

Today's Topics

Digital Communication Systems

Channel Coding/Decoding
Hamming Method

Channel Coding/Decoding

The purpose of channel coding/ decoding is to detect and correct errors in noisy channels

Channel Coding/Decoding

Hamming Method

```
- It was the first complete error-detecting and error-correcting procedure.
- It represents one of the simplest and most common method for the transmission of information (in the presence of noise).
- It assumes that the source transmits binary messages (i.e. The information source alphabet is \(\{\mathbf{0 , 1}\}\) )
- It uses the parity checker method to detect an error
- It assumes that the channel is a binary symmetric channel (BSC)
```

Channel Coding/Decoding

Error detection and correction
In a noisy channel errors may occur during the transmission of data from information source to destination, so we need a method to detect these errors and then correct them.

Channel Coding/Decoding
Error detection and correction
In a noisy channel errors may occur during the transmission of data from information source to destination, so we need a method to detect these errors and then correct them.

Hamming Codes

- $(4,7)$ Hamming Code detects all one- and two-bit errors
- Corrects all 1-bit errors
- Magic: Any two different codewords differ in at least 3 places!

0000000	0001011	0010111	0011100
0100110	0101101	0110001	0111010
1000101	1001110	1010010	1011001
1100011	1101000	1110100	1111111

Hamming Distance

- Number of places in which two bit strings differ
- | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | |
| 1 | 0 | 0 | 1 | 1 | 1 |$\quad=$ Hamming distance 3
- Acts like a distance:

Example

- Hamming distance $d(1001,0111)=3$
- Minimum distance $(101,011,110)=2$
- Hamming weight $w(0110101)=4$

Definitions

- Hamming distance between x and y is
$d_{H}:=d(\underline{x}, y)$ is the $\#$ of positions where $x_{i} \neq y_{i}$
- The minimum distance of a code C is
- $d_{\text {min }}=\min \{d(\underline{x}, y) \mid \underline{x} \in C, \underline{y} \in C, \underline{x} y\}$
- Hamming weight of a vector \underline{x} is
$-\mathrm{w}(\underline{x}):=\mathrm{d}(\underline{x}, \underline{0})$ is the \# of positions where $\mathrm{x}_{\mathrm{i}} \neq 0$

Performance

A code with minimum distance $d_{\text {min }}$ is capable of correcting t errors if

$$
\mathrm{d}_{\min } \geq 2 \mathrm{t}+1
$$

Proof: If $\leq t$ errors occur, then since $d_{\text {min }} \geq 2 t+1$ an incorrect code word has at least $t+1$ differences with the received word.

Hamming codes

We assume that the sequence of symbols generated by the information source is divided up into blocks of K symbols.

- Minimum distance 3
- Construction
- $G=\left(I_{m}\right.$ All k-tuples of Hamming weight > 1$)$
- where $\mathrm{m}=2^{\mathrm{k}}-\mathrm{k}-1$
I_{m} is identity matrix

Example: Hamming $(7,4)$ codes

We assume that the sequence of symbols generated by the information source is divided up into blocks of 4 symbols.

- Generating matrix

$$
\cdot \mathrm{G}=\left(\begin{array}{ll}
\mathrm{I}_{4} & \mathbf{P}
\end{array}\right)
$$

P is a 4×3 matrix determined by: $C_{2}=u_{1}+u_{3}+u_{4}$
Where + is modulo 2: $\mathrm{C}_{3}=\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{4}$ $0+0=1+1=0$ and $1+0=0+1=1$
and u_{i} are I_{4} elements

Example: Hamming $(7,4)$ codes

Hamming $(7,4)$ Syndrome decoding

H is the parity check matrix $\quad H^{\top}$ is the Transpose matrix of H \mathbf{P}^{T} is the Transpose matrix of \mathbf{P}

Let $G=\left[I_{k} P\right]$
For Hamming $(\mathbf{7}, 4)$ code: $\mathbf{n = 7}$ and $k=4$
Step 1. construct $H=\left(\begin{array}{ll}\mathrm{P}^{\top} & \mathrm{I}_{n-k}\end{array}\right)$
Step 2. Arrange the columns of H in order of increasing binary values
Step 3. Determine the syndrome $S=y . H^{\top}$ (y is the received message) Step 4. If $\mathrm{S}=0$ then no error occurs during transmisstion of information Step 5. If $\mathrm{S} \neq 0$ then S gives a binary representation of the error position (we assume only one error ocuured)

