1].
However, we consider that computing the construction ma-
trix is more suitable for a high-speed solution on CPU-GPU
systems because the computation for construction matrix re-
quires less memory references.

3. Blocked United Algorithm

This section presents a blocked united algorithm for the
APSP problem. This algorithm is based on the blocked al-
gorithm discussed in our previous paper [17], to which we
added the computation of shortest-path construction matrix.
The blocked algorithm is designed for a fast APSP solution
with high GPU utilization on hybrid CPU-GPU systems.

In the blocked united algorithm, we partition both the
n × n distance matrix and construction matrix into blocks
of b × b sub-matrices, where b is a blocking factor. For
simplicity, we suppose that n is in multiples of b in the fol-
lowing algorithm description. Let us identify a sub-matrix
of block index (I, J) by AI,J = [ai, j], where 1 ≤ I, J ≤ n/b
and 1 ≤ i, j ≤ b. Figure 1 shows an example of 12 × 12
matrix with the blocking factor b = 3.

Algorithm 3 shows our blocked united APSP algo-
rithm. In this algorithm, each iteration of the outermost loop
essentially performs the same number of operations as b iter-
ations of the Floyd-Warshall Algorithm 1; however, the two
algorithms may find different shortest paths with an equal
minimum distance because the two algorithms have differ-



MATSUMOTO et al.: BLOCKED UNITED ALGORITHM FOR THE ALL-PAIRS SHORTEST PATHS PROBLEM ON HYBRID CPU-GPU SYSTEMS
2761

Fig. 1 An n × n matrix partitioned with a blocking factor b.

Algorithm 3: Blocked united algorithm for the APSP
problem

1 BlockedAPSP(n, b,D,C)
2 begin
3 N ← n/b;
4 for K ← 1 to N do

// Phase 1: updating the pivot blocks

5 {DK,K ,CK,K } ← SubBlockedAPSP(K, b,DK,K ,CK,K );
// Phase 2: updating the pivot column blocks

6 for all 1 ≤ I ≤ N (I � K) do
7 {DI,K ,CI,K } ←MMA(K,b,DI,K ,DK,K ,DI,K ,CI,K );

// Phase 3: updating the pivot row blocks

8 for all 1 ≤ J ≤ N (J � K) do
9 {DK,J ,CK,J} ←MMA(K,b,DK,K ,DK,J ,DK,J ,CK,J);

/* Phase 4: updating the remaining

(non-pivot) blocks */

10 for all 1 ≤ I, J ≤ N (I � K && J � K) do
11 {DI,J ,CI,J} ←MMA(K,b,DI,K ,DK,J ,DI,J ,CI,J);

12 return {D,C};

Fig. 2 Visualization of updated and data depended blocks in each phase
of the blocked united Algorithm 3 for n/b = 4 and K = 2.

ent order for computing path construction matrices.
The computation on each K-th iteration in the blocked

Algorithm 3 is divided into four phases: Phase 1 updates
the pivot b × b blocks {DK,K ,CK,K}. Phase 2 updates the
pivot-column blocks {DI,K ,CI,K} (I � K). Phase 3 updates
the pivot-row blocks {DK,J ,CK,J} (J � K). Finally, Phase
4 updates the other (non-pivot) blocks {DI,J ,CI,J} (I � K
and J � K). Figure 2 visualizes updated and data depended
blocks of distance matrix in each phase of the blocked Al-
gorithm 3.

Phase 1 is to solve the APSP sub-problem for b×b sub-
matrices DK,K ,CK,K . For solving the APSP sub-problem,
we can apply either the Floyd-Warshall Algorithm 1 or

Algorithm 4: Blocked united algorithm for the APSP
sub-problem

1 SubBlockedAPSP(K, b,D,C)
2 begin
3 Let bs be another blocking factor (bs ≤ b) and D′ and C′ be

b × b matrices;
4 Ns ← b/bs;
5 D′ ← D;
6 for Ks← 1 to Ns do

// Phase 1

7 {D′Ks ,Ks
,C′Ks ,Ks

} ← FloydWarshall(bs,D′Ks ,Ks
,C′Ks ,Ks

);

// Phase 2

8 for all 1 ≤ Is ≤ Ns (Is � Ks) do
9 {D′Is ,Ks

,C′Is ,Ks
} ←

10 SubMMA(bs,D′Is ,Ks
,D′Ks ,Ks

,D′Is ,Ks
,C′Is ,Ks

);

// Phase 3

11 for all 1 ≤ Js ≤ Ns (Js � Ks) do
12 {D′Ks ,Js

,C′Ks ,Js
} ←

13 SubMMA(bs,D′Ks ,Ks
,D′Ks ,Js

,D′Ks ,Js
,C′Ks ,Js

);

