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Abstract: Skin cancer poses a significant healthcare challenge, requiring precise and prompt diagnosis
for effective treatment. While recent advances in deep learning have dramatically improved medical
image analysis, including skin cancer classification, ensemble methods offer a pathway for further
enhancing diagnostic accuracy. This study introduces a cutting-edge approach employing the Max
Voting Ensemble Technique for robust skin cancer classification on ISIC 2018: Task 1-2 dataset. We
incorporate a range of cutting-edge, pre-trained deep neural networks, including MobileNetV2,
AlexNet, VGG16, ResNet50, DenseNet201, DenseNet121, InceptionV3, ResNet50V2, InceptionRes-
NetV2, and Xception. These models have been extensively trained on skin cancer datasets, achieving
individual accuracies ranging from 77.20% to 91.90%. Our method leverages the synergistic capabili-
ties of these models by combining their complementary features to elevate classification performance
further. In our approach, input images undergo preprocessing for model compatibility. The ensemble
integrates the pre-trained models with their architectures and weights preserved. For each skin lesion
image under examination, every model produces a prediction. These are subsequently aggregated
using the max voting ensemble technique to yield the final classification, with the majority-voted
class serving as the conclusive prediction. Through comprehensive testing on a diverse dataset, our
ensemble outperformed individual models, attaining an accuracy of 93.18% and an AUC score of
0.9320, thus demonstrating superior diagnostic reliability and accuracy. We evaluated the effective-
ness of our proposed method on the HAM10000 dataset to ensure its generalizability. Our ensemble
method delivers a robust, reliable, and effective tool for the classification of skin cancer. By utilizing
the power of advanced deep neural networks, we aim to assist healthcare professionals in achieving
timely and accurate diagnoses, ultimately reducing mortality rates and enhancing patient outcomes.

Keywords: skin cancer; medical imaging; classification; deep learning; transfer learning; max voting

1. Introduction

Skin cancer, a prevalent yet often misdiagnosed disease poses a significant challenge in
medical diagnostics. Skin cancer is characterized by the uncontrolled growth of abnormal
cells in the skin. The three most common types of skin cancer are basal cell carcinoma,
squamous cell carcinoma, Merkel cell carcinoma, and melanoma [1]. Non-melanoma skin
cancer is primarily caused by DNA damage from ultraviolet radiation exposure [2,3]. Skin
cancer ranks among the most prevalent forms of cancer globally, making up around a third
of all reported cancer diagnoses, with its frequency steadily rising each year [4]. Just in
the United States, it is estimated that more than 9500 individuals receive a skin cancer
diagnosis daily [5,6].

While skin cancer is often treatable, early detection and precise diagnosis play a
pivotal role in achieving favourable treatment results and enhancing patient survival
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rates [7–9]. Skin cancer detection has traditionally relied on a mix of visual examination
and histopathological analysis, methods which are fraught with limitations in accuracy and
scalability. Unfortunately, traditional methods for diagnosing skin cancer, such as visual
inspection and histopathological examination, can be time-consuming and subjective, and
have high inter-observer variability.

Numerous non-invasive imaging technologies for skin cancer detection and mon-
itoring have been developed [10] in recent years. One notable example is the use of
multi-spectral sensors to detect differences in the refraction index using millimeter-wave
to terahertzphotonic near-field imaging [11]. Recent advancements in different areas of
artificial intelligence (AI) have significantly impacted many fields, suggesting that AI
could greatly improve cancer diagnosis. The field of medical diagnostics is now benefiting
from the rapid evolution of deep learning technologies, employing advanced models like
Xception, InceptionResNetV2, and ResNet50V2 [12–14].

Despite these technological advancements, the difficulty in differentiating malignant
from benign cases continues to hinder diagnostic accuracy. In recent years, deep neural
networks, especially convolutional neural networks (CNNs), [15] have demonstrated
significant potential in precisely detecting and categorizing skin cancer from medical
images [7,16,17], such as those shown in Figure 1. CNNs are a specialized class of neural
networks ideally suited for tasks involving image classification, as they can autonomously
acquire hierarchical representations of image features directly from raw pixel values [18,19].

Figure 1. Skin Cancer—Malignant and benign sample images [3].

The challenge in skin cancer detection lies in the high variability of lesions and the
limitations of current diagnostic methods, which often lead to inaccuracies and inconsistent
diagnoses. Transfer learning, which entails the utilization of pre-trained CNN models for
feature extraction from medical images, has additionally demonstrated enhancements in
classification accuracy [20–22]. The application of deep learning methods in the domain of
skin cancer detection and classification has emerged as a vibrant research area in recent
years. Numerous investigations have substantiated that CNN models can achieve high
accuracy in detecting and classifying skin cancer from medical images, and that transfer
learning can further improve classification accuracy [23–25].

Although a substantial research gap still exists in the investigation of a holistic and
cohesive methodology, the extant body of literature on skin cancer diagnosis utilizing deep
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learning models is rapidly growing with many researchers vying to create increasingly
more accurate detection methods. There are, however, few studies that harness the possible
synergies that may be achieved using a Max Voting Ensemble approach, which has not—as
far as we know—been thoroughly investigated on a diverse dataset in the context of skin
cancer diagnosis.

While deep learning for medical image analysis has made significant strides, a particu-
lar area of study interest is the application of cutting-edge pre-trained deep learning models
to skin cancer detection. The primary aim of this work is to improve the precision and
dependability of skin cancer diagnostic systems by examining the special use of the Max
Voting Ensemble approach. This study presents an innovative approach for skin cancer
detection and classification, utilizing the max voting ensemble technique with cutting-edge
pre-trained deep learning models. The method proposed here combines the strengths
of multiple pre-trained deep learning models, including Xception, InceptionResNetV2,
ResNet50V2, InceptionV3, DenseNet121, DenseNet201, ResNet50, VGG16, AlexNet, and
MobileNetV2, to create an ensemble with enhanced accuracy and robustness. The cutting-
edge pre-trained models employed in this investigation have been extensively trained on
large-scale skin cancer datasets, enabling them to capture complex features and patterns
specific to skin lesions. By combining these models through the max voting ensemble
technique, we aim to harness the diversity and complementarity of their predictive abilities,
leading to improved generalization and discrimination power.

Our approach integrates multiple deep learning models, each selected for its proven
strengths in image classification and feature extraction. Models such as Xception,
ResNet50V2, and InceptionResNetV2 are renowned for their robustness in handling com-
plex image data. This diverse selection ensures a comprehensive analysis of skin lesions,
capturing a wide range of features from color and texture to shape and size variations.
The synergy of these architectures enables a detailed analysis of dermatological images.
The models underwent extensive training with augmented datasets, fine-tuning hyperpa-
rameters to balance bias and variance effectively, ensuring that the models are adept at
identifying the subtleties of skin cancer lesions.

The max voting ensemble technique combines predictions from multiple deep learning
models to derive a diagnosis. This technique harnesses the collective intelligence of the
models. By aggregating the outputs, the ensemble approach effectively mitigates individual
model biases and errors, leading to a more robust and reliable diagnostic tool. The Max
Voting Ensemble is particularly adept at handling diverse and challenging skin lesion
cases, offering adaptability and accuracy in various clinical scenarios. This adaptability
is crucial in addressing the wide variability seen in skin cancer presentations. Empirical
validation of our ensemble model underscores its superiority over individual models. The
ensemble consistently demonstrated higher accuracy and diagnostic precision in our tests,
which included a comprehensive comparison with the performance of standalone deep
learning models.

Our research contributes to the ongoing evolution of artificial intelligence in medical
diagnostics by addressing the demand for enhanced detection methods in dermatological
health by examining the unexplored terrain of merging these advanced models. Our pro-
posed noble approach holds the potential to transform the field of skin cancer identification
and categorization, contributing to early diagnosis and more effective treatment strategies.
With the integration of cutting-edge pre-trained deep learning models and the power of
ensemble techniques, we aim to make a meaningful impact on healthcare and lead the way
towards improved patient care and outcomes.

This research makes four significant contributions to the field of skin cancer detection
and classification.

• Firstly, it successfully utilizes the max voting ensemble technique to effectively dis-
tinguish between benign and malignant skin cancer cases. This approach is notable
for its ability to amalgamate the predictions of multiple models, thereby enhancing
accuracy and demonstrating superior performance compared to individual models.
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• Secondly, the study offers a comprehensive analysis of various deep learning models
used for skin cancer classification. This analysis is rigorously assessed using the area
under the receiver operating characteristic (ROC) curve (AUC), providing valuable
insights into the effectiveness of these models in accurate disease identification.

• Furthermore, the ensemble method developed in this study not only surpasses the
accuracy of single models but also showcases remarkable robustness and broad appli-
cability across different datasets. This is evidenced by its ability to detect malignant
cases with high precision in varied scenarios.

• In addition, the study introduces an innovative algorithm based on the max voting
ensemble technique, integrating ten pre-trained individual models. These models
collectively exhibit robustness and reliability, significantly outperforming most compa-
rable alternatives. The efficacy of this ensemble approach is exemplified by achieving
an AUC score of 0.932, underscoring its potential in medical diagnostics.

The results of this study can help guide the development of more accurate and efficient
skin cancer detection and classification algorithms, which can ultimately lead to improved
patient outcomes and survival rates. Beyond its immediate applications in skin cancer
detection, our work carries broader implications for the field of medical image analysis.
The successful integration of ensemble techniques could be extended to various medical
imaging modalities and disease classifications. By leveraging the collective intelligence
of multiple models, we can enhance the accuracy and reliability of diagnostic tools across
diverse healthcare domains.

