

Mohamed Hamada

Software Engineering Lab

The University of Aizu
Email: hamada@u-aizu.ac.jp
URL: http://www.u-aizu.ac.jp/~hamada

Today's Topics

- Entropy review
- Entropy and Data Compression
- Uniquely decodable codes
- Prefix Code
- Average Code Length
- Shannon's First Theorem
- Kraft-McMillan I nequality
- Code Efficiency
- Code Extension

Entropy H(S)

- Entropy is the average information content of a source

$$
\begin{aligned}
& \mathrm{H}(S)=\mathrm{E}\left[\mathrm{I}\left(s_{k}\right)\right] \\
& \mathrm{H}(S)=\sum_{\mathrm{k}=0}^{\mathrm{K}-1} p_{k} \log _{2}\left(\frac{1}{p_{k}}\right)
\end{aligned}
$$

Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

Is the amount of information contained in Y such that X is given

$$
H(Y \mid X)==\Sigma_{j} P\left(X=v_{j}\right) H\left(Y \mid X=v_{j}\right)
$$

J oint Entropy

Is the amount of information contained in both events X and Y

$$
H(X, Y)=-\sum_{x, y} p(x, y) \log p(x, y)
$$

Chain Rule

Chain Rule

Relationship between conditional and joint entropy

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Entropy, Coding and Data Compression

Data vs. Information

- "yes," "not," "yes," "yes," "not" "not" ...
- In ASCII, each item is $3 \cdot 8=24$ bits of data
- But if the only possible answers are "yes" and "not," there is only one bit of information per item

Compression = Squeezing out the "Air"

- Suppose you want to ship pillows in boxes and are charged by the size of the box

- To use as few boxes as possible, squeeze out all the air, pack into boxes, fluff them up at the other end
- Lossless data compression = pillows are perfectly restored
- Lossy data compression = some damage to the pillows is OK (MP3 is a lossy compression standard for music)
- Loss may be OK if it is below human perceptual threshold
- Entropy is a measure of limit of lossless compression

Fixed length code

Example: Morse Code

A	B	C	D	E	F	G	H	I	J	K	L	M
.08	.01	.03	.04	.12	.02	.02	.06	.07	.00	.01	.04	.02
-	$-\ldots$.--	..-	.	$\ldots-$.	--	\ldots	..	.--	.--	..-	--
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
.07	.08	.02	.00	.06	.06	.09	.03	.01	.02	.00	.02	.00
.-	---	.--	.---	.-	\ldots	-	..-	$\ldots-$	--	..--	.---	..--

Example: Telegraphy Source English letters -> Morse Code

Sender: from Hokkaido

Receiver: in Tokyo

Coding Messages with Fixed Length Codes

- Example: 4 symbols, A, B, C, D
- $A=00, B=01, C=10, D=11$
- In general, with n symbols, codes need to be of length $\lg n$, rounded up
- For English text, 26 letters + space $=27$ symbols, length $=5$ since $2^{4}<27<2^{5}$
(replace all punctuation marks by space)

Uniquely decodable codes

- If any encoded string has only one possible source string producing it then we have unique decodablity
- Example of uniquely decodable code is the prefix code

Prefix Coding (Instantaneous code)

- A prefix code is defined as a code in which no codeword is the prefix of some other code word.
- A prefix code is uniquely decodable.

Example

		Prefix Code	
Source Symbol	Code A	Code B	Code C
	Symbol Codeword	Symbol Codeword	Symbol Codeword
	0	0	0
s_{1}	1	10	01
s_{2}	00	110	011
s_{3}	11	111	0111

Uniquely Decodable Codes

Decoding of a Prefix Code

Example

Decision Tree for Code B

Code B	
Source Symbol s_{k}	Symbol Codeword c_{k}
s_{0}	0
s_{1}	10
s_{2}	110
s_{3}	111

- Example : Decode 1011111000
- Answer : $\mathrm{s}_{1} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{0} \mathrm{~s}_{0}$

Prefix Codes

Only one way to decode left to right when message received

Example 1

Symbol	A	B	C	D
Probability	.7	.1	.1	.1
Code	0	100	101	110

Received message:

Prefix Codes

Example 2

Source Symbol s_{k}	Code E	
	Symbol Codeword c_{k}	
A	$\mathbf{0}$	
B	100	
C	110	
D	11	

- IS CODE E A PREFIX CODE?
- NO
- WHY?
- Code of D is a prefix to code of C

Average Code Length

Information $\xrightarrow{s_{k}}$ Source Source
 Encoder

- Source has Ksymbols
- Each symbol s_{k} has probability p_{k}
- Each symbol s_{k} is represented by a codeword c_{k} of length I_{k} bits
- Average codeword length

$$
L=\sum_{k=0}^{k-1} p_{k} I_{k}
$$

Example: Morse Code

A	B	C	D	E	F	G	H	I	J	K	L	M
.08	.01	.03	.04	.12	.02	.02	.06	.07	.00	.01	.04	.02
-	$-\ldots$.--	..-	.	$\ldots-$.	--	\ldots	..	.--	.-	..-	--
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
.07	.08	.02	.00	.06	.06	.09	.03	.01	.02	.00	.02	.00
.-	---	.--	.--	\ldots	\ldots	-	..-	\ldots	.--	..-	.---	..--

