Information Theory

Mohamed Hamada

Software Engineering Lab The University of Aizu

Email: hamada@u-aizu.ac.jp URL: http://www.u-aizu.ac.jp/~hamada

1

Today's Topics

- Entropy review
- Entropy and Data Compression
- Uniquely decodable codes
- Prefix Code
- Average Code Length
- Shannon's First Theorem
- Kraft-McMillan Inequality
- Code Efficiency
- Code Extension

Entropy H(S)

• Entropy is the average information content of a source

Conditional Entropy H(Y|X)

Is the amount of information contained in Y such that X is given

$H(Y \mid X) = = \sum_{j} P(X = v_{j}) H(Y \mid X = v_{j})$

Joint Entropy

Is the amount of information contained in both events X and Y

$H(X, Y) = -\sum_{x, Y} p(x, y) \log p(x, y)$

Chain Rule

Relationship between conditional and joint entropy

Entropy, Coding and Data Compression

Data vs. Information

- "yes," "not," "yes," "yes," "not" "not" ...
- In ASCII, each item is 3.8 = 24 bits *of data*
- But if the only possible answers are "yes" and "not," there is only one bit of information per item

Compression = Squeezing out the "Air"

 Suppose you want to ship pillows in boxes and are charged by the size of the box

- To use as few boxes as possible, squeeze out all the air, pack into boxes, fluff them up at the other end
- Lossless data compression = pillows are perfectly restored
- Lossy data compression = some damage to the pillows is OK (MP3 is a lossy compression standard for music)
- Loss may be OK if it is below human perceptual threshold
- Entropy is a measure of limit of **lossless** compression

Fixed length code

Example: Morse Code

Α	В	С	D	Е	F	G	Н	1	J	Κ	L	Μ
.08	.01	.03	.04	.12	.02	.02	.06	.07	.00	.01	.04	.02
								••		-,-		
Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ
.07	.08	.02	.00	.06	.06	.09	.03	.01	.02	.00	.02	.00
						-					-,	

Example: Telegraphy Source English letters -> Morse Code

Sender: from Hokkaido

Receiver: in Tokyo

Coding Messages with Fixed Length Codes

- Example: 4 symbols, A, B, C, D
- A=00, B=01, C=10, D=11
- In general, with *n* symbols, codes need to be of length lg *n*, rounded up
- For English text, 26 letters + space = 27 symbols, length = 5 since $2^4 < 27 < 2^5$

(replace all punctuation marks by space)

Uniquely decodable codes

- If any encoded string has only one possible source string producing it then we have unique decodablity
- Example of uniquely decodable code is the *prefix code*

Prefix Coding (Instantaneous code)

- A prefix code is defined as a code in which *no* codeword is the prefix of some other code word.
- A prefix code is *uniquely decodable*.

Xa	Imple				
	•		Prefix Code		
	Source	Code A	Code B	Code C	
	Symbol	Symbol Codeword	Symbol Codeword	Symbol Codeword	
	S ₀	0	0	0	
	S ₁	1	10	01	
	S ₂	00	110	011	
	S ₃	11	111	0111	

Uniquely Decodable Codes 14

Decoding of a Prefix Code

Example

Code B							
Source Symbol	Symbol Codeword						
S _k	C _k						
S ₀	0						
S ₁	10						
S ₂	110						
S ₃	111						

Decision Tree for Code B

- Example : Decode 1011111000
- Answer : $s_1 s_3 s_2 s_0 s_0$

Prefix Codes

Only one way to decode left to right when message received

Example 1

Received message:

Prefix Codes

Example 2

Source	Code E					
Symbol	Symbol					
s _k	Codeword					
	C _k					
Α	0					
В	100					
С	110					
D	11					

- IS CODE E A PREFIX CODE?
 - NO
 - WHY?
 - Code of D is a prefix to code of C

Average Code Length

- Source has *K* symbols
- Each symbol s_k has probability p_k
- Each symbol s_k is represented by a codeword c_k of length l_k bits
- Average codeword length

$$L = \sum_{k=0}^{K-1} p_k I_k$$

Example: Morse Code

Α	В	С	D	Е	F	G	Н	1	J	Κ	L	Μ
.08	.01	.03	.04	.12	.02	.02	.06	.07	.00	.01	.04	.02
				•		,		••				
Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
.07	.08	.02	.00	.06	.06	.09	.03	.01	.02	.00	.02	.00
						-						