// Phase 4

14 for all 1 ≤ Is, Js ≤ Ns (Is � Ks && Js � Ks) do
15 {D′Is ,Js

,C′Is ,Js
} ←

16 SubMMA(bs,D′Is ,Ks
,D′Ks ,Js

,D′Is ,Js
,C′Is ,Js

);

/* Merge the computed matrices with the

pre-computed matrices */

17 for all 1 ≤ i, j ≤ b do
18 if di, j > d′i, j then
19 di, j ← d′i, j;
20 ci, j ← c′i, j + K · b;

21 return {D,C};

the blocked united algorithm itself recursively with a small
modification. We use the latter approach and Algorithm 4
shows the blocked algorithm modified for the sub-problem.
Like Algorithm 3, Algorithm 4 also has four phases but
is followed by a process for merging the computed sub-
matrices. The scalar Floyd-Warshall Algorithm 1 is used
in Phase 1 of Algorithm 4.

In Phases 2–4 of both blocked Algorithms 3 and
4, every block can be updated by using a matrix-matrix
“multiply-add” (MMA) operation designed for the APSP
problem. If the computation of path construction matrix is
not taken into consideration, the MMA operation is called
matrix-matrix multiply-add in min-plus algebra [19], [20]
(or tropical semiring [21]). The difference between ma-
trix multiply-add in linear algebra and in min-plus algebra
is in the type of operations to obtain corresponding result.
In linear algebra, we need arithmetic multiplication and ad-
dition and an element zi, j of sub-matrix Z is updated with
the formula of zi, j ← zi, j +

∑b
k=1 xi,k · yk, j. In the min-

plus algebra, the addition is replaced by minimum opera-
tion and the multiplication is replaced by arithmetic addi-
tion; thus, an element zi, j is updated with the formula of
zi, j ← min

(
zi, j,minb

k=1(xi,k + yk, j)
)
.

The MMA in min-plus algebra can be extended to si-
multaneously compute the path construction matrix and the



2762
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Algorithm 5: Matrix-matrix “multiply-add” algorithm
for the sub-blocked united APSP Algorithm 4

1 SubMMA(bs, X, Y,Z,C)
2 begin
3 for all 1 ≤ i, j ≤ bs do
4 for k ← 1 to bs do
5 sum← xi,k + yk, j;
6 if zi, j > sum then
7 zi, j ← sum;
8 ci, j ← k;

9 return {Z,C};

Algorithm 6: Matrix-matrix “multiply-add” algorithm
for the blocked united APSP Algorithm 3

1 MMA(K, b, X, Y,Z,C)
2 begin
3 {Z′,C′} ←MINPLUS(b, X, Y);
4 for all 1 ≤ i, j ≤ b do
5 if zi, j > z′i, j then
6 zi, j ← z′i, j;
7 ci, j ← c′i, j + K · b;

8 return {Z,C};
9 MINPLUS(b, X, Y)

10 begin
11 Let Z′ and C′ be b × b matrices;
12 for all 1 ≤ i, j ≤ b do
13 z′i, j ← ∞;

14 for k ← 1 to b do
15 sum = xi,k + yk, j;
16 if z′i, j > sum then
17 z′i, j ← sum;

18 c′i, j ← k;

19 return {Z′,C′};

distance matrix, and this extended MMA is described in Al-
gorithm 5, which is invoked from the blocked Algorithm 4
for APSP sub-problem. The MMA Algorithm 5 requires
four input matrices X,Y,Z,C to produce two output matrices
Z,C. In the blocked Algorithm 3, we use another method for
the MMA shown in Algorithm 6. In the MMA Algorithm 6,
the matrix-matrix “multiplication” in the extended min-plus
algebra (MINPLUS) and the matrix-matrix “addition” are
separately executed. The MINPLUS operation is performed
on a GPU while the matrix-matrix “addition” (minimum)
operation is carried out on a CPU. This separation reduces a
data sending of two input matrices Z,C to the GPU. As a re-
sult, it makes possible to alleviate a bandwidth requirement
for data communication between the CPU (host) memory
and the GPU memory.

Table 1 System configurations; BW (bandwidth), CU (Compute Unit),
LDS (Local Data Share), SIMD (Single-Instruction Multiple-Data), SP
(single-precision), PE (processing element).

