
Bringing Linguistics to a Programming
Class: A Problem of Automatic Text
Generation for Describing Data Series

Evgeny PYSHKIN 1 and John BLAKE
University of Aizu, Japan

Abstract. This study focuses on a variety of aspects of teaching programming
which can connect the agenda of programming classes to foreign language learning
and the broader scope of applied linguistics. In the domain of developing computer-
assisted interactive tools for language learning, we can discover a number of inter-
esting and non-trivial problems that can be suggested to students participating in
programming classes. Specifically, this study reports an example from our project
on the automatic generation of data series trend descriptions to accompany pre-
sentation graphs and charts. Originally designed for language learning purposes,
this project can be revisited for possible applications as programming exercises
that serve as vehicles for a problem-based learning approach to class organization.
In general, we believe that through working on, and hopefully, solving practical
problems students can apply the content studied in other classes. This application
can significantly enhance the knowledge and skills students obtain in programming
classes; and thus, improve their professional skill set.

Keywords. programming teaching, problem-based learning, scaffolding, trend
description

Introduction

In programming classes, many practical tasks offered to students are designed with the
expectation that solutions will use text processing algorithms. The complexity of such
tasks ranges from elementary exercises on string processing to intricate problems of
lexical and syntactical analysis necessitating the use of statechart models. On the other
hand, in applied linguistics there are many tasks that require the development of intel-
ligent approaches to text processing, in connection to both natural language processing
and language learning. Language learning-related aspects can be beneficial in creating a
programming class teaching environment, where programming exercises can conducted
using a problem-based learning (PBL) approach that would favor the tasks appearing in
scope of other academic disciplines (e.g. foreign language classes), the latter usually be-
ing not considered as directly linked to technological disciplines such as programming
or software engineering.

1Corresponding Author: Evgeny Pyshkin, University of Aizu, Tsuruga Ikki-machi, Aizu-Wakamatsu
9658580, Japan; E-mail: pyshe@u-aizu.ac.jp

New Trends in Intelligent Software Methodologies, Tools and Techniques
H. Fujita et al. (Eds.)
IOS Press, 2022
© 2022 The authors and IOS Press. All rights reserved.
doi:10.3233/FAIA220291

621



Interestingly, by adopting a PBL approach in which students work together to solve
practical problems drawing on their knowledge and experience gained in other software
development classes, students significantly enhance their professional skill set, particu-
larly, with respect to software development lifecycle activities, such as subject domain
analysis, requirement elicitation, code review, etc.

In this work, we take an example from our project on the automatic generation of
data series trend textual descriptions that could accompany graphs and charts presented in
a foreign language (in our case – English). This project, originally devised for language
learning purposes, can be revisited for possible application to programming classes de-
livered using a PBL approach. Thus, the original problem is placed into the broader con-
text of development of pedagogic natural language processing software, which requires
knowledge from the fields of both digital literacy and applied linguistics. It is worth to
mention that PBL models originate in the areas of knowledge, not directly connected
to informatics and programming. PBL approaches were adopted widely in medical ed-
ucation [1] and subsequently gained popularity in language education [2,3,4]. However,
we definitely observe the suitability of PBL elements to software engineering activities
requiring students to work in teams on projects dealing with both authentic and artifi-
cial problems. The interdisciplinary nature of solving complex problems not only pro-
vides learners with multiple learning opportunities to gain disciplinary knowledge, but
also enables them to build transferable skills to help them transition more smoothly from
education to employment [5].

1. Background

While writing academic or scientific texts in a foreign language, students often face dif-
ficulties in describing charts and data trends adequately even though such descriptions
are commonly required in their graduation theses or in written foreign language tests.
Descriptions of trends in the result section of student-written research articles and grad-
uation theses tend to be permeated with grammatical and lexical errors [6]. To address
this problem, we suggest developing an application that would provide practice opportu-
nities for language learners. Using such an application, the students can either fill in the
gaps, complete sentence stems or write the whole text that can be further compared and
contrasted against automatically generated model descriptions. To the best of our knowl-
edge, though there are numerous resources that list useful vocabulary and sentences for
data series description [7,8] (Figure 1 shows an example), there is no freely-available
interactive resource to practice describing such graphs or charts.

Figure 1. Substitution sentence for trends (based on Academic Phrasebank [8]).

