Chapter 3

Deadlocks

3.1 Resource

3.2 Introduction to deadlocks

3.3 The ostrich algorithm

3.4 Deadlock detection and recovery
3.5 Deadlock avoidance

3.6 Deadlock prevention

3.7 Other issues

Resources

e Examples of computer resources
— printers
— tape drives

— tables
e Processes need access to resources in reasonable order

e Suppose a process holds resource A and requests resource B
— at same time another process holds B and requests A

— both are blocked and remain so

Resources (1)

e Deadlocks occur when ...
— processes are granted exclusive access to devices

— we refer to these devices generally as resources

e Preemptable resources

— can be taken away from a process with no ill effects

e Nonpreemptable resources

— will cause the process to fail if taken away

Resources (2)

e Sequence of events required to use a resource
1. request the resource
2. use the resource

3. release the resource

e Must wait if request is denied
— requesting process may be blocked

— may fail with error code

Introduction to Deadlocks

e Formal definition :

e Usually the event is release of a currently held resource

e None of the processes can ...
— run
— release resources

— be awakened

Four Conditions for Deadlock

. Mutual exclusion condition

e cach resource assigned to 1 process or is available

. Hold and wait condition

e process holding resources can request additional

. No preemption condition

e previously granted resources cannot forcibly taken away

. Circular wait condition
e must be a circular chain of 2 or more processes

e cach is waiting for resource held by next member of the

chain

Deadlock Modeling (1)

M

(a) resource R assigned to process A

(@) (b)

e Modeled with directed graphs

(b) process B is requesting/waiting for resource S

(c) process C and D are in deadlock over resources T and U

Deadlock Modeling (2)

Strategies for dealing with Deadlocks

1. just ignore the problem altogether
e Ostrich Algorithm

2. detection and recovery

3. dynamic avoidance

e careful resource allocation

4. prevention

e negating one of the four necessary conditions

Deadlock Modeling (3)

1. A requests R
£. Brequests &
A Crmequests T
4. A requests 5
o Brequests T
B. Crequests R
deadlock

(d)

Request R
Request 5
Relzass R
Release 5

)

C?@ EiD@

Request 5
Request T
Releass 5
Release T

(b}

i

NS

(h)

How deadlock occurs

L,

Hequest T
Request R
Helease T
Release R

(el

Deadlock Modeling (4)

1. A requests H

tmel OO0 OO0 ofe
3. Arequests 5 e e & @

4. C equests B

5. Areleases R

B.Argleases 5
i ples el R 5 T R &5 T R

& T

(n

How deadlock can be avoided

The Ostrich Algorithm

Pretend there is no problem

Reasonable if
— deadlocks occur very rarely

— cost of prevention is high
UNIX and Windows takes this approach

It is a trade off between
— convenilence

— correctness

Detection with One Resource of Each Type (1)

-
<

L
i

(a)
e Note the resource ownership and requests

e A cycle can be found within the graph, denoting deadlock

Detection with One Resource of Each Type (2)

Resources in existence
(E,. E,, Ey ..., E,)

Current allocation matrix

Cp, Ciz 0 Cpy

Cp Cyp 0 Cyy

n2 n3 nm

Row n is current allocation
t0O nrocess n

Resources available
(AL AL A, LA

Request matrix

R12 R13
R22 R23

I:\)nl Rn2 Rn3

Row 2 is what process 2 needs

Data structures needed by deadlock detection algorithm
For vectors A and B (m), A < Biff Ai<Biforl1 <i<m

Detection with One Resource of Each Type (3)

'

&£

g X O
& QT P

E=(4 2 3 1)

Current allocation matrix Request matrix

RTHIIT

An example for the deadlock detection algorithm
1. R2: (2100)=A=(2220)
22 R1:(1010)=A=(4221)
3. RO: (2001)=A=(4231)

Recovery from Deadlock (1)

e Recovery through preemption
— take a resource from some other process

— depends on nature of the resource

e Recovery through rollback
— checkpoint a process periodically
— use this saved state