System A System B

GPU

Code name Cayman Cypress

Board name
Radeon Radeon

HD 6970 HD 5870
Core clock [GHz] 0.88 0.85
Number of PEs 1536 1600
Number of CUs 24 20
SP peak perf. [GFlop/s] 2703 2720
Memory clock [GHz] 1.375 1.2
Memory BW [GB/s] 176 154
L2 read BW [GB/s] 451 435
L1 read BW [GB/s] 1352 1088
LDS read BW [GB/s] 2703 2176
Memory size [GB] 2 1
L2 caceh size [kB] 512 512
L1 cach size / CU [kB] 8 8
LDS size / CU [kB] 32 32

CPU

Code name Sandy Bridge Bloomfield
Processor name Core i7 2600K Core i7 970
Core clock [GHz] 3.4 3.2
Num. of cores 4 6
SP SIMD width 8 4
SP peak perf [GFlop/s] 217.6 153.6

4. Implementation and Experimentation

4.1 Experimental Environment

We port our program of the blocked APSP Algorithm 3
to two kinds of hybrid systems containing an Intel CPU
and an AMD GPU. Table 1 shows the configurations of
the two used systems. The prominent difference between
the two GPU architectures is that the Cayman GPU uses a
four-wide symmetric VLIW (Very Long Instruction Word)
instead of a five-wide asymmetric VLIW on the Cypress
GPU [22], in addition to a number of other enhancements
for both graphics and more general workloads. The single-
precision peak performance of the Cayman is a little lower
than that of the Cypress; nevertheless, the Cayman is consid-
ered to deliver higher performance in most of applications
because of the higher memory bandwidth. Both GPUs also
support double-precision floating-point instructions with the
peak performance of 676 GFlop/s in the Cayman and 544
GFlop/s in the Cypress though, in this study, we only deal
with a single-precision. The CPU (host) and the GPU are
connected through 16 lanes of PCI-Express 2.0 buses whose
aggregated peak bandwidth is 8 GB/s.

Both systems run on Ubuntu 10.04, and the Linux ker-
nel version is 2.6.32-37 in System A and 2.6.32-35 in Sys-
tem B (see Table 1). The installed display driver is AMD
Catalyst 11.11. We use gcc 4.6.2 compiler with -O2 opti-
mization option for program compilation and AMD Accel-
erated Parallel Processing (APP) SDK v2.5 for GPU pro-
gramming. Input graph data were generated by using R-mat
random graph generator in GTgraph [23] with the average
vertex degree of 20. Note that the performance of our im-



MATSUMOTO et al.: BLOCKED UNITED ALGORITHM FOR THE ALL-PAIRS SHORTEST PATHS PROBLEM ON HYBRID CPU-GPU SYSTEMS
2763

plementations is not sensitive to graph sparsity. All perfor-
mance values presented in this paper are average of ten times
measurements.

4.2 GPU Kernels

The blocked APSP Algorithm 3 requires two different ker-
nels which run on the GPU. The first one is a kernel for the
sub-blocked APSP Algorithm 4 (SubBlockedAPSP). The
second one is a kernel for the matrix-matrix “multiplication”
(MINPLUS in Algorithm 6).

Note that the performance in Flop/s is calculated by the
formula of

4n3 [Flops] / running time [sec], (3)

where n is the problem size and the running time does not
include the time for GPU initialization. In addition, the run-
ning time of the GPU kernels does not include the com-
munication time for matrix data between the host and the
GPU. The GPU kernels for the APSP problem cannot be
implemented with high-performance FMA (fused multiply-
add) instructions which perform two floating-point opera-
tions (multiplication and addition) per clock cycle. In our
case of the APSP problem, four instructions are needed for
four operations. Thus, although the peak FMA-performance
of both GPUs is around 2700 GFlop/s, we can expect at
most half of the peak performance for the APSP problem,
i.e., 1352 GFlop/s on the Cayman and 1360 GFlop/s on the
Cypress.

4.2.1 Kernel for Sub-Blocked APSP Algorithm

The kernel for the sub-blocked APSP Algorithm 4 is to com-
pute the most intensive part (lines 4-16) in Algorithm 4 on
the GPU. We have developed the kernel in OpenCL (Open
Computing Language) 1.1 [22], [24]. Note that the merge
operation (lines 17-20) is performed on the CPU. Separat-
ing the merging computation from the whole computation
of the algorithm has a positive effect for increasing perfor-
mance. The separation reduces data communication time
because two b × b matrices D and C are not needed to be
sent to the GPU.

Algorithm 4 introduces another blocking factor bs (≤
b). The size of this blocking factor highly influences the
performance of the kernel. Phase 1 of the algorithm is to ap-
ply the Floyd-Warshall Algorithm 1 for a bs×bs sub-matrix.
To implement the FW algorithm on the GPU, a synchro-
nization among GPU threads is required in the beginning of
every outermost iteration (immediately after line 3 in Algo-
rithm 1). It means that the upper blocking factor bs is lim-
ited by the size of shared memory called Local Data Share
(LDS). We have selected 64 as the size of blocking factor
bs because the required size (32 kB = 2 · 642 · 4 Bytes) for
the two blocks D′Ks,Ks

,C′Ks,Ks
is equal to the LDS size and

the blocking factor should be a power-of-two for easy us-
age of the kernel invoked in the implementation of the main

Fig. 3 Performance of the kernel for solving the APSP sub-problem
(lines 4-16 in Algorithm 4) on GPUs.

