Information Theory

Mohamed Hamada

Software Engineering Lab
The University of Aizu

Email: hamada@u-aizu.ac.jp

URL: http://www.u-aizu.ac.jp/~hamada

Today's Topics

- Channel Coding/Decoding
- Hamming Method:
 - Hamming Distance
 - Hamming Weight
- Hamming (4, 7)

Digital Communication Systems

Digital Communication Systems

INFORMATION TRANSFER ACROSS CHANNELS

Channel Coding/Decoding

Hamming Method

INFORMATION TRANSFER ACROSS CHANNELS

Channel Coding/Decoding

The purpose of channel coding/decoding is to detect and correct errors in noisy channels

Error correction in our life

Cell phone

Hard disk

Optical disk

Fiber

$$10^{-5} - 10^{-6}$$
 10^{-14}

$$10^{-14}$$

$$10^{-12}$$

$$10^{-12}$$

Channel Coding/Decoding

Error detection and correction

In a noisy channel errors may occur during the transmission of data from information source to destination, so we need a method to detect these errors and then correct them.

Channel Coding/Decoding

Hamming Method

- It was the first complete error-detecting and error-correcting procedure.
- It represents one of the simplest and most common method for the transmission of information (in the presence of noise).
- It assumes that the source transmits binary messages (i.e. The information source alphabet is { 0, 1 })
- It uses the parity checker method to detect an error
- It assumes that the channel is a binary symmetric channel (BSC)

Hamming Codes

- (4,7) Hamming Code detects all one- and two-bit errors
- Corrects all 1-bit errors
- Magic: Any two different codewords differ in at least 3 places!

0000000	0001011	0010111	0011100
0100110	0101101	0110001	0111010
1000101	1001110	1010010	1011001
1100011	1101000	1110100	1111111

Hamming Distance

 Number of places in which two bit strings differ

= Hamming distance 3

Acts like a distance:

Definitions

- Hamming distance between <u>x</u> and <u>y</u> is
 d_H := d(<u>x</u>, <u>y</u>) is the # of positions where x_i ≠y_i
- The minimum distance of a code C is
 - $d_{min} = min \{ d(\underline{x}, \underline{y}) \mid \underline{x} \in C, \underline{y} \in C, \underline{x}, \underline{y} \}$
- Hamming weight of a vector <u>x</u> is
 - $w(\underline{x}) := d(\underline{x}, \underline{0})$ is the # of positions where $x_i \neq 0$

Example

• *Hamming distance* d(1001, 0111) = 3

• Minimum distance (101, 011, 110) = 2

• *Hamming weight* w(0110101) = 4

Performance

A code with minimum distance d_{min} is capable of correcting t errors if

$$d_{min} \geq 2t + 1.$$

<u>Proof:</u> If \leq t errors occur, then since $d_{min} \geq 2 t + 1$ an incorrect code word has at least t+1 differences with the received word.

Hamming codes

We assume that the sequence of symbols generated by the information source is divided up into blocks of K symbols.

- Minimum distance 3
- Construction

$$ullet$$
 $\mathbf{G} = \left[\ \mathbf{I}_{\mathsf{m}} \ \ \mathsf{All} \ \mathsf{k}\text{-tuples of Hamming weight} > 1 \ \right]$

• where
$$m = 2^k - k - 1$$

I_m is identity matrix

Example: Hamming (7, 4) codes

We assume that the sequence of symbols generated by the information source is divided up into blocks of 4 symbols.

Generating matrix

$$\bullet G = \left[I_4 \ \mathbf{P} \right]$$

$$C_1 = u_2 + u_3 + u_4$$

P is a 4x3 matrix determined by: $C_2 = u_1 + u_3 + u_4$

and u_i are I₄ elements

$$C_3 = u_1 + u_2 + u_4$$

Example: Hamming (7, 4) codes

We assume that the sequence of symbols generated by the information source is divided up into blocks of 4 symbols. Codewords have length 7

Where + is modulo 2:

$$0+0=1+1=0$$
 and
 $1+0=0+1=1$
and u_i are I_4 elements

$$C_1 = u_2 + u_3 + u_4$$

 $C_2 = u_1 + u_3 + u_4$
 $C_3 = u_1 + u_2 + u_4$

Hamming (7, 4) Syndrome decoding

H is the parity check matrix

H^T is the Transpose matrix of H
P^T is the Transpose matrix of P

Let
$$G = [I_k P]$$

For Hamming(7, 4) code: n=7 and k=4

Step 1. construct
$$H = \begin{pmatrix} P^T & I_{n-k} \end{pmatrix}$$

- Step 2. Arrange the columns of H in order of increasing binary values
- Step 3. Determine the syndrome S = y. H^T (y is the received message)
- Step 4. If S=0 then no error occurs during transmisstion of information
- Step 5. If S≠0 then S gives a binary representation of the error position (we assume only one error ocuured)

Example: Suppose that y=(1111011) is received

$$\mathbf{G} = \begin{pmatrix} \mathbf{I}_{k} & \mathbf{P} \\ 1000 & 011 \\ 0100 & 101 \\ 0010 & 110 \\ 0001 & 111 \end{pmatrix}$$
 Step 1
$$\mathbf{H} = \begin{pmatrix} \mathbf{P}^{\mathsf{T}} & \mathbf{I}_{\mathbf{n-k}} \\ 0111 & 100 \\ 1011 & 010 \\ 1101 & 001 \end{pmatrix}$$
 n=7 and k=4

Step 5

An error had occurred at position 5 in the received message y = (1111011)

The correct sent message is then = (1111111) 20