The organization of the remainder of this paper is as follows: the subsequent section
presents an extensive review of the literature. Then, we introduce the materials and meth-
ods, describing the dataset, model architectures, and experimental setup. Subsequently, we
present the results and analysis, showcasing the AUC scores of individual models and the
Max Voting Ensemble. Finally, we discuss the ramifications of our findings, highlighting
the significance of ensemble techniques in medical image analysis, particularly for skin
cancer detection, and conclude with future research directions in this promising field.

2. Literature Review

Skin cancer ranks as the most prevalent form of cancer in the United States, accounting
for approximately 5.4 million diagnosed cases each year. Skin cancer is often curable, but
effective treatment is contingent on early detection. Delayed diagnosis and treatment can
result in adverse outcomes, such as increased rates of metastasis, as well as heightened
morbidity and mortality. Conventional approaches to skin cancer diagnosis, including
visual inspection and biopsy, are characterized by subjectivity, time-intensive procedures,
and the potential for significant inter-observer variation. Consequently, there has been a
rising interest in leveraging machine learning methods, notably deep learning techniques, to
enhance the precision and efficiency of skin cancer diagnosis. Over the past few years, deep
learning methods [26], particularly convolutional neural networks (CNNs) [17,23,26–28],
have demonstrated significant potential for accurately identifying and categorizing skin
cancer from medical images of skin lesions [7,16,24,25]. In this review of relevant literature,
we explore recent studies focusing on the detection and classification of skin cancer through
the application of deep learning and transfer learning methodologies.

The advancements in deep learning techniques have spurred considerable progress
in skin cancer detection. Recent review articles [29–33] explore key contributions in this
domain, with a focus on the application of deep learning methods. For example, the com-
prehensive review by Dildar et al. (2021) [33] provides a contemporary overview of skin
cancer detection leveraging deep learning techniques. The authors systematically analyze
the latest advancements and methodologies in the field, offering valuable insights into the
evolving landscape of skin cancer diagnostics. Brinker et al.’s [29] systematic review focuses
on the application of convolutional neural networks (CNNs) for skin cancer classification.
The paper critically assesses the state of the art in CNN-based skin cancer diagnosis, pro-
viding a comprehensive synthesis of existing literature and highlighting key trends in this
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rapidly evolving field. Adegun and Viriri (2021) conduct an in-depth exploration of deep
learning techniques applied to skin lesion analysis and melanoma cancer detection [30].
Their survey not only summarizes existing methodologies but also critically examines the
state of the art, offering insights into challenges and opportunities for further research in
this domain. Munir et al.’s bibliographic review [31], featured in Cancers, presents a holistic
examination of cancer diagnosis using deep learning, encompassing various cancer types,
including skin cancer. The review consolidates knowledge from diverse studies, shedding
light on the broad applications of deep learning in cancer diagnosis and underscoring its
potential impact on improving diagnostic accuracy. Li et al. [32] conscientiously discuss
the challenges faced in the application of deep learning to skin disease diagnosis. From
data limitations to interpretability issues, the authors provide a balanced perspective on
the obstacles that researchers and practitioners must navigate. Importantly, the review
concludes with insights into potential future research directions, guiding the trajectory of
advancements in this evolving field.

A number of recent studies of ensemble deep learning for biomedical imaging have
advanced the field [34,35]. A case in point is Shokouhifar et al. [34], which used swarm
intelligence empowered three-stage ensemble deep learning to measure arm volume as a
difference in arm volume is an indicator of the presence of and change in the status of lym-
phedema. Another prime example is Bao et al. [35], who utilized integrated stack-ensemble
deep learning to enhance the preoperative prediction of prostate cancer Gleason grade.

Numerous investigations have delved into the utilization of CNNs for the detection
and categorization of skin cancer over the past two decades [7,32,35,36]. As an illustration,
Esteva et al. (2017) trained a CNN model on a dataset comprising more than 129,000 clinical
images to identify skin cancer. This model achieved a sensitivity of 95%, a specificity of
85%, and classification accuracy of 91% for melanoma detection, a performance level on
par with that of dermatologists [23]. Likewise, Tschandl et al. (2018) employed a CNN
model for the classification of skin lesions into benign or malignant categories, achieving
an Area Under the Curve (AUC) score of 0.94 on an independent test dataset [37]. Brinker
et al. (2019) conducted an assessment of various CNN models to detect melanoma, the
most lethal type of skin cancer. Their findings highlighted a substantial enhancement in
classification accuracy through the application of transfer learning with pre-trained CNN
models [29].

Transfer learning, which encompasses the utilization of pre-trained CNN models to ex-
tract features from medical images, has also demonstrated an enhancement in classification
accuracy when applied to the detection of skin cancer [23–25]. Han et al. (2018) developed
a transfer learning-based CNN model that achieved a classification accuracy of 89.1% for
melanoma detection using dermoscopic images [38]. Haenssle et al. (2018) used transfer
learning to fine-tune a pre-trained VGG-19 model on a dataset of dermoscopic images to
detect melanoma, achieving an AUC of 0.86 on an independent test set [38]. Codella et al.
(2018) similarly used transfer learning to fine-tune a pre-trained Inception-v3 model on a
dataset of dermoscopic images, achieving an AUC of 0.93 on an independent test set [39].

While numerous studies have showcased the potential of deep learning techniques for
skin cancer detection and classification [29–33], it is necessary to compare the performance
of various CNN models dedicated to this task. Comparative studies have focused specifi-
cally on comparing the performance of different CNN models for skin cancer detection and
classification [7,9,14,40,41]. For example, Codella et al. (2018) compared the performance
of three different CNN models (Inception-V3, ResNet50, and DenseNet-121) for classifying
skin lesions as either benign or malignant. The authors found that DenseNet-121 achieved
the highest classification accuracy, with an area under the receiver operating characteristic
curve (AUC-ROC) of 0.91 [39,42].

Kawahara et al. (2018) used a pre-trained CNN model to extract features from skin
lesion images and then trained a Support Vector Machine (SVM) classifier to distinguish be-
tween benign and malignant lesions. The authors found that their SVM classifier achieved
an accuracy of 83.6%, which outperformed several other classification methods [43]. Brinker
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et al. (2019) compared the performance of five different CNN models on a dataset of dermo-
scopic images, finding that the Inception-v3 model achieved the highest AUC of 0.90 [29].
Patel et al.’s (2021) study suggests that transfer learning can improve the performance of
CNN models for skin cancer detection and classification. Their findings also indicate that
the InceptionV3 model may be particularly effective for this task [44]. Zhang et al. (2020)
similarly compared the performance of six different CNN models on a dataset of dermo-
scopic images, finding that the DenseNet-121 model achieved the highest AUC of 0.95 [45].
Zaidan et al. (2021) reviewed the use of deep learning techniques for skin cancer detection
and classification in their article published in the Journal of Healthcare Engineering. They
discussed the effectiveness of different CNN models and transfer learning methods and
the need for further research on larger and more diverse datasets [33].

Recent research endeavors have additionally investigated the application of alternative
deep learning methodologies, including Generative Adversarial Networks (GANs), in
the context of skin cancer detection and classification [46–48]. An illustrative example
is Bi et al. (2020), who employed a GAN to generate synthetic skin lesion images and
subsequently harnessed a CNN for their classification into benign or malignant categories.
The researchers reported that their GAN-CNN model achieved a classification accuracy of
83% [49].

More recently, Guergueb and Akhloufi (2022) [50] used ensemble learning to achieve
a predictive accuracy of just under 98% for melanoma disease, the most dangerous form
of skin cancer. The authors used only one image dataset for training and testing and
so the generalizability of their model to other datasets and other forms of skin cancer is
untested. Avanija et al. (2023) [51] recorded an accuracy rate of 86% on the ISIC Skin Cancer
Dataset using an ensemble learning approach harnessing three deep learning algorithms,
namely, VGG16, CapsNet, and ResUNet. Even more recently, Sethanan et al. (2023) [8]
report a cancer detection rate of 99.7% and cancer classification rates of approximately
96%. Their ensemble model harnesses modified CNN architectures, refined image segmen-
tation techniques, and an artificial multiple intelligence system algorithm for optimized
decision fusion. The authors, however, note that further research is needed to establish the
generalizability, robustness, and clinical applicability of their model.

The max voting ensemble technique is a powerful approach within ensemble learn-
ing [8,34,35]. It aggregates predictions from multiple models and selects the class with the
highest frequency of votes as the final prediction. This technique leverages the wisdom
of crowds to arrive at a more accurate and stable prediction [52,53]. In the context of skin
cancer detection, the max voting ensemble technique presents an opportunity to harness
the collective intelligence of deep learning models and enhance classification outcomes [54].
For example, the study by Kausar et al. (2021) introduces deep learning-based ensemble
models, achieving accuracies up to 91.8% using an individual-based model. However,
using ensemble techniques boosted accuracy to 98% and 98.6%. The proposed models
outperformed recent approaches, offering significant potential for enhanced multiclass skin
cancer classification [55].

In summary, deep learning techniques, particularly CNNs and transfer learning, have
shown great promise in accurately detecting and classifying skin cancer from medical
images. Numerous studies have showcased the efficacy of CNN models for skin cancer
detection and classification, and comparative studies have shown that certain CNN models,
such as DenseNet-121 and Xception, achieve higher accuracy than others [56]. Transfer
learning has also been shown to improve classification accuracy for skin cancer detection.
However, further research is needed to evaluate the performance of different CNN models
and transfer learning methods for skin cancer detection and classification on larger and
more diverse datasets.

Table 1 below provides an overview of recent research conducted on diverse skin
cancer datasets.
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Table 1. Recently conducted research on various skin cancer datasets.