Algorithm 3. Although we can select even smaller block-
ing factor bs, this selection results in performance deteriora-
tion. For example, the sub-blocked APSP kernel in the case
bs = 32 delivers 2.56 times lower performance, on average,
than the case bs = 64 on the Cayman.

Figure 3 shows the performance of the implemented
kernel on the Cayman and the Cypress as a function of the
sub-problem size (the number of vertices) b. The kernel
achieves up to 610 GFlop/s (45% of 1353 GFlop/s) on the
Cayman and 585 GFlop/s (43% of 1360 GFlop/s) on the
Cypress. A performance fluctuation is seen on the Cypress
depending on b. The standard deviation of performance is
around 65 in the case b = 1536 on the Cypress while it is
around 4 on the Cayman. When b ≥ 2816, the standard
deviation is mostly less than 6 on both GPUs.

4.2.2 Kernel for Matrix-Matrix “Multiplication”

In the blocked APSP Algorithm 3, the matrix-matrix “multi-
plication” (MINPLUS in Algorithm 6) is the most frequent
and compute intensive part, which strongly affects the to-
tal performance; thus, a fast computation of MINPLUS ker-
nel on the GPU is essential for a high performance imple-
mentation of the blocked algorithm. For the MINPLUS ker-
nel, we have modified an SGEMM (single-precision general
matrix multiply) kernel which was developed in our pre-
vious studies [25], [26]. The SGEMM kernel was written
in an assembly-like language called Intermediate Language
(IL) [27]. The measured performance of the SGEMM ker-
nel is up to 2432 GFlop/s (90% of 2703 GFlop/s) on the
Cayman and 2137 GFlop/s (79% of 2720 GFlop/s) on the
Cypress.

In the SGEMM kernel, a basic multiply-add operation
of zi, j ← xi,k · yk, j + zi, j can be implemented with a single
FMA instruction on the GPU. However, in the MINPLUS
kernel, four different instructions are required to implement
a single “multiply-add” operation. This indicates that, for
the same matrix size, the MINPLUS kernel takes approx-
imately four times longer running time than the SGEMM
kernel. The four required instructions are an addition in-



2764
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Fig. 4 Performance of the kernel for the matrix-matrix “multiplication”
for the APSP problem (MINPLUS in Algorithm 6) on GPUs.

struction (corresponding to line 15 in Algorithm 6), a com-
parison instruction (line 16), and two conditional move in-
structions (lines 17, 18).

Figure 4 shows the performance of the MINPLUS ker-
nel on the Cayman and the Cypress as a function of matrix
size in multiples of 256. Currently, the kernel does not work
if a matrix size is not in multiples of 256 (= 64 · 4). It is be-
cause a width of global buffer used within a kernel in IL has
to be a multiple of 64 elements and each element consists of
four single-precision floating point values [28]. The maxi-
mum performance of the MINPLUS kernel is 1248 GFlop/s
(92% of 1352 GFlop/s) on the Cayman and 995 GFlop/s
(73% of 1360 GFlop/s) on the Cypress. A performance vari-
ability of the kernel is seen and it is particularly large for
small problems sizes (b ≤ 768).

4.3 Implementation of the Blocked United APSP Algo-
rithm on Hybrid CPU-GPU Systems

We have implemented the blocked APSP Algorithm 3 on the
hybrid CPU-GPU systems. Strategies for performance opti-
mization are almost identical to our previous study [17]. In
this paper, we show the way how to increase a GPU utiliza-
tion of the APSP implementation by optimizing data com-
munication between CPU (host) and GPU. Note that we
cannot apply the present optimization if n/b ≤ 2.

Communication latencies of a matrix data transferred
between CPU and GPU are the bottleneck for the high GPU
utilization. To hide these latencies, we first consider a way
to reduce the amount of data communication. The discussed
MINPLUS kernel produces two b× b output matrices Z′,C′
from two b × b input matrices X,Y . This means that four
b × b matrices are needed for an execution of the kernel.
An input matrix can be reused if a block to be computed
is in the same row block or column block as the previously
computed block. Our APSP implementation updates blocks
(b×b matrices) on each outermost iteration K (= 1 to n/b) of
the blocked united Algorithm 3 in the order shown in Fig. 5.
Following the order, an input block DK,K is reused in Phases
2 and 3 of the algorithm and either an input block DI,K or

Fig. 5 Order of block computation of our APSP implementation on each
outermost iteration (identical to Fig. 8 in [17]).

Fig. 6 Overhead ratio b2/n2, as a function of n/b, for sending one block
(b × b matrix) on each first block update in Phases 2–4. The problem size
n is padded to the size �(n + b − 1)/b� · b, if n is not in multiples of b.

DK,J is reused in Phase 4, after sending this block to the
GPU.