Average codeword length

$$L = \sum_{k=0}^{K-1} p_k / \sum_{k=0}^{K-1} p_k / \sum_{k=0}^{K-1} \frac{p_k / p_k}{p_k} = .08 * 2 + .01 * 4 + ... + .02 * 4 + .00 * 4$$
19

Shannon's First Theorem: The Source Coding Theorem

The outputs of an information source cannot be represented by a source code whose average length is less than the source entropy

Average Code Length

Example

Average bits per symbol:

L= $.7 \cdot 1 + .1 \cdot 3 + .1 \cdot 3 = 1.6$ bits/symbol (down from 2)

Another prefix code that is better

 $L = .7 \cdot 1 + .1 \cdot 2 + .1 \cdot 3 + .1 \cdot 3 = 1.5$

А	В	С	D
.7	.1	.1	.1
0	100	101	110

Source Entropy Examples

Robot Example

Source Entropy Examples

		Prefix	Codes		
Robot Example					
symbol k	p_k	fixed-length codeword	variable-leng codeword	th	
S	0.5	00	0	\bigcirc	
N	0.25	01	10		
E	0.125	10	110		
W	0.125	11	111		
symbol stream	: SSNW	SENNN	WSSSN	E <mark>S</mark> S	
fixed length: 00	<u>) 00 01 11 00 1</u>	<u>10 01 01 11 00</u>	<u>00 00 01 10 0</u>	<u>0 00</u>	32bits
variable length:	<u>00101110</u>	<u>110 10 10 111 (</u>	<u>0 0 0 10 110 0</u>	<u>0</u>	28bits

4 bits savings achieved by VLC (redundancy eliminated)

Entropy, Compressibility, Redundancy

- Lower entropy <=> More redundant <=> More compressible
- Higher entropy <=> Less redundant <=> Less compressible

Entropy and Compression

First-order entropy is theoretical minimum on code length when only frequencies are taken into account

•
$$L = .7 \cdot 1 + .1 \cdot 2 + .1 \cdot 3 + .1 \cdot 3 = 1.5$$

• First-order Entropy = 1.353

• First-order Entropy of English is about 4 bits/character based on "typical" English texts

Bits

You are watching a set of independent random samples of X

You see that X has four possible values

$$P(X=A) = 1/4$$
 $P(X=B) = 1/4$ $P(X=C) = 1/4$ $P(X=D) = 1/4$

So you might see output: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A = 00, B = 01, C = 10, D = 11) **2 bits on average per symbol**

0100001001001110110011111100...

Fewer Bits

Someone tells you that the probabilities are not equal

$$P(X=A) = 1/2$$
 $P(X=B) = 1/4$ $P(X=C) = 1/8$ $P(X=D) = 1/8$

Is it possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

Fewer Bits

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol.

Α	0
В	10
С	110
D	111

(This is just one of several ways)

Fewer Bits

Suppose there are three equally likely values...

$$P(X=A) = 1/3 | P(X=B) = 1/3 | P(X=C) = 1/3$$

Here's a naïve coding, costing 2 bits per symbol

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

Kraft-McMillan Inequality

- If codeword lengths of a code satisfy the Kraft McMillan's inequality, then a prefix code with these codeword lengths *can be* constructed.
- For code D
 - 2⁻¹+ 2⁻²+ 2⁻³+ 2⁻²⁼9/8
 - This means that Code D IS
 NOT A PREFIX CODE

Example

Source Symbol	Code D				
s _k	Symbol Codewor d C _k	Codeword Length I _k			
S ₀	0	1			
S ₁	10	2			
S ₂	110	3			
S ₃	11	2			

Use of Kraft-McMillan Inequality

- We may use it if the number of symbols are large such that we cannot simply by inspection judge whether a given code is a prefix code or not
- WHAT Kraft-McMillan Inequality Can Do:
 - It can determine that a given code IS NOT A PREFIX CODE
 - It can identify that a prefix code could be constructed from a set of codeword lengths
- WHAT Kraft-McMillan Inequality Cannot Do:
 - It cannot guarantee that a given code is indeed a prefix code