Authors and Paper Dataset Model Published Year Performance

Gajera et al. [57] ISIC 2016, 2017, PH2,
HAM10000 AlexNet, VGG16, VGG19 2023 Accuracy = 98.33%,

F1 score = 96%
Alenezi et al. [58] ISIC 2017, HAM10000 deep residual network 2023 Accuracy = 96.97%
Inthiyaz et al. [59] Xiangya-Derm CNN 2023 AUC = 0.87

Alwakid et al. [60] HAM10000 CNN, ResNet50 2023 F1-score = 0.859 (CNN),
0.852 (ResNet50)

Alenezi et al. [61] ISIC 2019, 2020 ResNet-101 and SVM 2023
Accuracy = 96.15%

(ISIC19), 97.15%
(ISIC20)%

Abbas and Gul [62] ISIC 2020 NASNet 2022 Accuracy = 97.7%,
F1-score = 0.97%

Abdar et al. [12] ISIC 2019 ResNet15V2,
MobileNetV2 2021 Accuracy = 89%,

F1-score = 0.91

Jain et al. [13] HAM10000
Xception, InceptionV3,
VGG19, ResNet50, and

MobileNet
2021 Accuracy = 90.48%

(Xception)

Aljohani and Turki [14] ISIC 2019

Xception, DenseNet201,
ResNet50V2,

MobileNetV2, VGG16,
VGG19, and GoogleNet

2022 Accuracy = 76.09%

Bechelli and
Delhommelle [63] HAM10000 CNN, VGG16, Xception,

ResNet50 2022 Accuracy = 88% (VGG16)

Demir et al. [64] ISIC archive ResNet101 and
InceptionV3 2019

F1-score = 84.09%
(ResNet101) and 87.42%

(InceptionV3)
Rashid et al. [65] ISIC 2020 MobileNetV2 2022 accuracy = 98.20%

Reis et al. [66] HAM10000, ISIC 2019,
2020 InSiNet, U-Net 2022

Accuracy= 94.59%
(HAM10000), 91.89%

(ISIC2019), and 90.54%
(ISIC2020)

Khan et al. [67] ISBI 16, 17, 18, PH2,
HAM10000 ResNet101, DenseNet201 2021

Accuracy = 98.70% (PH2),
Accuracy = 98.70%

(HAM10000)
Khan et al. [68] ISBI 2018, A hybrid model 2021 Accuracy = 92.70%

Kaggle Compt. [69] ISIC 2018 Top 10 model Average 2020 Accuracy =86.7%
Gouda et al. [70] ISIC 2018 CNN 2022 Accuracy = 83.2%

In Table 1, it is evident that researchers have conducted experiments utilizing a diverse
assortment of pre-trained deep learning models across multiple skin cancer datasets, with
a particular emphasis on ISIC 16, 17, 18, 19, 20, PH2, and HAM10000. These investigations
have yielded a spectrum of accuracy scores. Notably, all datasets except ISIC 2018: Task 1-2
have demonstrated accuracy ranging from 95% to 99%. Conversely, ISIC 2018 falls short of
this range with an accuracy below 92%. Consequently, our research focuses on the ISIC 2018:
Task 1-2 dataset, aiming to enhance its accuracy to a level that meets acceptable standards.

3. Proposed Methodology

Skin cancer detection is a crucial task in medical diagnostics. This approach delineates
an innovative method that harnesses cutting-edge pre-trained deep learning models within
an ensemble framework, aimed at achieving precise skin cancer detection. The methodology
entails the amalgamation of multiple pre-trained convolutional neural network (CNN)
models through a maximum voting ensemble technique, thereby augmenting the overall
classification performance.
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3.1. Abstract View of Proposed Model

The primary objective of this research is to investigate whether the proposed Max
Voting-based ensemble model can more accurately distinguish between benign and ma-
lignant skin lesions than the individual models. Figure 2 shows the abstract view of the
proposed Max Voting-based methodology using pre-trained models.

Figure 2. Abstract view of proposed Max Voting-based skin cancer classification.

The essential stages of the method we propose are outlined below:

1. Dataset: Select a comprehensive skin cancer dataset containing a variety of benign
and malignant skin lesion images. Common datasets including ISIC (International
Skin Imaging Collaboration) are used to conduct the experiment.

2. Preprocessing: Ensure proper data preprocessing, including resizing, normalization,
and data augmentation.

3. Data augmentation: During training, data augmentation techniques are employed to
enhance learning outcomes and prevent overfitting.

4. Pre-trained Models: Choose a set of diverse pre-trained deep learning models for fea-
ture extraction. Models like MobileNetV2, ResNet50, InceptionV3, DenseNet201, and
Xception are ideal due to their strong performance on image classification tasks. For
each input image, extract features from intermediate layers of the selected pre-trained
models. These features capture high-level representations of the image content.

5. Ensemble Construction: Implement a maximum voting ensemble technique to com-
bine the predictions of individual models. For each test image, the ensemble generates
predictions based on the majority vote from predictions made by the individual models.

6. Assess the ensemble’s performance on the test set using metrics including accuracy,
precision, recall, F1-score, and ROC-AUC.

3.2. Detailed View of Proposed Model

The process of detection of benign and malignant lesions starts with image data
collection, followed by steps such as image preprocessing, data augmentation, feature
extraction through pre-trained models, and finally, classification by combining the outputs
of individual pre-trained models through the proposed max voting-based ensemble model.
Transfer learning was used in our models to reduce the computation time and encourage
better results and performance.
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This section outlines the detailed methodology we used to train and test our CNN
models and predict the final outcome using the proposed max voting-based model as
shown in Figure 3.

Figure 3 depicts the overall process of the proposed model for a skin lesion detec-
tion system. This process employs a max voting ensemble technique for classifying skin
cancer using pre-trained deep-learning models. It begins by selecting a range of models,
preprocessing input images, loading the chosen models, generating predictions for each
model, aggregating predictions via majority voting, evaluating ensemble accuracy, and
finally displaying the results. Algorithm 1 illustrates the data flow diagram of the model
we propose, shown in Figure 3.

Algorithm 1 Max Voting Ensemble Technique for Skin Cancer Classification
Input:- List of pre-trained deep learning models (SelectedModels)
List of skin lesion images (InputImages)
Corresponding ground truth labels (groundTruthLabels)
Output: Ensemble predictions for each input image (ensemble predictions)

Step 1: Model Selection
SelectedModels← [MobileNetV2, AlexNet, VGG16, ResNet50, DenseNet201,
DenseNet121, InceptionV3, ResNet50V2, InceptionResNetV2, Xception]

Step 2: Preprocessing
while InputImages 6= eachImage do

PreprocessedImage← preprocessImage(image)
PreprocessedImages.append(PreprocessedImage)

Step 3: Load Pre-trained Models
LoadedModels← loadModels(SelectedModels)

Step 4: Generate Predictions
while eachpreprocessed 6= PreprocessedImages do

predictions← []
while eachloadedmodel 6= LoadedModels do

ModelPrediction← PredictImage(LoadedModel, PreprocessedImage)
predictions.append(ModelPrediction)

individualPredictions.append(predictions)

Step 5: Max Voting Ensemble Technique
while eachIndividualPredictions 6= individualPredictions do

aggregatedPredictions← []
while eachImagePrediction 6= seto f predictions do

majorityVote← calculateMajorityVote(imagePrediction)
aggregatedPredictions.append(majorityVote)

ensemblePredictions.append(aggregatedPredictions)

Step 6: Evaluate Ensemble Performance
accuracy← evaluateAccuracy(ensemblePredictions, groundTruthLabels)
Step 7: Display Results

print(”EnsembleAccuracy : ”, accuracy)
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Figure 3. Overall workflow architecture of the proposed max voting-based ensemble technique.

The max voting ensemble technique is a powerful and reliable method for skin cancer
classification. The integration of pre-trained deep learning models aids in accurate and
early diagnosis, contributes to improved patient outcomes and reduced mortality rates,
and holds promising implications for medical image analysis and other diagnostic tasks.

This algorithm provides a conceptual overview of the approach outlined in the abstract.
The implementation details, such as the specific code for loading models and conducting
experiments, would require further elaboration based on the deep learning framework and
tools being used.

3.3. ISIC 2018 Dataset: Task 1-2

The ISIC 2018: Task 1-2 Skin Cancer Challenge Dataset publicly available at the ISIC
Archive https://challenge.isic-archive.com/data/#2018 (accessed on 2 October 2023) [71]
comprises an extensive compilation of dermoscopic images depicting skin lesions. These
images are obtained from various sources and cover a range of skin conditions, including
both benign and malignant cases. The dataset includes images with different lighting
conditions, scales, and levels of image quality. The ISIC 2018 challenge is divided into three
distinct tasks: Task 1 focuses on Lesion Segmentation, Task 2 involves Lesion Attribute
Detection, and Task 3 addresses Disease Classification. The ISIC Challenge 2018: Task 1-2
datasets are systematically categorized into three segments, encompassing both benign
and malignant cases. The Training dataset comprises 2597 images, with 2068 benign
images, 519 malignant images, and 7 undetermined images. The Testing dataset includes
1000 images, featuring 794 benign images and 204 malignant images. The Validation
dataset consists of 100 images. Figure 4 visually presents sample images depicting both
malignant and benign cases from the ISIC 2018 Dataset of Task 1-2.

Here is a concise overview of the primary features of the ISIC 2018: Task 1-2 dataset:

• Annotations: Each image in the dataset is annotated with ground truth labels that
indicate the type of skin lesion it depicts. These labels are typically categorized into
classes such as melanoma, nevus, basal cell carcinoma, and others.

• Purpose: The dataset was released in conjunction with the ISIC Skin Cancer Detection
Challenge in 2018. It was intended to serve as a benchmark for evaluating and
comparing machine learning algorithms for skin cancer diagnosis.

• Usage: Researchers and participants in the challenge use this dataset to develop and
train machine learning models, particularly deep learning models like convolutional
neural networks (CNNs), for the accurate classification of skin lesions into different
categories.