As it can be seen from Algorithm 3 and the order of
computing (Fig. 5), the amount of data communication (in
bytes) in Phase 1 is 4 · 3b2, in both Phase 2 and Phase 3 is
4(b2 +3b2(n/b−1)), and in Phase 4 is 4(b2 +3b2(n/b−1)2),
where a single-precision data occupies four bytes. Thus,
in total, the amount of data communication of our imple-
mentation on each outermost iteration can be expressed as a
function of n and b

Comm Amount(n, b) [Bytes] = 4 · (3n2 + 3b2).

Since Phase 1, which requires 4 · 3b2 data communication,
is exceptional (i.e. it needs its own kernel), the amount of
an overhead related to one block data sending for each first
block update in three Phases 2–4 (blocks associated with or-
der 2, 5, 8 in Fig. 5) is totally 3·4b2, and the amount of whole
data communication in Phases 2–4 is 3 · 4n2. Therefore, the
ratio of the overhead amount to the whole communication
amount equals to b2/n2. Figure 6 depicts the overhead ra-
tio as a function of n/b. A staircase pattern is drawn in the
figure because our implementation uses a padding technique
to solve the APSP problem on a graph whose problem size
(number of vertices) n is not in multiples of a blocking factor
b. In the padding technique, the values of padded portion in
the distance matrix are initialized as infinity ∞ (sufficiently
larger value) such that the implementation actually solves
the APSP problem on a graph whose size is the next multi-
ple of the blocking factor (npad = �(n + b − 1)/b� · b). As it
can be seen from Fig. 6, if n/b > 4, the overhead ratio is less



MATSUMOTO et al.: BLOCKED UNITED ALGORITHM FOR THE ALL-PAIRS SHORTEST PATHS PROBLEM ON HYBRID CPU-GPU SYSTEMS
2765

Fig. 7 Performance of the APSP implementation on two different CPU-
GPU systems for different blocking factors.

than 1%. Moreover, if n/b > 10, the ratio is less than 0.1%.
Because of it, we can view the implementation of each block
update in Phases 2–4 as equal to send one b×b matrix to the
GPU and receives two b × b matrices from the GPU.

We next consider an overlapping of the data communi-
cation and the GPU computation, to hide the communication
latencies. The required memory bandwidth for the overlap-
ping is computed by

BW [Byte/s] =
Peak performance [Flop/s]

Arithmetic Intensity [Flops/Byte]
.

The value of peak performance is set with the maximum
performance of the MINPLUS kernel. The arithmetic in-
tensity [29] is the ratio of total floating-point operations to
total data communication amount. As our APSP implemen-
tation requires three b × b matrices in single precision for
4b3 operations, the arithmetic intensity can be estimated as

Arithmetic IntensityunitedAPS P(b) =
4b3

4 · 3b2
=

b
3
. (4)

The measured bandwidth between the CPU and the
GPU is around 3 GByte/s, and the computed re-
quired bandwidth BW for b = 1280 is approximately
1248 [GFlop/s]/(1280/3 [Flops/Byte])  3 GByte/s. Thus,
the communication latencies can be hidden by the overlap-
ping when we use a sufficiently large blocking factor b.
Note that the upper size of blocking factor is limited by a
capacity of pinned memory (memory mapped to the PCI-
Express memory space), and we cannot use an extremely
large blocking factor (up to 2816 in the implementation).

Figure 7 shows the performance of the APSP imple-
mentation on the CPU-GPU systems for different blocking
factors. The performance is saturated on System B which
contains a Cypress GPU when the blocking factor b ≥ 1536.
On the other hand, a performance saturation is not seen on
System A containing a Cayman GPU. This difference comes
from the fact that the overlapping of the GPU computation
and the communication cannot be implemented perfectly in
the Cayman (an overlapping of the GPU computation and
the CPU computation works). The maximum performance

Fig. 8 Performance of the APSP implementation with a near optimal
blocking factor as a function of the problem size on the CPU-GPU sys-
tems.

Fig. 9 Performance of the APSP implementation with the near optimal
blocking factor as a function of the problem size n and with a predefined
blocking factor b = 2048 on System A.

is 1116 GFlop/s on System A and 960 GFlop/s on System
B, and the efficiency is 89% (1116 of 1248) and 96% (960
of 995), respectively.

As stated above, our implementation uses a padding
technique for solving the APSP problem whose size n is not
in multiples of a blocking factor b. The disadvantage of the
padding technique is that an extra computation is needed for
the padded portion. Especially, cases where n = i · b + 1 are
worst (i is a positive integer). In these cases, a big amount
of extra computation is implemented though the ratio of ex-
tra computation to whole computation is small for relatively
large graphs.