— restart the process if it is found deadlocked

Recovery from Deadlock (2)

e Recovery through killing processes
crudest but simplest way to break a deadlock
kill one of the processes in the deadlock cycle
the other processes get its resources

choose process that can be rerun from the beginning

Deadlock Avoidance

Resource Trajectories

® u (Both processes

finished)
Printer

I
Plotter

r
*--
I
I
I
I

.

q

*---

Y

1
Printer <———— »

—~— > P|otter

Two process resource trajectories

Safe and Unsafe States (1)

Has Max Has Max Has Max Has Max Has Max
3 9 Al 3 9 Al 3 9
4 4 0 — 0 —
2 7 2 7 7 7

Free: 1 Free: 0

(b) () (d)

(b) finished, (c) finished, A can be finished
Demonstration that the state in (a) is safe

1. Not deadlocked

2. d scheduling over each process can request MAX

Safe and Unsafe States (2)

Has Max Has Max Has Max Has Max
4 9 A 4 9

2 | 4 4 | 4
2 | 7 cl2]|7

Free: 2

(b) (€)

Demonstration that the sate in b is not safe
deadlock C unsafe

(a) Give A one more

(d) A: 5 needed, C: 5 needed, only 4 available

The Banker’s Algorithm for a Single Resource

Has Max Has Max

0 6 6

0 5 5
0 4 4
0 7 7

Free: 10

e Three resource allocation states
(a) safe
— Any order
(b) safe
— C(4), B(5), D(9), one possibility
(¢) unsafe

— None can request MAX

Has Max

6

5
4
7

Banker’s Algorithm for Multiple Resources

0

1

=

0

0

0

Resources assigned

0

2

1

1

Resources still needed

E = (6342)
P = (5322)
A = (1020)

Example of banker’s algorithm with multiple resources

e I = Exiting
e P = Possessed

e A = Available

Deadlock Prevention
Attacking the Mutual Exclusion Condition

e Some devices (such as printer) can be spooled
— only the printer daemon uses printer resource

— thus deadlock for printer eliminated

e Not all devices can be spooled

(e.g. process table)

e Principle:
— avoid assigning resource when not absolutely necessary

— as few processes as possible actually claim the resource

Attacking the Hold and Wait Condition

e Require processes to request resources before starting

— a process never has to wait for what it needs

e Problems
— may not know required resources at start of run

— also ties up resources other processes could be using

e Variation:
— process must give up all resources

— then request all immediately needed

Attacking the No Preemption Condition

e This is not a viable option

e Consider a process given the printer
— halfway through its job

— now forcibly take away printer

— 177

Attacking the Circular Wait Condition (1)

1. Imagesetter @

2. Scanner
3. Plotter

4. Tape drive
5. CD Rom drive

F™

Left: Normally ordered resources

Right: A resource graph

Summary of approaches to deadlock prevention

Condition Approach
Mutual exclusion | Spool everything
Hold and walit Request all resources initially
No preemption Take resources away
Circular walit Order resources numerically

Other Issues
Two-Phase Locking

Phase One
— process tries to lock all records it needs, one at a time
— if needed record found locked, start over

— (no real work done in phase one)

If phase one succeeds, it starts second phase,
— performing updates

— releasing locks
Note similarity to requesting all resources at once

Algorithm works where programmer can arrange

— program can be stopped, restarted (in this way)

Nonresource Deadlocks

e Possible for two processes to deadlock

— each is waiting for the other to do some task

e Can happen with semaphores

— each process required to do a down() on two semaphores
(mutex and another)

— if done in wrong order, deadlock results

Starvation

Algorithm to allocate a resource
— may be to give to shortest job first
(SJF is scheduling)

Works great for multiple short jobs in a system

May cause long job to be postponed indefinitely
— even though not blocked

Solution:
— First-come, first-serve policy

— can increase priority by wait time