• Challenges: The ISIC community often organizes challenges based on these datasets
to foster innovation in the field of skin cancer detection. Participants submit their

https://challenge.isic-archive.com/data/#2018
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algorithms for evaluation, and the results help advance the state of the art in automated
skin lesion diagnosis.

• Availability: The dataset is made available to participants of the challenge and
researchers interested in the field. It is often accessible through the ISIC website
https://challenge.isic-archive.com/data/#2018 or challenge-specific platforms
https://challenge.isic-archive.com/data/#2018 (accessed on 2 October 2023).

Figure 4. Skin Cancer—Malignant and benign sample images.

3.4. ISIC 2018 Dataset: Task 3 (HAM10000)

Discover the HAM10000 Skin Cancer Dataset [37]—a comprehensive collection of
high-resolution images meticulously curated to aid in the early detection and diagnosis of
various skin conditions. The HAM10000 dataset contains exactly 10,015 labelled images
of seven skin disease classes: melanoma, melanocytic nevus, basal cell carcinoma, actinic
keratosis, benign keratosis, dermatofibroma, and vascular lesion. It is possible to unleash
the power of AI and dermatology with this invaluable resource, advancing skin cancer
research and improving patient care worldwide. In this study, we performed experiments
on the HAM10000 dataset to validate and extend the applicability of our proposed max
voting-based ensemble technique to the ISIC 2018 dataset [71].

3.5. Image Preprocessing

Image preprocessing is the initial step where raw images are transformed to improve
their quality and suitability for analysis. Preprocessing techniques for skin cancer classifica-
tion include:

• Resizing and Cropping: Images are resized to a consistent resolution to ensure unifor-
mity during model training.

• Rescale: Rescaling an image by dividing all pixel values by 255 is a common pre-
processing step in image analysis and deep learning. The rescaling operation is
particularly important when working with images represented in the RGB color space,
where pixel values can range from 0 to 255 for each color channel.

• Normalization: Pixel values are normalized to a common range, such as [0, 1] through
rescaling, to improve convergence during model training.

• Color Correction: Adjusting color balance and correcting lighting variations to reduce
the impact of different acquisition conditions.

• Noise Reduction: Applying filters to reduce noise and enhance image clarity.

Table 2 summarizes the preprocessing required to conduct this research.

https://challenge.isic-archive.com/data/#2018
https://challenge.isic-archive.com/data/#2018
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Table 2. Preprocessing operations for test dataset.

Processing Mode (Range)

Resizing 224 × 224
Rescale 1.0/255

Normalize [0, 1]

3.6. Data Augmentation

To enhance the performance and generalization capabilities of our image categoriza-
tion model, we employed data augmentation techniques to artificially increase the diversity
of training data by applying various transformations to the existing data. The goal is to
improve the generalization and robustness of a machine learning model. This involved the
strategic alteration of existing images in the training dataset. The augmentation process was
carried out with careful consideration of several transformations, inspired by foundational
works in the field [72–75]. The augmentation operations applied to the training dataset
are summarized in Table 3. These operations were chosen based on their effectiveness in
diversifying the dataset and improving the robustness of the model.

Table 3. Augmentation operations for training set.

Processing Mode (Range)

Rescale 1.0/255
Rotation range 0.2

Width shift range 0.2
Shear range 0.3
Zoom range 0.3

Fill mode Nearest
Horizontal flip True

Our data augmentation strategy aligns with the findings and recommendations of key
works in the literature. Mikołajczyk and Grochowski (2018) explored the benefits of data
augmentation for improving deep learning in image classification problems, emphasizing
the importance of exposing models to diverse data variations [72]. Perez and Wang (2017)
further validated the effectiveness of data augmentation in image classification using
deep learning through their comprehensive study [73]. In addition to these studies, the
research report by Luis and Jason from Stanford University (2017) provided valuable
insights into the practical effectiveness of data augmentation techniques in the context of
image classification [74]. The survey by Shorten and Khoshgoftaar (2019) offered a broader
perspective, summarizing various image data augmentation approaches and their impact
on deep learning [75].

Our decision to employ data augmentation stems from its three-fold advantage. Firstly,
it significantly expands the effective size of the training dataset, a particularly valuable asset
when working with constrained data resources. Secondly, the exposure of the model to
diverse variations in the training data enhances its ability to generalize to unseen scenarios.
Thirdly, data augmentation acts as a regularization technique, mitigating overfitting risks
by introducing controlled noise and diversity into the training data.

In conclusion, the augmentation strategy, informed by seminal works and a com-
prehensive survey, significantly contributes to the model’s performance, reliability, and
generalization capabilities.

3.7. Usage of Pre-Trained CNN Models

A convolutional neural network (CNN) is a dedicated neural network architecture that
integrates both convolutional layers and conventional neural network layers. Convolution,
an operation that involves filtering images to extract features, is employed to enhance the
model’s performance. Subsequently, a 3 × 3 MaxPooling filter is applied to obtain the most
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critical features. To enhance the model’s effectiveness, batch normalization and dropout
layers are implemented to normalize the values and prevent overfitting.

The output from these layers is presented in a multi-dimensional matrix, which
requires conversion to a one-dimensional form for input into the dense layer. This is
accomplished using a flattened layer. The model was trained using the Rectified Linear
Unit (ReLU) activation function within the initial dense layer. This choice was made to
facilitate computation, as ReLU allows for the activation of only a few neurons at a time. In
the second dense layer, the sigmoid function was employed, as it outputs a value between
0 and 1. This choice of activation function was made based on the specific requirements of
the model and its intended use case. If the result exceeds 0.5, the classification is deemed
malignant; otherwise, it is categorized as benign.

ImageNet was used, which we could use to load a pre-trained version of the network
trained on more than a million images from the ImageNet database. In our preprocessing
step, the batch size for our dataset was set to 32 and the image dimension to 224 × 224. A
categorical class mode for our training data, which consisted of 2637 images, was used,
while our testing dataset had 660 images. We then plotted our preprocessed images. Next,
a pre-trained Model function from the Keras Applications class was imported and assigned
to the variable ‘dense’. We specified “ImageNet” as the weights to be used and set the
input shape to (224, 224, 3).

Figure 5 shows the flowchart depicting the steps involved in individual training and
testing the model.

Figure 5. Flowchart depicting the steps involved in individual training and testing the models
(Models: MobileNetV2, AlexNet, VGG16, ResNet50, DenseNet201, DenseNet121, InceptionV3,
ResNet50V2, InceptionResNetV2, and Xception).

We formulated our model through a systematic layering approach within a sequential
architecture, emphasizing the methodology without delving into the specifics of code
functions. Firstly, we incorporated a pre-trained convolutional neural network (CNN)
model, harnessing its feature extraction capabilities. This pre-trained model served as the
foundation for our architecture. Subsequently, we applied max pooling with a 2 × 2 filter
to facilitate spatial downsampling. This pooling operation allowed us to retain essential
features while reducing computational complexity. By adhering to this structured method-
ology, we aimed to provide a comprehensive understanding of our model construction
process, treating this document as an academic paper rather than a manual for code tools.

The subsequent subsection briefly outlines the pre-trained models employed in
this study:

3.7.1. AlexNet

AlexNet is a trailblazing deep convolutional neural network architecture renowned
for its revolutionary advancements in image classification endeavors. It comprises a
series of convolutional and pooling layers, culminating in fully connected layers. AlexNet
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distinguishes itself through the pioneering incorporation of ReLU activation functions and
dropout regularization, contributing significantly to the prevention of overfitting. Although
originally designed for general image classification, its principles have been adapted for
skin cancer classification. By learning hierarchical features from skin images, AlexNet
demonstrates effectiveness in distinguishing between different types of skin lesions, aiding
in accurate diagnosis and classification [76].

3.7.2. VGG16

VGG16 is a popular choice for tasks related to image recognition and classification.
Its architecture comprises a total of 16 layers, encompassing 13 convolutional layers and
3 fully connected layers. Notably, all the convolutional layers employ a compact filter
size of 3 × 3 with a stride of 1, facilitating precise feature localization within the input
image. Additionally, the network incorporates max pooling layers with a 2 × 2 filter
size to downsize the spatial dimensions of the output, effectively mitigating the risk of
overfitting [77].

3.7.3. InceptionV3

InceptionV3 is a convolutional neural network architecture renowned for its prowess in
image classification tasks. In this context, InceptionV3 serves as a feature extractor, with the
last layer substituted by a fully connected layer coupled with a sigmoid activation function,
enabling the prediction of skin cancer probabilities. Training involves the utilization of a
binary cross-entropy loss function, with optimization achieved through stochastic gradient
descent [78].

3.7.4. ResNet50

ResNet50 consists of 50 layers and is a variant of the ResNet architecture. It has a
similar structure to other deep learning models. However, the unique feature of ResNet50
is its residual connection structure. The residual connections in ResNet50 help mitigate
the problem of vanishing gradients by allowing the gradients to flow directly through the
network. This enables the network to be trained deeper and more effectively, which has
been shown to improve accuracy on image classification tasks [79].

3.7.5. ResNet50V2

ResNet50V2, short for Residual Network 50 version 2, is a specific variant of the ResNet
architecture that was introduced as an improvement over the original ResNet-50 model.
The ResNet-50v2 architecture follows the same fundamental principles as the original
ResNet, including the use of residual blocks and skip connections. However, it incorporates
some modifications to the architecture and training process.ResNet-50v2 incorporates
several enhancements aimed at improving training efficiency, convergence speed, and
overall performance. Due to these enhancements, ResNet-50v2 generally achieves better
accuracy and convergence speed compared to the original ResNet-50, especially on tasks
like image classification [80].

3.7.6. DenseNet121

DenseNet121 consists of 121 layers and is a variant of the DenseNet architecture. It
has a similar structure to other deep learning models, with alternating convolutional and
pooling layers, followed by a global average pooling layer and a fully connected layer
for classification. However, the unique feature of DenseNet121 is its dense connectivity
structure. The dense connectivity structure of DenseNet121 also enables it to efficiently
learn complex features with fewer parameters compared to other deep learning models [81].