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class622



While few researchers are working on data-to-text systems to generate textual sum-
maries (see, for example, [9]), most research in this area focuses rather on the opposite
problem of generating graphs from the given textual descriptions [10]. The development
of a graph-to-text description generator could be used to raise learner awareness of the
suitability of their written descriptions by showing how vocabulary related to trends is
used in context. A simple example is shown in Figure 2.

Figure 2. Simple bar chart with colour-coded three-sentence description

The major focus of this paper is neither on improving the ability of students to de-
scribe data fluctuation, nor on the specific approach to solve the problem of data trend
textual description generation; but on the suitability of using this problem in the context
of programming classes. However, in order to demonstrate the feasibility of this task for
students, let us share our insights gained through pilot studies on developing an applica-
tion to generate automated model descriptions of data trends.

Computer science majors taking an elective content and language integrated learning
course were set the problem of creating a web application that can visualize and describe
trends automatically from a data series. The envisaged users of the web app are Japanese
learners of English who need to describe trends in their graduation thesis, but have had
limited exposure to and practice at such trend descriptions. In this seven-week course,
the instructor reviewed basic string processing operations, introduced the problem and
provided students with advice on language analysis.

Students worked in self-managed teams of up to four people to complete the project.
The online project management tool, Trello, was used to set milestones and track the
progress of the teams. Team leaders were required to submit a requirements analysis,
problem breakdown, and pseudocode before beginning the programming phase. Teams
submitted draft programs at two intermediate points, or shared access to their chosen
repository and collaborative software development platform (e.g. GitHub and GitLab).
Feedback on the draft program was provided once by peers and once by the instructor.
On completion, students submitted their source code, the URL of their online application
and a demonstration video screencasting the more sophisticated functions within their
codebase using Terminal.

Axiomatically, the approaches adopted by each team differed, but there were many
similarities in terms of both difficulties and how they overcame the difficulties. Although
generating the directionality of a trend (e.g. rise, fall or remain stable) is non-trivial,
many groups had difficulty in determining how to select an appropriate adverb of magni-

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class 623



tude (e.g. slightly, substantially). Their initial solutions tended to set absolute (and arbi-
trary) cut off points based on their initial data series whereas a more appropriate solution
would use relative values, since a change of, say 10, may be negligible or substantial
depending on the initial data value.

All teams were able to write a program that produced sentences such as: The number
of widgets rose by 10 from 25 to 35. However, the repetition of the grammatical subject
(the number of widgets), the overuse of the same verb (e.g. rose) and the inclusion of all
three numerical values as prepositional phrases (e.g. change in value, initial value and
final value) resulted in very marked (i.e. unnatural and non-human-like) textual descrip-
tions. Another problem was that sentences were demarcated by time period rather than by
trend. which means that there may be three consecutive sentences describing a decrease.
Some solutions that groups adopted to address these issues included are itemized:

1. Prepositional phrases – Randomizing the inclusion of the values so that only one
or two of the possible phrases are appended to the string.

2. Similar trends in consecutive sentences – When the directionality of the current
set of values is the same as the previous set(s) of values, report the change over
the whole period in a single sentence instead of multiple sentences.

3. Repetition of grammatical subject – When the grammatical subject is a noun
phrase (e.g. the number of widgets), vary the subject by alternating among the full
form, the head of the noun phrase (e.g. the number), or replacing with a pronoun
(e.g. it).

4. Sentence structure – Rather than simply using change verbs as the main verb,
include some sentences using be as the main verb and the trend description as a
noun (e.g. There was a rise...)

5. Repetition of verb – By creating an array of verbs meaning ”go up”, (e.g rise,
climb, increase), the program can select systematically or randomly from the
array when a verb meaning ”go up” is needed.

None of these solutions are particularly challenging for experienced programmers;
but for those with little practical programming experience, working out the solution and
then creating the program is challenging. The following section deals with the same
problem, but rather than being presented as a linguistic problem, it is framed as a vehicle
to learning programming.