To avoid a drastic performance degradation for such
worst cases, our APSP implementation chooses a near opti-
mal blocking factor as a function of a problem size, instead
of using a fixed blocking factor. The optimal blocking fac-
tors have been found empirically by computer experiments.
Figure 8 shows the performance of the APSP implementa-
tion with this optimization. Figure 9 compares the perfor-
mance using the optimal blocking factor with the one us-
ing a predefined blocking factor b = 2048 on System A for



2766
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

Table 2 Running time in milliseconds of different APSP implementations computing both shortest-
path distance matrix and the shortest-path construction matrix.

Number of vertices [n]
Platform 128 256 512 1024 2048 4096 8192 16384 32768

System A 3.87 4.13 8.50 23.9 105 446 2,501 16,962 129,786
System B 4.11 4.93 9.56 27.9 114 557 2,840 19,356 148,350
Cayman GPU 3.35 4.30 7.41 20.5 91.3 524 4,096 - -
Cypress GPU 3.22 4.61 10.0 27.8 115 574 - - -
Sandy Bridge CPU 1.09 3.91 11.8 78.8 664 4,984 38,148 295,886 2,396,606
Bloomfield CPU 1.74 5.75 20.4 122 887 6,540 49,269 384,177 3,016,044

Table 3 Running time in milliseconds of different APSP implementations computing a shortest-path
distance matrix only.

Number of vertices [n]
Platform 128 256 512 1024 2048 4096 8192 16384 32768

System A 4.12 3.98 7.13 16.3 60.2 294 1,494 10,146 75,018
System B 3.89 4.21 7.09 17.4 63.0 241 1,362 9,259 70,816
Cayman GPU 2.80 4.80 8.01 17.4 57.9 304 2,035 - -
Cypress GPU 3.39 11.1 14.2 17.6 58.7 305 - - -
Sandy Bridge CPU 0.54 1.38 4.44 24.3 182 1,371 10,647 83,870 702,600
Bloomfield CPU 0.71 2.38 8.34 41.4 279 2,277 17,516 141,347 1,110,415

4097 ≤ n ≤ 8192. Choosing the optimal blocking factor
prevents the drastic performance degradation. For example,
when n = 6145 (= 3 · 2048 + 1), the performance with the
optimization is 752 GFlop/s while the one with b = 2048
is 389 GFlop/s only. A performance variability is larger on
System B than System A, and big differences are seen when
n ≤ 4992 on System B and n ≤ 1408 on System A.

4.4 Performance Comparison

Finally, we compare the performance of our APSP imple-
mentations on the CPU-GPU systems with APSP imple-
mentations on a GPU or a CPU (see Table 1 for the specifi-
cation of the processors). The implementation on the GPU
is the SubBlockedAPSP kernel (Algorithm 4), which is de-
scribed in Sect. 4.2.1, with including the communication of
matrix data between the host and the GPU. The implemen-
tation on the CPU is also based on the sub-blocked Algo-
rithm 4 without the merging operation. Moreover, it utilizes
OpenMP (Open Multi-Processing) directives and eight-way
Intel AVX (Advanced Vector Extensions) instructions on
the Sandy Bridge CPU (Core i7 2600K) or four-way SSE
(Streaming SIMD Extensions) instructions on the Bloom-
field CPU (Core i7 970).

To implement a single “multiply-add” operation for
computing both shortest-path distance and construction ma-
trices on the CPUs, we need four AVX/SSE instructions (ad-
dition, comparison, and two conditional move instructions),
which are same as for the GPU. Since the CPUs do not
support a dual issue of any combination of the four instruc-
tions, we can expect at most half the peak performance, i.e.,
108.8 GFlop/s on the Sandy Bridge and 76.8 GFlop/s on the
Bloomfield. When we apply the Eq. (3) to calculate the CPU
performance, we obtain, as a maximum, 60 GFlop/s on the
Sandy Bridge and 46 GFlop/s on the Bloomfield. On the
other hand, to implement computing of a shortest-path dis-

tance matrix only, two AVX/SSE instructions (addition and
minimum) are needed. Therefore, the total number of opera-
tions for the computation is 2n3, and the performance of the
implementation is up to 105 GFlop/s on the Sandy Bridge
and 65 GFlop/s on the Bloomfield. The CPU implementa-
tion for computing both matrices requires more number of
vector registers by price of worsening memory access reg-
ularity. It leads to the lower performance than computing a
distance matrix only.

Table 2 shows the running time of the different im-
plementations for computing both distance and construction
matrices. As it can be seen from the results, the APSP im-
plementation on System A is the fastest when the problem
size n ≥ 4096. When the problem size is relatively small
(128–256), the Sandy Bridge outperforms the other imple-
mentations.

We also compare APSP implementations for comput-
ing a shortest-path distance matrix only (see Table 3). The
running time of the implementation on System B is shorter
than the one presented in our previous paper [17]. In this
work, for updating the pivot block DK,K in Algorithm 3, we
use the sub-blocked APSP Algorithm 4 without construc-
tion matrix. This algorithm requires 2b3 operations while
the algorithm used in our previous paper requires 2b3 log2 b
operations.