3.7.7. DenseNet201

DenseNet201 is a powerful neural network architecture commonly used for skin cancer
classification tasks. It is an extension of the DenseNet family, designed to enhance feature
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reuse and information flow across layers. With its densely connected blocks and efficient
gradient propagation, DenseNet201 excels at capturing intricate patterns in skin images,
aiding the accurate classification of various skin cancer types. Its deep structure and skip
connections make it well suited for complex medical image analysis tasks like skin cancer
detection [81].

3.7.8. Xception

Xception shares similarities with InceptionV3 and has shown promising results for
image classification tasks. One advantage of Xception is its ability to learn highly discrimi-
native features with fewer parameters than other deep neural networks, which could lead
to improved efficiency and reduced computational resources [82].

3.7.9. MobileNetV2

MobileNetV2 stands out as a neural network architecture meticulously crafted for
swift and efficient image classification, particularly on mobile and resource-constrained
devices. It capitalizes on depthwise separable convolutions and linear bottlenecks to curtail
computational complexity without compromising performance. MobileNetV2 strikes
an optimal equilibrium between model size and accuracy, rendering it apt for real-time
diagnosis and classification, even on devices with restricted resources. Its architectural
design aligns with applications like skin cancer classification [83].

3.7.10. InceptionResNetV2

InceptionResNetV2 is a sophisticated neural network architecture that combines el-
ements from both Inception and ResNet designs. It leverages the advantages of both
architectures, incorporating multi-scale feature extraction and residual connections. In
skin cancer classification, InceptionResNetV2 excels at capturing intricate patterns within
skin images and provides strong predictive capabilities. Its deep structure and complex
modules make it well suited for detecting subtle characteristics indicative of various skin
cancer types, enhancing classification accuracy and aiding in medical diagnoses [84,85]

The methodology employed in this study incorporates a diverse set of pre-trained
deep learning models for skin cancer classification. Each model is selected based on its
proven efficacy in image classification tasks and is fine-tuned to enhance its performance
specifically for skin cancer diagnosis. The following fine-tuning and modifications are
incorporated for the Skin Cancer Classification task:

1. Transfer Learning: The individual base model (e.g., Xception) is pre-trained on a
large dataset for general image classification tasks, such as ImageNet. The knowledge
gained from this pre-training is transferred to the skin cancer classification task.

2. Feature Extraction: Individual model (e.g., Xception) layer serves as a feature extractor,
capturing hierarchical features from the input skin lesion images.

3. Additional Layers: Following the particular individual model (e.g., Xception) layer,
additional layers such as convolutional, pooling, normalization, dropout, and dense
layers are added. These layers contribute to further feature extraction, fine-tuning,
and classification.

4. Dropout and Batch Normalization: Dropout layers are added to mitigate overfitting
during training. Batch normalization is utilized for stable and accelerated training.

5. Output Layer: The final dense layer with two neurons (binary classification) is added
for the skin cancer classification.

Table 4 shows the architectural summary of Xception (Functional) model along with
parameters details as an example. The used Hyperparameters are—Learning Rate: 0.0001,
Image Preprocessing Batch Size: 32, Varying Training Batch Sizes, Dropout Rates: 0.3
and 0.5, Optimizer: Adam, Loss Function: Categorical Cross-Entropy, callback Function:
ReduceLROnPlateau with patience 1 and factor 0.5.
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Table 4. Architecture of Xception (Functional) model.

Layer (Type) Output Shape Number of
Parameter(s)

xception (Functional) (None, 7, 7, 2048) 20,861,480
conv2d_14 (Conv2D) (None, 5, 5, 32) 589,856
max_pooling2d_2 (MaxPooling 2D) (None, 2, 2, 32) 0
batch_normalization_14 (BatchNormalization) (None, 2, 2, 32) 128
dropout_6 (Dropout) (None, 2, 2, 32) 0
flatten_2 (Flatten) (None, 128) 0
dense_6 (Dense) (None, 512) 66,048
dropout_7 (Dropout) (None, 512) 0
dense_7 (Dense) (None, 256) 131,328
dropout_8 (Dropout) (None, 256) 0
dense_8 (Dense) (None, 2) 514

Total Parameter: 21,649,354
Trainable Parameter: 21,594,762
Non-trainable Parameter: 54,592

In summary, for each of these models, the process of adaptation generally involves:

• Pre-training: The models are pre-trained on a large dataset (e.g., ImageNet) to learn
generic features.

• Fine-tuning: The pre-trained models are fine-tuned on a skin cancer dataset to adapt
them to the specific task.

3.8. Max Voting Mechanism

Majority-based voting, often referred to as plurality voting, constitutes a prevalent
approach within ensemble classification [86]. In this context, the EnsembleVoteClassifier
technique stands out for its capacity to enhance overall performance and bolster prediction
robustness through the amalgamation of multiple machine learning models—specifically,
neural network classifiers. The mechanism hinges on a majority voting strategy, where
each individual model in the ensemble contributes its prediction, ultimately culminating in
a final prediction decided by the collective majority vote among these models.

The proposed approach herein revolves around the application of ten aforemen-
tioned pre-trained classification models, namely, MobileNetV2, AlexNet, seven instances
of VGG16, ResNet50, DenseNet201, DenseNet121, InceptionV3, ResNet50V2, Inception-
ResNetV2, and Xception. To augment classification outcomes, this approach employs a
majority-based voting mechanism. For each test instance, the classification results are
independently computed by each of the specified models, and the ultimate output is pre-
dicted based on the outcomes that achieve majority representation [87–90]. In the context of
majority voting, the class label y is forecasted by virtue of a majority (plurality) consensus
reached by the individual classifiers, denoted as C.

ŷ = mode{C1(x), C2(x), . . . , Cm(x)}

By following this comprehensive methodology, the proposed approach aims to provide
a robust and accurate method for skin cancer detection using an ensemble of pre-trained
deep learning models with a maximum voting scheme.

In summary, the max voting ensemble technique is chosen to address the limitations
of individual models by combining their strengths, mitigating weaknesses, and providing
a more robust and accurate solution for skin cancer detection. The ensemble approach
capitalizes on the collective intelligence of multiple models to enhance diagnostic reliability
and performance.
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4. Experimental Evaluation

The subsequent subsection furnishes a comprehensive account of the experimental
evaluation, elucidating the experimental setup, encompassing details such as hardware
requirements, software environment, hyperparameters, and other relevant aspects.

4.1. Experimental Setup

The hardware environment utilized comprised Kaggle GPU resources, specifically
T4x2, P100, and TPU: VM v3-8, each with a session duration of 12 hours, a disk capacity of
73 GB, RAM of 29 GB, and GPU memory of 16 GB. The software environments employed
were Kaggle and Colab. The dataset utilized in this study was sourced from ISIC Challenge
Datasets 2018: Task 1-2 [39,71], as obtaining skin lesion images from hospitals posed
privacy and confidentiality concerns. For model training, 1440 benign and 1197 malignant
skin lesion images from the ISIC Archive were employed. Model testing utilized 660 images,
with 360 benign and 300 malignant images. Given the initial imbalance in the original
image from the ISIC Archive https://challenge.isic-archive.com/data/#2018 (accessed on
2 October 2023), necessary adjustments were made to create a balanced set for both the
training and testing sets. The original images were resized to 224 by 224, a measure taken to
enhance model speed and performance. For ISIC 2018: Task 3 (HAM10000) Datasets, which
are extremely imbalanced, we perform an oversampling operation to overcome the class
imbalance problem and to ensure all the classes contain equal amount of images. Then, we
employ Hold-Out Cross-Validation. The dataset is divided into training, validation, and
test sets using an 80-10-10 split, with 80% of the data allocated to the training set, 10% to
the test set, and 10% to the validation set.

Leveraging metrics such as training accuracy, training loss, validation accuracy, vali-
dation loss, true positive, true negative, false positive, false negative, precision, recall, and
f1-score, we assessed the outcomes of our training process for the compiled model. The
optimization was performed using the Adam optimizer with a learning rate set to 0.0001,
and the loss function employed was categorical cross-entropy. We compiled the model with
11.6 million trainable and 85,000 non-trainable parameters for the DenseNet-121 model.

In our callback function, patience one and factor 0.5 for the ReduceLROnPlateau
function were used. The model was then trained using both the train and validation
datasets. As cross-validation was utilized, the test dataset was used as our validation
dataset. For the DenseNet-121 and Xception models, we increased the training batch size
to 64 and set the number of epochs to 20, which yielded improved accuracies. However,
we did not specify any training batch size for other models and ran for 20 epochs.

Following the completion of training, the results of training and validation were
gathered as seen in Tables 5 and 6, respectively.Our model underwent evaluation using
the test dataset and achieved accuracy consistent with the validation set. The results
encompassed accuracy, precision, recall, F1-score, and loss metrics. Additionally, Mathews
Correlation Coefficient, true positive, true negative, false positive, and false negative values
were computed to assess the model’s capability. Accuracy, precision, recall, and F1-score are
typically presented as percentages, providing a comprehensive evaluation of the model’s
performance. On the other hand, the loss value is expressed as a scalar, representing
the extent of the model’s error in predicting target values. Unlike other metrics, it is not
constrained to a specific percentage range.

To evaluate the model’s predictions on the test dataset, we generated a list of predicted
outputs. Subsequently, we visualized the accuracy and loss of our model through graphs.
Additionally, a confusion matrix was generated to offer further insights into the model’s
performance.