2. Posing the Problem to a Programming Class

To ensure that problem descriptions follow an appropriate rhetorical and linguistic pat-
tern in a similar manner to the one presented in Figure 2, algorithms are required to be
developed to generate the necessary language automatically. This text generation prob-
lem is a fruitful niche on which assignments for programming classes may be based.
Thus, a simple comparison of adjacent values listed in a time series may be used to de-
termine the direction of the trend (e.g. increase, decrease or remain stable), though such
a determination might not be satisfactory for complex data series like potentially volatile
stock rates, technology process measurements, climatic data, etc. Appropriate adjectives
and adverbs describing the magnitude of the change can be selected from a vocabulary
set based on the relative difference in the values. To avoid excess repetition of the gram-

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class624



matical subject, the given noun phase (e.g. the number of users in Figure 2) can be short-
ened by using the grammatical head (e.g. the number) or the tail (e.g. users) of the noun
phrase, or an anaphoric pronoun (e.g. it for the singular noun number or they for the
plural noun users). By comparing the difference in the values of the quantity, and taking
account of the time period between the values, the rate of change (e.g. rapidly, gradually)
may also be determined. By combining this information with mix-and-match sentence
elements and rhetorical patterns extracted from a corpus, a human-like description can
be created using rule-based parsing.

To grade the language level of the generated text to the users, the system needs to
take into account both vocabulary and grammatical structures. For a model that classifies
users into three language levels (e.g. beginner, intermediate and advanced), the software
needs to support several configurations, achieved by drawing upon different lexical sets
and combining those lexical sets appropriately. For example, for the beginner level sim-
ple sentences (with one main clause) and compound sentences (with two clauses joined
by a conjunction) can be generated from a limited set of vocabulary items, while for the
advanced level, the full range of sentence constructions and vocabulary can be drawn
upon.

Auto-generated descriptions can be transformed into close tests or gap-fill form
(similar to the example shown in Figure 3; thus, creating opportunities for language
learners to practice. Implementing an algorithm to transform the text into a gap-fill rep-
resentation can be an excellent derived problem for a programming assignment. Ap-
proaches to automatic generation of cloze tests (i.e. fill-in-the-blank texts) has been rel-
atively well developed for different practical areas such as the automatic generation of
reading skill exercises [11], language translation exercises [12], history studies [13], and
fill-in-the-blank source code for using in programming classes [14]. In the scope of fit-
ting the PBL model to the needs of programming classes, a task of generating such gap-
fill structures could be a good motivator for students to learn the approaches similar to
those mentioned above; thus, connecting a programming assignment to adjacent domains
such as language grammars, graph-based models, n-grams, etc. In addition to develop-
ing team work, the multidisciplinary nature of PBL approaches enables learners to dis-
cover more about related domains in their search for a solution. This search also provides
undergraduates with a practical introduction to and experience of conducting research.

Including support for different levels of scaffolding (e.g. at word, phrase, clause or
sentence levels) can be an additional requirement for a more challenging programming
task. The requirements can also include the possibility to export the resultant text into a
format conforming to language learning tool requirements (using XML, for instance).

Figure 3. Example with gap-fill and full descriptions

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class 625



Processing a data series for typical trend recognition can be automated by using rule-
based or machine learning approaches. Meanwhile, to address the particularities of hu-
man perception, interactive tools enabling the marking-up of data series or charts may be
beneficial for preliminary data processing, especially with respect to the pedagogic goals
of a mixed-level language class, necessitating descriptions at different levels of difficulty.
Figure 4 illustrates a possibility to select a number of chart regions that correspond to
typical trends, according to expert opinions. The chart shows the rates of gasoline fu-
tures over a ten-month period, and demonstrates that practical cases of real-world data
are not easy to analyze in a fully automatic mode; decisions on the precise point at which
a new trend starts and finishes can be fuzzy. Creating a semi-automated interactive tool
to support such decisions can be a good response to fulfill the needs of foreign language
learners.

Figure 4. Marking up the chart for further trend description generation

Understanding the vocabulary, or lexicon, is an important point to be taken into the
consideration by software creators. Formally, vocabulary V is much wider than simply a
bag of words, but a cortege (TC,TR, I), where TC being a partially ordered set of concept
types; TR – a partially ordered set of relation symbols that can be applied to the concepts
(types, in software terms) from TC; I – a set of individual markers (instances, in software
terms). According to the theory of conceptual graphs [15], over a vocabulary V , a graph

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class626



G =<C,R > can be defined, whereC and R state for partitions of concepts and relations
respectively. Each concept node C can be described by its concept type and a marker
from I, i.e., by some pair (t, i)|, t ∈ TC, i ∈ I. Each relation node can be connected to
a number of concept nodes. The numbers associated to those connections establish the
semantic order of these connections.