Average codeword length
$L=\sum_{k=0}^{K-1} p_{k} I_{k} \begin{array}{r}=.08 * 2+.01 * 4+\ldots \ldots \ldots+.02 * 4+.00 * 4 \\ 19\end{array}$

Shannon's First Theorem: The Source Coding Theorem

-The outputs of an information source cannot be represented by a source code whose average length is less than the source entropy

Average Code Length

Example

Average bits per symbol:

$$
\mathrm{L}=.7 \cdot 1+.1 \cdot 3+.1 \cdot 3+.1 \cdot 3=1.6
$$ bits/symbol (down from 2)

A	B	C	D
.7	.1	.1	.1
0	100	101	110

Another prefix code that
is better
$\mathrm{L}=.7 \cdot 1+.1 \cdot 2+.1 \cdot 3+.1 \cdot 3=1.5$

A	B	C	D
.7	.1	.1	.1
0	10	110	111

Source Entropy Examples

Robot Example

- 4-way random walk

$$
\begin{gathered}
\operatorname{prob}(x=S)=\frac{1}{2}, \operatorname{prob}(x=N)=\frac{1}{4} \\
\operatorname{prob}(x=E)=\operatorname{prob}(x=W)=\frac{1}{8} \\
H(X)=-\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{8} \log _{2} \frac{1}{8}+\frac{1}{8} \log _{2} \frac{1}{8}\right)=1.75 b p s
\end{gathered}
$$

Source Entropy Examples

Robot Example

Prefix Codes

	fixed-length variable-length			
symbol k	p_{k}	codeword	codeword	
S	0.5	00	0	
N	0.25	01	10	
E	0.125	10	110	
W	0.125	11	111	

symbol stream : SS NW SENNNWSSSNESS fixed length: $\underline{00} \underline{00} \underline{01} \underline{1100} \underline{10} \underline{01} \underline{01} \underline{11} \underline{00} \underline{00} \underline{00} \underline{01} \underline{10} \underline{00} \underline{00}$ variable length: $\underline{0} \underline{10} \underline{111} \underline{0} \underline{110} \underline{10} \underline{10} \underline{111} \underline{0} \underline{0} \underline{10} \underline{110} \underline{0} \underline{0}$

4 bits savings achieved by VLC (redundancy eliminated)

Entropy, Compressibility, Redundancy

- Lower entropy <=> More redundant <=> More compressible
- Higher entropy <=> Less redundant <=> Less compressible

Entropy and Compression

- First-order entropy is theoretical minimum on code length when only frequencies are taken into account
- $\mathrm{L}=.7 \cdot 1+.1 \cdot 2+.1 \cdot 3+.1 \cdot 3=1.5$
- First-order Entropy $=1.353$

A	B	C	D
.7	.1	.1	.1
0	10	110	111

- First-order Entropy of English is about 4 bits/character based on "typical" English texts

Bits

You are watching a set of independent random samples of X You see that X has four possible values
$P(X=A)=1 / 4 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 4 \quad P(X=D)=1 / 4$

So you might see output: BAACBADCDADDDA...
You transmit data over a binary serial link. You can encode each reading with two bits (e.g. $A=00, B=01, C=10, D=$ 11)

2 bits on average per symbol
0100001001001110110011111100...

Fewer Bits

Someone tells you that the probabilities are not equal
$P(X=A)=1 / 2 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 8 \quad P(X=D)=1 / 8$

Is it possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol. How?

Fewer Bits

$$
P(X=A)=1 / 2 \quad P(X=B)=1 / 4 \mid P(X=C)=1 / 8 \quad P(X=D)=1 / 8
$$

It's possible...

...to invent a coding for your transmission that only uses
1.75 bits on average per symbol.

A	0
B	10
C	110
D	111

(This is just one of several ways)

Fewer Bits

Suppose there are three equally likely values...

$$
\begin{array}{|l|l|l|}
\hline P(X=A)=1 / 3 & P(X=B)=1 / 3 & P(X=C)=1 / 3 \\
\hline
\end{array}
$$

Here's a naïve coding, costing 2 bits per symbol

A	00
B	01
C	10

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

Kraft-McMillan Inequality

K-1

- If codeword lengths of a code satisfy the Kraft McMillan's inequality, then a prefix code with these codeword lengths can be constructed.
- For code D
- $2^{-1}+2^{-2}+2^{-3}+2^{-2=9 / 8}$
- This means that Code D IS NOT A PREFIX CODE

Example

Source	Code D
Symbol	

Codeword
Length
I_{k}
1
2
3

s_{3}	11

2

Use of Kraft-McMillan Inequality

- We may use it if the number of symbols are large such that we cannot simply by inspection judge whether a given code is a prefix code or not
- WHAT Kraft-McMillan I nequality Can Do:
- It can determine that a given code IS NOT A PREFIX CODE
- It can identify that a prefix code could be constructed from a set of codeword lengths
- WHAT Kraft-McMillan I nequality Cannot Do:
- It cannot guarantee that a given code is indeed a prefix code