The hyperparameters used for the algorithm were a learning rate of 0.0001, an image
preprocessing batch size of 32, and varying training batch sizes, with dropout rates of 0.3
and 0.5. The results obtained for all models are noted and compared in Tables 5 and 6,
respectively, and it was found that the highest accuracy was achieved using the Xception
model. To further investigate the impact of different variables on the accuracy of the

https://challenge.isic-archive.com/data/#2018
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Xception model, several operations were performed and the resulting accuracy changes
were recorded.

Table 5. Performance of the training dataset.

Metrics MobileNet
V2 AlexNet vgg16 ResNet50 DenseNet

121
DenseNet

201
Inception

V3
ResNet

50V2
Inception
ResNetV2 Xception

Accuracy 88.14% 89.40% 93.70% 94.50% 95.10% 95.80% 95.37% 96.30% 97.20% 99.20%
Precision 87.74% 89.10% 93.20% 93.65% 94.55% 95.20% 94.44% 96.00% 96.44% 99.20%

Recall 88.44% 90.14% 94.17% 95.30% 95.90% 96.00% 96.02% 96.95% 98.10% 99.40%
F1 88.94% 89.20% 93.60% 94.30% 95.05% 95.70% 95.34% 96.21% 96.70% 99.20%

Loss 0.1715 0.1646 0.1555 0.1423 0.1306 0.1237 0.1142 0.0820 0.0703 0.0037

Table 6. Performance of the testing dataset.

Metrics MobileNet
V2 AlexNet vgg16 ResNet50 DenseNet

121
DenseNet

201
Inception

V3
ResNet

50V2
Inception
ResNetV2 Xception

Accuracy 77.20% 80.10% 83.80% 86.05% 88.30% 88.80% 89.50% 89.30% 90.20% 91.90%
Precision 77.00% 79.80% 83.60% 85.65% 88.10% 88.20% 88.94% 89.10% 89.80% 91.20%

Recall 78.10% 81.00% 84.20% 86.95% 88.80% 89.20% 90.15% 90.10% 91.10% 92.10%
F1 77.10% 80.00% 83.70% 86.01% 88.10% 88.50% 89.47% 89.20% 90.10% 91.80%

Loss 0.3310 0.3156 0.3045 0.3023 0.2706 0.2657 0.2481 0.2427 0.1213 0.0943

As part of our experimentation, we sought to determine how changes to the Training
batch size affected the accuracy of our model. By systematically varying the batch size
and recording the corresponding accuracy, it was found that increasing the batch size to 64
resulted in the highest accuracy, with a recorded value of 86%, as seen in Figure 6a.

(a) Training Batch size vs. Accuracy (b) Learning Rate vs. Accuracy

Figure 6. Training Batch size and Learning Rate versus Accuracy.

For the next operation, the training batch size was fixed at 64 and the learning rate
was varied to observe its effect on the model’s accuracy. Through this operation, we found
that the highest accuracy of 91% was obtained when using a learning rate of 0.0001, as seen
in Figure 6b.

Subsequently, experiments were conducted to evaluate the impact of varying the
image size on the model’s performance. Keeping the learning rate and training batch size
fixed at 0.0001 and 64, respectively, the model was evaluated using different image sizes. It
was found that for both 244 and 300 sizes, the model achieved similar accuracy results of
91% as seen in Figure 7a. However, as a smaller image size takes less time to process, we
decided to keep the initial image size of 244 for our further experiments.
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(a) Image size vs. accuracy (b) Preprocessing batch size vs. accuracy

Figure 7. Image size vs. accuracy and preprocessing batch size vs. accuracy.

In order to optimize our model’s performance, we explored different combinations
of inner and outer batch sizes while preprocessing the images. After testing various
configurations, it was found that the initial combination of 32 image preprocessing and 64
training batch size resulted in the highest accuracy of 91% as seen in Figure 7b.

To further improve the model’s performance and address the issue of overfitting, we
experimented with different dropout rates as seen in Figure 8a. It was observed that using
a lower rate for the first dropout and a higher rate for the second dropout helped overcome
the overfitting problem. However, it was also found that increasing the dropout rate
beyond a certain point led to a decrease in accuracy to some extent. These findings suggest
that careful selection of dropout rates is crucial in achieving optimal model performance.

(a) Drop out vs. accuracy (b) Layers vs. Accuracy

Figure 8. Dropout vs. accuracy and layers vs. accuracy.

To improve the performance of our model, we added some more layers with dropout
rates of 0.5 and 0.9, respectively, as seen in Figure 8b. Despite no overfitting issues, we
did not observe any significant improvement in accuracy. In fact, increasing the number
of layers resulted in a decrease in accuracy. There are several possible explanations for
this, including diminishing returns, vanishing gradients, suboptimal hyperparameters, or
limitations in the size or diversity of our dataset.

The aforementioned images correspond to the results obtained from running the
Xception model for 30 epochs without specifying any training batch size. The identical
model underwent several iterations with an unaltered dataset and a constant training batch
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size of 32 for 50, 100, 150, and 200 epochs, resulting nearly identical outputs throughout
these runs.

4.2. Performance with ISIC 2018 Dataset: Task 1-2

In this study, following the application of various hyperparameter combinations, we
evaluate the performance of ten distinct pre-trained deep learning models (MobileNetV2,
AlexNet, VGG16, ResNet50, DenseNet201, DenseNet121, InceptionV3, ResNet50V2, Incep-
tionResNetV2, and Xception). After fine-tuning all the hyperparameters, we assess the
performance of the skin cancer classification method based on max voting through multiple
evaluation metrics detailed in the subsequent subsections. We calculated the performance
for both the training set and test set, which is noted in Table 7, and compared it with the
proposed max voting ensemble technique.

The data aim to present the initial accuracies of various pre-trained CNN models
on both the Training and Test sets. Each row in the dataset corresponds to a different
model, and each column represents a specific dataset. The values in each cell of the table
indicate the accuracy of the respective model on the corresponding dataset. For example,
the accuracy of MobileNet V2 on the Train Set is 88.14%, and on the Test Set it is 77.20%. The
accuracy of AlexNet on the Train Set is 89.40%, and on the Test Set it is 80.10%. Similarly,
the percentages show the accuracy of each model on both the Train and Test sets.

Table 7. Initial accuracies of Train and Test set.

Set Mobile-
NetV2 AlexNet vgg16 ResNet50 DenseNet

201
DenseNet

201
Inception

V3
ResNet

50V2
Inception
ResNetV2 Xception Max

Voting

Train 88.14% 89.40% 93.70% 94.50% 95.10% 95.80% 95.70% 96.30% 97.20% 99.90% -
Test 77.20% 80.10% 83.80% 86.50% 88.30% 88.80% 88.70% 89.30% 90.20% 91.90% 93.18%

The table is meant to provide a quick overview of how well each model performs
on the given datasets, allowing us to compare their performance easily. This information
could be used to evaluate and choose the most suitable model for the given task based
on its performance on both the Train and Test sets. The data in the table highlight that
the ensemble technique based on max voting yields superior accuracy compared to the
individual models.

4.2.1. Training and Validation Accuracy and Loss

Figure 9 illustrates the progression of training and validation accuracy across epochs
for the Xception model, which stands as the highest-performing individual model within
the group of ten. From the outset, the training accuracy surpasses the validation accuracy,
and this trend remains consistent up to epoch 30. Between epochs 1 and 20, both training
and validation accuracy gradually ascend, with training accuracy reaching 100% and
validation accuracy reaching 91%. Subsequently, the training accuracy experiences a sharp
ascent from epoch 1 to 3, undergoes a substantial increase from epoch 3 to 20, and then
stabilizes at 100% accuracy beyond the 20th epoch, depicted by the green line in Figure 10a.
Similarly, the validation accuracy exhibits a sharp increase from epoch 1 to 3 but undergoes
substantial fluctuation from epoch 3 to 20, and ultimately stabilizes beyond the 20th epoch,
achieving a 91% accuracy level, represented by the red line in the same Figure. Between
epochs 20 and 30, both training and validation accuracy maintain stability. Ultimately, the
classifier model attains its highest accuracy at epoch 30.
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(a) Model accuracy (b) Model loss

Figure 9. Accuracy and Loss Curve of Xception Model for 30 Epochs.

In a similar vein, right from the start, the training loss consistently outperformed the
validation loss, maintaining this pattern throughout all epochs. The training loss showed
a swift decline from the initial epoch to the fourth, reaching a plateau at approximately
10 after the tenth epoch. In comparison, the validation loss experienced a rapid decrease
from the first to the third epoch, followed by fluctuations between the fifth and tenth
epochs, eventually settling at around 0.10, as depicted by the green and red lines in
Figure 10b. Beyond the 30-epoch mark, the training loss converged to around 0.0037 while
the validation loss stabilized at roughly 0.0943., with both values remaining constant.

(a) Model accuracy for 200Epochs (b) Model loss for 200Epochs

Figure 10. Accuracy and Loss Curve of Xception Model for 200 Epochs.

The proposed system exhibited complete convergence by the 10th epoch, with the
training loss hovering around 0 and the validation loss approximately at 0.10. These loss
values remained nearly constant and exhibited a linear trend between epochs 10 and 30. The
identical model underwent multiple executions utilizing the same dataset and a constant
training batch size for 50, 100, 150, and 200 epochs, producing nearly identical outputs
throughout these iterations. Figure 10 shows the accuracy and loss curve of Xception
Model for 200 Epochs.
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4.2.2. Receiver Operator Characteristic (ROC)

The Receiver Operating Characteristic (ROC) is a graphical representation used to
assess the performance of a classification model. In Figure 11, we depict the ROC curve
for each category in our skin cancer dataset, along with the corresponding Area Under
the Curve (AUC) values. On the graph, the x-axis represents the false positive rate, while
the y-axis represents the true positive rate. The AUC values associated with each category
provide insight into the probability values for those respective categories. The diagonal
curve signifies random class probability selection. Among the individual models, the
highest AUC value achieved is 91.90%, while the lowest is 77.00%, recorded by the Xception
and MobileNetV2 models, respectively, as shown in Figure 11. These values are particularly
relevant for two categories, namely malignant, and benign.