Table 3 shows System B runs faster than System A
when n ≥ 4096. The maximum performance of the MIN-
PLUS kernel for distance matrix is 1303 GFlop/s on the
Cayman and it is higher than 1068 GFlop/s on the Cypress.
As mentioned above, the GPU computation cannot be over-
lapped with the data communication on System A while it
is possible on System B. The computing of distance matrix
requires two b × b matrices in single precision for 2b3 op-
erations, and thus, the arithmetic intensity can be estimated
as



MATSUMOTO et al.: BLOCKED UNITED ALGORITHM FOR THE ALL-PAIRS SHORTEST PATHS PROBLEM ON HYBRID CPU-GPU SYSTEMS
2767

Arithmetic IntensityAPS P(b) =
2b3

4 · 2b2
=

b
4
,

which is 4/3 times smaller than the one in Eq. (4). The
smaller arithmetic intensity indicates that influence of the
data communication time on the running time of System A
becomes stronger.

5. Conclusion

This paper has presented a blocked united all-pairs short-
est paths (APSP) algorithm for hybrid CPU-GPU systems.
The blocked algorithm computes the shortest-path distance
matrix and the shortest-path construction matrix at the same
time. We have designed the algorithm so that the amount
of data communication between CPU (host) and GPU is re-
duced. In the blocked algorithm, the matrix-matrix “multi-
plication” for the APSP problem plays the key role for the
high performance. The APSP algorithm has been imple-
mented on the two kinds of CPU-GPU systems. The imple-
mentation runs close to the peak performance when a prob-
lem size (the number of vertices in a graph) is larger than
a few thousands. The sustained performance is 1.1 TFlop/s
in single precision on a system containing an Intel Sandy
Bridge CPU (Core i7 2600K) and an AMD Cayman GPU
(Radeon HD 6970). We guess that the proposed blocked
algorithm is applicable to other hybrid systems containing
GPU-like accelerators.

Future work includes a further extension of the blocked
APSP algorithm to cluster systems consisting of multiple
CPU-GPU nodes.

Acknowledgment

The authors wish to thank the anonymous reviewers for their
insightful comments and helpful suggestions which have
improved this paper.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed., The MIT Press, Massachusetts, USA, 2009.

[2] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover Publications, NY, USA, 1998.

[3] G. Rote, “Path problems in graphs,” Computing Supplementum,
vol.7, pp.155–198, 1990.

[4] K. Matsumoto and S.G. Sedukhin, “The algebraic path prob-
lem on the Cell/B.E. processor,” Tech. Rep. 2010-002, The Uni-
versity of Aizu, 2010. ftp://ftp.u-aizu.ac.jp/pub/u-aizu/doc/Tech-
Report/2010/2010-002.pdf

[5] R.W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol.5,
no.6, p.345, 1962.

[6] S. Warshall, “A theorem on boolean matrices,” J. ACM, vol.9, no.1,
pp.11–12, 1962.

[7] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-
pairs shortest-paths algorithm,” J. Experimental Algorithmics, vol.8,
p.2.2, 2003.

[8] M. Penner and V.K. Prasanna, “Cache-friendly implementations
of transitive closure,” J. Experimental Algorithmics, vol.11, p.1.2,
2006.

[9] P. D’Alberto and A. Nicolau, “R-Kleene: A high-performance
divide-and-conquer algorithm for the all-pair shortest path for
densely connected networks,” Algorithmica, vol.47, no.2, pp.203–
213, Feb. 2007.

[10] S.C. Han, F. Franchetti, and M. Püschel, “Program generation for the
all-pairs shortest path problem,” Proc. 15th International Conference
on Parallel Architectures and Compilation Techniques (PACT ’06),
pp.222–232, Seattle, Washington, USA, Sept. 2006.

[11] K. Matsumoto and S.G. Sedukhin, “A solution of the all-pairs short-
est paths problem on the Cell Broadband Engine processor,” IEICE
Trans. Inf. & Syst., vol.E92-D, no.6, pp.1225–1231, June 2009.

[12] S. Vinjamuri and V.K. Prasanna, “Transitive closure on the cell
broadband engine: A study on self-scheduling in a multicore pro-
cessor,” Proc. 23rd IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2009), pp.1–11, Rome, Italy, IEEE
Computer Society, May 2009.

[13] G.J. Katz and J.T. Kider, Jr., “All-pairs shortest-paths for large
graphs on the GPU,” Proc. 23rd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware (GH 2008), pp.47–55, Sarajevo,
Bosnia and Herzegovina, June 2008.