Figure 5. Constructing conceptual graphs for data trend descriptions

Figure 5 illustrates the process of conceptual graph elicitation for the example linked
to the sample data as shown in Figure 4. Nested conceptual graphs [16] may be used
to represent the complex phrases which include coordinating or subordinating clauses.
Though not novel, conceptual graphs still present a suitable formal model for knowledge
representation that can not only be used for further descriptive text construction, but also
for comparison between different charts and data series. Discovering the similarity of the
grammatical patterns used and identifying the semantic constructions to which they refer
can be based on conceptual graph homomorphic mapping [17].

3. Academic Outcome

In [18], there is a discussion on project roles that both teachers and students can adopt in
a programming class. A role-based approach to class organization is naturally linked to
a PBL-based or a flipped classroom approach. Each particular project role is connected

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class 627



to the particular activities linked to specific software artifacts and refers to particular
outcomes and deliverables that are expected to be produced. Figure 6 illustrates a model
to instantiate a role-based approach to the case of the project discussed in this paper.

Figure 6. Common-sense ontology representation of role-based workflow in a PBL programming class

The task of generating textual descriptions of graphical or chart data serves as a
good example of a multi-aspect exercise problem which requires the application of dif-
ferent independent data models and developer skills, and needs competent coordination
between project team members. To sum up, the multi-aspect nature of the problem we
investigate requires familiarity with multiple knowledge areas and model domains to be
explored by the students under supervision of more experienced instructors including but
not limited by the following:

• Approaches to construct good software interfaces linked to a particular subject
domain (e.g. interactive interface to mark up the data chart as shown in Figure 4;

• Known knowledge representation models like ontologies or conceptual graphs to
be used to generate a formal description of a data trend required for automatic
construction of its text version (perhaps, with the added fill-in-the-blank section);

• Language grammar representation models;
• Basic structures used in natural language processing domains; and
• Methodological views on creating software application for learners (e.g. language
learners) and their specific properties.

From our teaching experience, we can mention a number of other multi-aspect prob-
lems we use in our programming classroom:

• Parsing and circuit implementation of logic expressions;
• Evaluating text document similarity and searching within a collection of text doc-
uments using vector space model; and

• Synthesizing simple music melodies based on ABC music notation parsed as in-
troduced in [19].

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class628



Though the possible solutions of the above-mentioned problems need students to
utilize well-known algorithms and program object organization, they are far from trivial
for those beginning their programming journey. The solutions to these problems present
a suitable challenge, yet remain feasible with the scope of the limited resources of time
and effort in the academic environment of a programming class.

4. Conclusion

From the language learning perspective, the task of generating graph descriptions is one
of possible implementations of an idea to visualize basic grammatical language con-
structions in a way that helps facilitating their comprehension by language learners, es-
pecially when learners are able to work interactively with these constructions. Indeed,
when grammatical constructions are explained to pupils at high school, typically no for-
mal models of syntax like constituency or dependency grammars are used. Instead, some
prototypical structures (or grammatical patterns) may be demonstrated, which is simi-
lar to how children acquired their mother tongue with copious amounts of comprehen-
sible input and almost no overt grammatical instruction. Language learners can use pat-
terns explicitly or implicitly: as far as in 1965 McConlogue and Simmons reported that
a purely pattern-based English syntax parser was able to show 77% accuracy after ex-
perience with only 300 sentences [20]. Nowadays, much higher accuracy of language
recognition algorithms can be achieved using machine learning; however, patterns and
models still occupy a significant domain of knowledge structuring and representation by
humans.

From the programming perspective (where we consider programming as definitely
belonging to a class of disciplines related to languages), students’ capability to create a
model of studied concepts is of crucial importance. As mentioned by Milne and Rowe,
the absence of such a mental model is one of usual difficulties in learning program-
ming [21]. Combining foreign language class outcome with the programming assign-
ments can be beneficial for both domains; thus, as mentioned in [22], demonstrating an
example of symbiotic relationship connecting language learning to computer technology
and software design.