Figure 11. ROC Curve and AUC Scores for the MobileNetV2, Xception, and Max Voting.

Figure 11 unmistakably demonstrates that the proposed ensemble model, based on
majority voting, surpasses the performance of the individual models by achieving an AUC
score of 93.20%.

4.2.3. Error Analysis and Confusion Matrix (CM)

The confusion matrix (CM) serves as a tabular representation for summarizing a
classifier’s performance [91]. In Figure 12, we present the confusion matrices for three
distinct models: MobileNetV2 (Figure 12a), Xception (Figure 12b), and our proposed max
voting-based ensemble model (Figure 12c). These matrices offer a consolidated view of
prediction outcomes, distinguishing correct from incorrect classifications for two distinct
classes, benign and malignant.

Within the matrix, counts are used to depict the number of accurate and erroneous
predictions, categorized by class. The primary purpose of this matrix is to visualize
classification errors and confusion that may arise during predictions. Specifically, the
diagonal cells signify the count of accurate predictions aligning with the actual class,
while the off-diagonal cells denote misclassifications into other classes. For instance, in
Figure 12c, we assess the Benign class across a total of 360 unlabeled images. Among these,
336 images are correctly predicted as belonging to the Benign class, as evidenced by the
first diagonal cell in Figure 12c. Conversely, 24 images are misclassified as malignant class.
Similarly, we evaluate the Malignant class across 300 unlabeled images. Here, 279 images
are correctly predicted as members of the Malignant class, shown in the fourth diagonal
cell of Figure 12c, while 21 images are erroneously classified as benign classes.
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(a) Confusion Matrix: MobileNetV2 (b) Confusion Matrix: Xception (c) Confusion Matrix: Max Voting

Figure 12. Confusion Matrix: Individual Models (MobileNetV2, Xception) Versus Proposed (Max
Voting-based Ensemble) Model.

4.2.4. Comparative Analysis of Individual Models versus Proposed (Max Voting) Model

The results of the skin cancer classification performance, measured by the area under
the receiver operating characteristic (ROC) curve (AUC), for various deep learning models
are depicted in Figure 13.

Figure 13. ROC Curve and AUC Scores for the models (Models: MobileNetV2, AlexNet, VGG16,
ResNet50, DenseNet201, DenseNet201, InceptionV3, ResNet50V2, InceptionResNetV2, Xception and
Max Voting).

The performance of various deep learning models for skin cancer classification is
quantified using the area under the receiver operating characteristic (ROC) curve (AUC) in
which a higher AUC score indicates better classification performance. Table 8 provides a
summary of the AUC scores for each model.
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Table 8. Summary of AUC Scores and Key Features of Deep Learning Models for ISIC 2018 dataset.

Model AUC Score Key Features

Max Voting 0.932 Ensemble Technique
Xception 0.919 Modified Inception Architecture

InceptionResNetV2 0.902 Inception + ResNet
ResNet50V2 0.893 Improved ResNet with Skip Connections
InceptionV3 0.887 Multi-level Feature Extraction
DenseNet121 0.883 Dense Connectivity
DenseNet201 0.888 Dense Connectivity

ResNet50 0.865 Skip Connections
VGG16 0.838 Classic Deep Learning Model
AlexNet 0.801 Pioneering Deep Learning Model

MobileNetV2 0.772 Lightweight Architecture

Three main similarities can be identified among these models, namely:

1. All models have AUC scores above 0.75, suggesting reasonably good classifica-
tion abilities.

2. Architectural innovations, such as skip connections and dense connectivity, are com-
mon across most models.

3. Both ensemble and standalone models demonstrate strong performance.

Four differences may also be discerned. These are:

1. AUC scores range from 0.932 (Max Voting) to 0.772 (MobileNetV2), indicating different
levels of effectiveness.

2. Computational complexity varies, affecting AUC scores.
3. Max voting, an ensemble technique, outperforms standalone models.
4. Newer architectures generally surpass older ones like AlexNet.

Our analysis reveals that while there are commonalities in high AUC scores and
architectural innovations, the models also differ in computational complexity, intended
use cases, and overall performance. Understanding these nuances can guide the choice of
model for specific classification tasks in skin cancer detection.

The AUC metric is commonly used to evaluate the performance of binary classification
models like skin cancer detection. A higher AUC indicates better discriminative power and
better performance of the model in distinguishing between positive and negative samples.
The provided AUC scores reveal the strengths and relative performance of different deep-
learning models for skin cancer classification. Based on the AUC scores, the max voting
ensemble achieves the highest performance with an AUC of 0.932, outperforming all
individual models. The Xception model comes second with an AUC of 0.919, followed by
InceptionResNetV2 with an AUC of 0.902.

These results indicate that the max voting ensemble technique, which combines predic-
tions from multiple models, demonstrates superior performance in skin cancer classification
compared to using individual models alone. The ensemble approach effectively leverages
the strengths of different models, resulting in improved accuracy and generalization capa-
bilities for skin cancer detection tasks.

Overall, the findings suggest that the max voting ensemble technique offers a promis-
ing approach to enhance the performance of skin cancer classification models using pre-
trained deep learning models, potentially leading to better diagnostic capabilities in real-
world applications. Researchers and practitioners can use these findings to select appro-
priate models for skin cancer classification tasks based on their specific requirements and
resource constraints.

4.3. Classification Report Showing Accuracy, Precision, and Recall Score for the ISIC 2018 Datasets

The classification report, as depicted in Table 9, provides an overview of the per-
formance of the proposed max voting ensemble model on the ISIC 2018 test datasets,
encompassing a total of 660 images, including 360 benign and 300 malignant images,
specifically highlighting the model’s performance in distinguishing between benign and
malignant skin lesions. The report provides essential metrics such as precision, recall,
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and F1-score for each class, as well as overall accuracy, macro average, and weighted
average values.

Table 9. Classification Report for the ISIC 2018 datasets.

Precision Recall F1-Score Support

Benign 94.12 93.33 93.72 360
Malignant 92.08 93.00 92.54 300

Accuracy 93.18 660

Macro avg 93.10 93.17 93.13 660

Weighted avg 93.19 93.18 93.18 660

In the benign class (0), the model achieved a precision of 94.12%, indicating a high
accuracy of positive predictions. The recall for benign instances stands at 93.33% and
corresponding F1-score is reported at 93.72%. For the malignant class (1), the model
achieved a precision of 92.08%, ensuring reliability in identifying malignant cases. The
recall for malignant instances is 93.00% and the F1-score for the malignant class is 92.54%.

The overall accuracy of the model is reported at 93.18%, reflecting its correctness in
classifying skin lesions. Macro average values of 93.10%, 93.17%, and 93.13% for precision,
recall, and F1-score, respectively, provide an unbiased evaluation across both classes. The
weighted averages, accounting for class imbalances are 93.19%, 93.18%, and 93.18% for
precision, recall, and F1-score respectively.

In summary, the classification report offers a comprehensive assessment of the model’s
effectiveness in classifying skin lesions in the ISIC 2018 datasets. The high precision,
recall, and F1-score values for both benign and malignant classes, coupled with a notable
accuracy of 93.18%, demonstrate the model’s robust performance in dermatological image
analysis. The macro and weighted averages provide detailed insights on the distribution of
instances across classes and offer a holistic view of the model’s capabilities in skin cancer
classification. The reported accuracy of 93.18% indicates the overall correctness of the
model’s predictions across classes.

4.4. State-of-the-Art Comparison for the ISIC 2018: Task 1-2 Datasets

The performance and accuracy of machine learning and deep learning models for
medical image analysis, specifically in the context of detecting and classifying skin lesions,
can vary depending on several factors, including the dataset used, the choice of model
architecture, and the preprocessing techniques applied. The following subsection describes
the performance of the proposed model with existing models. In recent years, few research
activities have been carried out on skin cancer classification on the ISIC 2018: Task 1-2
dataset. The performance of the proposed system is compared with the previous approaches
in terms of applied models and accuracy. Table 10 presents the testing accuracy values in
existing approaches with our proposed method.

Table 10. Comparative analysis of ISIC 2018: Task 1-2 dataset used for skin cancer classification.

Authors and Paper Year Model Accuracy

Gouda et al. [70] 2021 CNN 83.2%
Kaggle Compt. (3rd Place) [69] 2020 Individual Single Model 84.5%
Kaggle Compt. (2nd Place) [69] 2020 Meta Ensemble 86.3%
Kaggle Compt. (1st Place) [69] 2020 Top 10 model Average 86.7%
Khan et al. [68] 2022 A hybrid CNN Model 92.70%

Proposed method 2023 Max Voting ensemble model 93.18%

Table 10 indicates that the proposed approach achieves higher training and testing ac-
curacy than the existing approaches of skin cancer classification using the ISIC 2018 dataset.
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4.5. Performance with ISIC 2018: Task 3 (HAM10000) Dataset

The max voting ensemble technique introduced in this study for skin cancer classifica-
tion exhibits significant potential for generalization to other related tasks within medical
image analysis. Leveraging a comprehensive ensemble of pre-trained deep neural net-
works, including MobileNetV2, AlexNet, VGG16, ResNet50, DenseNet201, DenseNet121,
InceptionV3, ResNet50V2, InceptionResNetV2, and Xception, this method showcases the
adaptability of ensemble techniques for combining diverse model architectures. The suc-
cess of the ensemble in elevating classification performance by aggregating predictions
from individual models also suggests its applicability beyond skin cancer classification.
With proper adaptation and training on relevant datasets, the max voting ensemble tech-
nique could be seamlessly extended to address diagnostic challenges in other medical
domains, providing a versatile and effective tool for healthcare professionals in diverse
diagnostic scenarios.