Example

Source	Code E				
Symbo	Symbol	Codeword			
	Codewor	Length			
S _k	d	l _k			
	C _k				
S ₀	0	1			
S ₁	100	3			
S ₂	110	3			
S ₃	11	2			

- For code E
 - $2^{-1}+2^{-2}+2^{-3}+2^{-3}=1$ and hence satisfy Kraft-Mcmillan inequality
- IS CODE E A PREFIX CODE?
 - NO
 - WHY?
 - s₃ is a prefix to s₂

Code Efficiency η

• An efficient code means $\eta \rightarrow 1$

Examples

Source	Symbol	Coc	le I	Code II		
Symbol	Probability	Symbol	Codeword	Symbol	Codeword	
s _k	р _к	Codeword	Length	Codeword	Length	
		C _k	l _k	C _k	۱ _k	
s ₀	1/2	00	2	0	1	
S ₁	1/4	01	2	10	2	
S ₂	1/8	10	2	110	3	
S ₃	1/8	11	2	111	3	

- Source Entropy
 - $H(S) = 1/2\log_2(2) + 1/4\log_2(4) + 1/8\log_2(8) + 1/\log_2(8)$ = 1 ³/₄ bits/symbol

Code I

$$L = 2 \times \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8}\right) = 2$$

 $\eta = \frac{7/4}{2} = 0.875$

Code II

$$\mathcal{L} = \left(1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8}\right) = \frac{7}{4}$$
 $\eta = \frac{7/4}{7/4} = 1$

For a Prefix Code

Shannon's First Theorem

$$H(S) \le L < H(S) + 1$$

$$L = H(S) \quad \text{if} \quad \rho_k = 2^{-\ell_k} \forall k$$

$$\downarrow$$
What is the Efficiency η ?
$$\eta = 1$$

if
$$p_k \neq 2^{-l_k}$$
 for some $k \implies \eta < 1$
However, we may increase efficiency by
extending the source

Increasing Efficiency by Source Extension

- By extending the source we may potentially increase efficiency
- The drawback is
 - Increased decoding complexity

$$H(S^{n}) \leq L_{n} < H(S^{n}) + 1$$

$$nH(S) \leq L_{n} < nH(S) + 1$$

$$H(S) \leq \frac{L_{n}}{n} < H(S) + \frac{1}{n}$$

$$\eta = \frac{H(S)}{L_{n}/n}$$

$$\eta \to 1 \text{ when}$$

$$n \to \infty$$

Extension of a Discrete Memoryless Source

• Treats Blocks of *n* successive symbols

Example

- $S = \{s_0, s_1, s_2\}, p_0 = 1/4, p_1 = 1/4, p_2 = 1/2$
- $H(S) = (1/4)\log_2(4) + (1/4)\log_2(4) + (1/2)\log_2(2)$ H(S) = 3/2 bits

Symbols of S ²	$\sigma_{\!\scriptscriptstyle O}$	$\sigma_{_1}$	0 2	$\sigma_{_3}$	$\sigma_{\!_4}$	$\sigma_{\!_5}$	$\sigma_{\!_{\!6}}$	<i>σ</i> ₇	$\sigma_{\!\scriptscriptstyle \mathcal{B}}$
Sequence of Symbols from <i>S</i>	<i>S₀ S₀</i>	<i>S₀ S₁</i>	<i>S₀ S₂</i>	<i>S</i> ₁ <i>S</i> ₀	<i>S</i> ₁ <i>S</i> ₁	<i>S</i> ₁ <i>S</i> ₂	<i>S₂ S₀</i>	<i>S</i> ₂ <i>S</i> ₁	<i>S₂ S₂</i>
P{ <i>σ_j</i> }, i=0,1,,8	1/16	1/16	1/8	1/16	1/16	1/8	1/8	1/8	1/4

Second-Order Extended Source

By Computing: H(S²)=3 bits

Summery

Source Encoding

- *Efficient* representation of information sources
- Source Coding Requirements
 - Uniquely Decodable Codes
- Prefix Codes
 - No codeword is a prefix to some other code word

Code Efficiency

Kraft's Inequality

End