[14] A. Buluç, J.R. Gilbert, and C. Budak, “Solving path problems on the
GPU,” Parallel Comput., vol.36, no.5-6, pp.241–253, June 2010.

[15] P. Harish, V. Vineet, and P.J. Narayanan, “Large graph al-
gorithms for massively multithreaded architectures,” Tech. Rep.
IIIT/TR/2009/74, International Institute of Information Technology,
2009. http://cvit.iiit.ac.in/papers/pawan09GraphAlgorithms.pdf

[16] T. Okuyama, F. Ino, and K. Hagihara, “Fast blocked Floyd-Warshall
algorithm on the GPU,” IPSJ Transactions on Advanced Computing
Systems, vol.3, no.2, pp.57–66, June 2010 [in Japanese].

[17] K. Matsumoto, N. Nakasato, and S.G. Sedukhin, “Blocked all-pairs
shortest paths algorithm for hybrid CPU-GPU system,” Proc. 13th
IEEE International Conference on High Performance Computing
and Communications (HPCC-2011), pp.145–152, Banff, Canada,
IEEE Computer Society Press, Sept. 2011.

[18] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, and P.
Sadayappan, “Parallel FPGA-based all-pairs shortest-paths in a di-
rected graph,” Proc. 20th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2006), pp.1–10, Rhodes Island,
Greece, April 2006.

[19] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, Synchroniza-
tion and Linearity, An Algebra for Discrete Event Systems, John
Wiley & Sons, Chichester, West Sussex, UK, July 1993.

[20] K. Matsumoto and S.G. Sedukhin, “Matrix multiply-add in min-plus
algebra on a short-vector SIMD processor of Cell/B.E.,” WANC:
Proc. First International Conference on Networking and Computing
(ICNC’10), pp.272–274, Hiroshima, Japan, Nov. 2010.

[21] J.E. Pin, “Tropical semirings,” in Idempotency, Publications of the
Newton Institute, no.11, ed. J. Gunawardena, pp.50–69, Cambridge
University Press, Cambridge, UK, 1998.

[22] AMD Inc., “AMD Accelerated Parallel Processing OpenCL Pro-
gramming Guide, rev1.3f,” Aug. 2011.

[23] K. Madduri and D.A. Bader, “GTgraph: A suite of synthetic ran-
dom graph generators.” http://www.cse.psu.edu/˜madduri/software/
GTgraph, accessed Jan. 4, 2012.

[24] Khronos Group, “OpenCL - The open standard for parallel program-
ming of heterogeneous systems.” http://www.khronos.org/opencl,
accessed Jan. 4, 2012.

[25] N. Nakasato, “A fast GEMM implementation on the Cypress GPU,”
ACM SIGMETRICS Performance Evaluation Review, vol.38, no.4,
pp.50–55, March 2011.

[26] K. Matsumoto, N. Nakasato, T. Sakai, H. Yahagi, and S.G. Se-
dukhin, “Multi-level optimization of matrix multiplication for GPU-
equipped systems,” Procedia Computer Science, vol.4, pp.342–351,
June 2011.

[27] AMD Inc., “AMD Intermediate Language (IL) Reference Guide, rev
2.4,” Oct. 2011.

[28] AMD Inc., “AMD Compute Abstraction Layer (CAL) Program-



2768
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.12 DECEMBER 2012

ming, rev2.03,” Dec. 2010.
[29] S.W. Williams, “The roofline model,” in Performance Tuning of Sci-

entific Applications, ed. D.H. Bailey, R.F. Lucas, and S.W. Williams,
ch.9, pp.195–215, CRC Press, FL, USA, 2011.

Kazuya Matsumoto is a Ph.D. student at
the University of Aizu. He received Bachelor
degree and Master degree in Computer Science
and Engineering from the University of Aizu in
2008 and 2010, respectively. His current re-
search interests include parallel and distributed
computing, program optimization and tuning,
and design and evaluation of parallel algorithms.
He is a student member of IEEE Computer So-
ciety and IPSJ.

Naohito Nakasato is assistant professor
of Department of Computer Science and Engi-
neering at University of Aizu, Japan and visit-
ing associate professor of Center for Computa-
tional Sciences at University of Tsukuba, Japan.
He had obtained Ph.D in Science (Astronomy)
from University of Tokyo, 2000. He is a mem-
ber of International Astronomical Union, Astro-
nomical Society of Japan, Information Process-
ing Society of Japan and IEEE. His research in-
terests are high performance computing and nu-

merical modeling in astrophysics.

Stanislav G. Sedukhin is a Professor and
the Vice-President of the University of Aizu.
He received his Ph.D. and Dr.Sci. (Habilita-
tion) from the Russian Academy of Sciences in
1982 and 1993, respectively. His research inter-
ests are in architectural co-design of application-
specific array processors and massively-parallel
algorithms. Dr. Sedukhin is a member of ACM,
and IEEE CS.