Adapting the max voting ensemble technique for the HAM1000 dataset, which is
a widely recognized dataset for skin image analysis, holds promise for enhancing the
diagnostic capabilities of the ensemble method as shown in Figure 14. The ensemble’s
incorporation of pre-trained deep neural networks, initially developed for skin cancer
classification, aligns well with the diversity and complexity of the HAM1000 dataset, which
comprises a large variety of skin lesions. Similar to the ISIC 2018: Task 1-2 dataset, the
HAM10000 dataset attains improved accuracy through the amalgamation of individual
models using the proposed technique.

Figure 14. ROC Curve and AUC Scores for HAM10000 Dataset using proposed Max Voting Ensemble
Technique.

Figure 15 shows the ROC curve with individual classes and confusion matrix for the
max voting ensemble technique on the HAM10000 dataset. The proposed model is able to
classify all seven skin decease classes, namely, melanoma, melanocytic nevus, basal cell
carcinoma, actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion with
high accuracy, as shown in Figure 15a. The diagonal of the confusion matrix shown in
Figure 15b indicates the high accuracy rate of the model as well.
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(a) ROC Curve for Individual classes (b) Confusion Matrix

Figure 15. ROC Curve and Confusion Matrix using Max Voting Technique for HAM10000 Dataset.

4.6. Classification Report for the HAM10000 Datasets

Table 11 presents a detailed Classification Report for the HAM10000 datasets, sum-
marizing the performance metrics for seven different classes (akiec, bcc, bkl, df, nv, vasc,
and mel). For each class, the table includes precision, recall, F1-score, and support values,
providing a comprehensive assessment of the model’s ability to classify skin lesions within
each category. Additionally, the table reports the overall accuracy of the model, which
stands at 95%, indicating the percentage of correctly predicted instances out of the total.
Both macro and weighted averages are presented, offering unweighted and weighted
evaluations across all classes, with each average showing consistent values of 0.95 for
precision, recall, and F1-score. The support column reveals the distribution of instances
among the different classes, totaling 11,734 instances in the dataset. This classification
report offers valuable insights into the model’s performance on the HAM10000 datasets,
crucial for understanding its effectiveness in dermatological image classification.

Table 11. Classification Report for the HAM10000 dataset.

Precision Recall F1-Score Support

class 0: akiec 0.98 0.98 0.98 1667
class 1: bcc 0.96 0.98 0.97 1689
class 2: bkl 0.94 0.94 0.94 1651
class 3: df 0.99 0.98 0.99 1629
class 4: nv 0.89 0.82 0.85 1663
class 5: vasc 0.94 0.98 0.96 1680
class 6: mel 0.92 0.95 0.94 1755

Accuracy 0.95 11,734

Macro Avg. 0.95 0.95 0.95 11,734
Weighted Avg. 0.95 0.95 0.95 11,734

This approach demonstrates the potential for the broader application of ensemble
methods in medical image analysis, contributing to the development of robust and reliable
diagnostic tools across various healthcare domains.

5. Conclusions

In this study, we proposed a noble approach of employing the max voting ensemble
technique with cutting-edge pre-trained deep learning models for skin cancer detection
and classification. This study has made significant contributions to the field of skin cancer
detection and medical image analysis. Our primary focus has been on enhancing both the
accuracy and reliability of skin cancer diagnosis and we have achieved this through the
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innovative application of the max voting ensemble technique in conjunction with state-of-
the-art pre-trained deep learning models. The main contribution of our research lies in the
successful utilization of the max voting ensemble technique. By combining the predictions
of multiple models, we have demonstrated its potential to significantly elevate the diagnos-
tic performance in the context of skin cancer detection. Through extensive experimentation
and rigorous analysis, we have shown that our ensemble method outperforms individual
models. With an AUC of 0.932, it has established itself as a powerful tool for improving
the accuracy and reliability of skin cancer classification. Our study offers insights into
the selection of cutting-edge pre-trained deep learning models for single lesions. Models
such as Xception, InceptionResNetV2, and ResNet50V2 have proven to be highly effective
in capturing intricate features and patterns relevant to skin cancer detection. Beyond its
immediate applications in skin cancer detection, our work carries broader implications
for the field of medical image analysis. The successful integration of ensemble techniques
can be extended to various medical imaging modalities and disease classifications. By
leveraging the collective intelligence of multiple models, the accuracy and reliability of
diagnostic tools across diverse healthcare domains can be enhanced. Moreover, the max
voting ensemble technique serves as a testament to the potential of ensemble learning in
medical image analysis. As we continue to advance in this field, ensemble techniques
are likely to play an increasingly vital role in improving the quality of healthcare, aiding
healthcare professionals in making more accurate and timely diagnoses, and ultimately con-
tributing to better patient outcomes. Our research not only addresses the critical challenge
of skin cancer detection but also provides a framework for the integration of ensemble
techniques in medical image analysis.

The study primarily focuses on skin cancer detection using the ISIC 2018: Task 1-2
dataset. While this dataset is widely used and provides valuable insights, the generalizabil-
ity of the proposed max voting ensemble technique may be influenced by several factors.
These include the characteristics of the dataset such as image quality, class imbalance, and
algorithmic diversity, as well as evaluation metrics and computational resources. Addi-
tionally, potential biases in the dataset, particularly the underrepresentation of certain skin
types, ages, or ethnic groups, could limit the accuracy of the model across diverse popula-
tions. Although we assess the validity and generalizability of the proposed model with the
HAM10000 dataset, further research could explore the effectiveness of the technique on
diverse datasets representing different demographics and skin conditions. Furthermore,
the challenges in ensuring algorithmic transparency and interpretability are crucial, espe-
cially in healthcare applications, for gaining trust from professionals and patients. The
study mainly evaluates the proposed approach using quantitative metrics. To establish its
real-world clinical utility, further validation through collaboration with healthcare profes-
sionals and clinical trials is necessary. This should include continuous evaluation of the
performance of the model over time and its adaptability to evolving medical guidelines and
emerging skin conditions. Moreover, regulatory challenges and ethical considerations, such
as obtaining approval and addressing patient consent and data privacy, are essential factors
to consider. The resource requirements for implementing and maintaining such a system in
clinical settings, especially in resource-limited environments, also present significant limita-
tions. The integration of AI tools into clinical workflows might face challenges, including
the reception by healthcare professionals and the need for training and adaptation to new
technologies. Lastly, a comparison with existing diagnostic methods in terms of accuracy,
efficiency, and cost is imperative to understand the potential limitations in outperforming
or integrating with current diagnostic processes.

Our research focused on the categorization of images of single lesions as either benign
or cancerous. However, it should be noted that other approaches place the focus on
wide-field or total-body imaging. Soenksen et al. (2021) cogently argue that a whole
body approach may better replicate the practise of medical practitioners, who take into
account a multitude of factors, such as the context, number and type of lesions when
identifying lesions as suspicious [92]. Several studies using total-body imaging have shown
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fruitful results. Betz et al. (2022) on a study of 10 patients and analysis of slightly under
5000 lesions achieved 70% agreement with the gold standard. Their focus, however, was
on counting the number of naevi [93] among the lesions. Strzelecki et al. (2021) studied
the effectiveness of three algorithms developed to detect and segment lesions using whole-
body imaging, and report promising results particularly for lesions greater than 3 mm [94].
Birkenfeld et al. (2020) used whole-body visual examinations to classify pigmented lesions
as suspicious or non-suspicious, and propose that this approach may be adopted as a
preliminary method to screen a population for further testing [95]. A direct comparison
between total-body-imaging approaches and single-lesion approaches is difficult, given
the difference in tasks. Single-lesion approaches tend to adopt dichotomous classification
tasks of either benign or cancerous, while total-body imaging studies do not tend to assign
such values to individual lesions, but adopt different tasks, such as calculating the number
of naevi [93], and comparing the performance of different algorithms [94]. A single-lesion
approach is highly effective in offering a detailed and focused analysis of individual lesions,
which is crucial for precise diagnosis of specific skin conditions. However, its limitation
lies in the potential oversight of the broader context of skin health, as it fails to consider the
overall distribution, number, or variety of lesions across the body, which can be critical in
identifying patterns indicative of systemic health issues. On the other hand, the total-body
imaging approach stands out for its ability to provide a comprehensive overview of the skin,
facilitating the detection of patterns and multiple lesions that are essential in diagnosing
conditions spread over larger skin areas. This method, however, may compromise on the
level of detail for individual lesions, potentially affecting the accuracy in diagnosing certain
types of skin anomalies that require further examination.

In future work, we aim to seek out ways to address these limitations and to explore
more sophisticated algorithms. Our next step will be to test the efficacy of including
the integration of a weighted averaging technique, and assess its impact on classification
performance with respect to the current state-of-the-art models. Another key focus will be
on diversifying the datasets used in our models to include a broader range of skin types,
ages, and ethnic backgrounds, thereby reducing bias and improving the generalizability
of our findings. We plan to continue advancing the field of medical image analysis and
enhancing healthcare outcomes. In addition to addressing the pressing challenge of skin
cancer detection, our work serves as a catalyst for future innovation, ultimately contributing
to the improvement of healthcare delivery and the preservation of lives through enhanced
diagnostic accuracy, and achieving the ultimate goal of enhancing healthcare delivery and
saving lives through improved diagnostic accuracy.
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DenseNet121 Densely Connected Network 121
DenseNet201 Densely Connected Network 201
GAN Generative Adversarial Network
InceptionResNetV2 Inception + ResNet Variant 2
InceptionV3 Inception Variant 3
MobileNetV2 Mobile Network Variant 2
ReLU Rectified Linear Unit
ResNet50 Residual Network 50
ResNet50V2 Residual Network 50 Variant 2
ROC Receiver Operating Characteristic
SVM Support Vector Machine
VGG16 Visual Geometry Group 16
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