Example

Source Symbo I S_{k}	Code E	
	Symbol Codewor d c_{k}	Codeword Length I_{k}
s_{0}	0	1
s_{1}	100	3
S_{2}	110	3
S_{3}	11	2

- For code E
- $2^{-1}+2^{-2}+2^{-3}+2^{-3=}$ and hence satisfy Kraft-Mcmillan inequality
- IS CODE E A PREFIX CODE?
- NO
- WHY?
- s_{3} is a prefix to S_{2}

Code Efficiency η

- An efficient code means $\eta \rightarrow 1$

Examples

Source Symbol s_{k}	Symbol Probability p_{k}	Code I		Code II	
		Symbol Codeword c_{k}	Codeword Length I_{k}	Symbol Codeword c_{k}	Codeword Length I_{k}
s_{0}	$1 / 2$	00	2	0	1
$\mathrm{~s}_{1}$	$1 / 4$	01	2	10	2
$\mathrm{~s}_{2}$	$1 / 8$	10	2	110	3
$\mathrm{~s}_{3}$	$1 / 8$	11	2	111	3

- Source Entropy
- $H(S)=1 / 2 \log _{2}(2)+1 / 4 \log _{2}(4)+1 / 8 \log _{2}(8)+1 / \log _{2}(8)$
$=13 / 4 \mathrm{bits} /$ symbol
Code I
$L=2 \times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}\right)=2$
$\eta=\frac{7 / 4}{2}=0.875$

Code II

$$
\begin{aligned}
& L=\left(1 \times \frac{1}{2}+2 \times \frac{1}{4}+3 \times \frac{1}{8}+3 \times \frac{1}{8}\right)=\frac{7}{4} \\
& \eta=\frac{7 / 4}{7 / 4}=1
\end{aligned}
$$

For a Prefix Code

- Shannon's First Theorem

$$
\mathrm{H}(S) \leq L<\mathrm{H}(S)+1
$$

$$
\left(L=\mathrm{H}(S) \quad \text { if } \quad D_{k}=2^{-I_{k}} \forall k\right.
$$

if $p_{k} \neq 2^{-I_{k}}$ for some $k \Longrightarrow n<1$
However, we may increase efficiency by extending the source

I ncreasing Efficiency by Source Extension

- By extending the source we may potentially increase efficiency
- The drawback is
- Increased decoding complexity

$$
\begin{aligned}
& \mathrm{H}\left(S^{n}\right) \leq L_{n}<\mathrm{H}\left(S^{n}\right)+1 \\
& n H(S) \leq L_{n}<n H(S)+1 \\
& H(S) \leq \frac{L_{n}}{n}<\mathrm{H}(S)+\frac{1}{n} \\
& \eta=\frac{H(S)}{L_{n} n} \\
& \eta \rightarrow 1 \text { when } \\
& n \rightarrow \infty
\end{aligned}
$$

Extension of a Discrete Memoryless Source

- Treats Blocks of n successive symbols

$$
\begin{gathered}
\left.\begin{array}{c}
\begin{array}{c}
\text { Information } \\
\text { Source }
\end{array} \\
S=\left\{S_{0}, S_{1}, \ldots, S_{K-1}\right.
\end{array}\right\} \\
\operatorname{Pr}\left\{S_{k}\right\}=p_{k}, k=0,1, \ldots, K-1 \\
\sum_{k=0}^{K-1} p_{k}=1
\end{gathered}
$$

Example

- $\mathrm{S}=\left\{s_{0}, s_{1}, s_{2}\right\}, p_{0}=1 / 4, p_{1}=1 / 4, p_{2}=1 / 2$
- $\mathrm{H}(S)=(1 / 4) \log _{2}(4)+(1 / 4) \log _{2}(4)+(1 / 2) \log _{2}(2)$ $H(S)=3 / 2$ bits

Second-Order Extended Source

Symbols of S^{2}	σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}	σ_{8}
Sequence of Symbols from S	$s_{0} s_{0}$	$s_{0} s_{1}$	$s_{0} s_{2}$	$s_{1} s_{0}$	$s_{1} s_{1}$	$s_{1} s_{2}$	$s_{2} s_{0}$	$s_{2} s_{1}$	$s_{2} s_{2}$
$\mathrm{P}\left\{\sigma_{i}\right\}, \mathrm{i}=0,1, \ldots, 8$	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$

By Computing: $\mathrm{H}\left(S^{2}\right)=3$ bits

Summery

- Source Encoding
- Efficient representation of information sources
- Source Coding Requirements
- Uniquely Decodable Codes
- Prefix Codes
- No codeword is a prefix to some other code word

Code Efficiency

$$
\eta=\frac{\mathrm{H}(S)}{L}
$$

Kraft's Inequality

$$
\sum_{k=0}^{K-1} 2^{-I_{k}} \leq 1
$$

$H(S) \leq L<H(S)+1$

End