Acknowledgement

This work contributes to the project “Natural language generation of trend descriptions
for pedagogic purposes” funded by the Japan Society for the Promotion of Science
(JSPS), grant number 22K00792.

References

[1] Wood DF. Problem based learning. British Medical Journal. 2003;326(7384):328-30.
[2] Gallagher SA. Problem-based learning: Where did it come from, what does it do, and where is it going?

Journal for the Education of the Gifted. 1997;20(4):332-62.
[3] Learning PB. Speaking of teaching. Center for Teaching and Learning. 2001;11.
[4] Khotimah S. The use of problem based learning to improve students’ speaking ability. ELT Forum:

Journal of English Language Teaching. 2014;3(1).

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class 629



[5] Blake J. Real-world simulation: Software development. In: Applied Degree Education and the Future
of Work. Springer; 2020. p. 303-17.

[6] Blake J. Corpus-based error detector for Computer Science. In: Proceedings of the Fourth Asia Pacific
Corpus Linguistics Conference; 2018. p. 50-4.

[7] Kinnunen T, Leisma H, Machunik M, Kakkonen T, Lebrun JL. SWAN-scientific writing AssistaNt. a
tool for helping scholars to write reader-friendly manuscripts. In: Proceedings of the Demonstrations at
the 13th Conference of the European Chapter of the Association for Computational Linguistics; 2012.
p. 20-4.

[8] Morley J. Academic phrasebank. Manchester: University of Manchester. 2014.
[9] Jandaghi P, Pujara J. Human-like Time Series Summaries via Trend Utility Estimation. arXiv preprint

arXiv:200105665. 2020.
[10] Kandarkar S. Computer Assisted Natural Language Description of Trends and Patterns in Time Series

Data [Master thesis]. Technishe Universitaet Muenchen; 2020.
[11] Hill J, Simha R. Automatic generation of context-based fill-in-the-blank exercises using co-occurrence

likelihoods and Google n-grams. In: Proceedings of the 11th Workshop on Innovative Use of NLP for
Building Educational Applications; 2016. p. 23-30.

[12] Panda S, Gomez FP, Flor M, Rozovskaya A. Automatic Generation of Distractors for Fill-in-the-Blank
Exercises with Round-Trip Neural Machine Translation. In: Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics: Student Research Workshop; 2022. p. 391-401.

[13] Pannu S, Krishna A, Kumari S, Patra R, Saha SK. Automatic Generation of Fill-in-the-Blank Questions
From History Books for School-Level Evaluation. In: Progress in Computing, Analytics and Network-
ing. Springer; 2018. p. 461-9.

[14] Terada K, Watanobe Y. Automatic generation of fill-in-the-blank programming problems. In: 2019
IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
IEEE; 2019. p. 187-93.

[15] Sowa JF. Conceptual graphs. Foundations of Artificial Intelligence. 2008;3:213-37.
[16] Chein M, Mugnier ML, Simonet G. Nested graphs: A graph-based knowledge representation model

with FOL semantics. In: KR; 1998. p. 524-35.
[17] Chein M, Mugnier ML. Graph-based knowledge representation: computational foundations of concep-

tual graphs. Springer Science & Business Media; 2008.
[18] Pyshkin E. On Programming Classes under Constraints of Distant Learning. In: 2020 The 4th Interna-

tional Conference on Software and e-Business; 2020. p. 14-9.
[19] Malan DJ, Malan, Lloyd D, Yu B. Harvard CS50: Introduction to Computer Sci-

ence. Harvard University; 2019. Available from: https://pll.harvard.edu/course/

cs50-introduction-computer-science.
[20] McConlogue K, Simmons RF. Analyzing English syntax with a pattern-learning parser. Communica-

tions of the ACM. 1965;8(11):687-98.
[21] Milne I, Rowe G. Difficulties in learning and teaching programming—views of students and tutors.

Education and Information technologies. 2002;7(1):55-66.
[22] Pyshkin E, Mozgovoy M, Volkov V. Models and metamodels for computer-assisted natural language

grammar learning. International Journal of Educational and Pedagogical Sciences. 2015;9(1):60-6.

E. Pyshkin and J. Blake / Bringing Linguistics to a Programming Class630


	Chapter 8. Ontology in Data and Software
	Bringing Linguistics to a Programming Class: A Problem of Automatic Text Generation for Describing Data Series


