

Today's Topics

- Entropy review
- Entropy and Data Compression
- Uniquely decodable codes
- Prefix Code
- Average Code Length
- Shannon's First Theorem
- Kraft-McMillan Inequality
- Code Efficiency
- Code Extension

Conditional Entropy $\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$
Is the amount of information contained in Y such that X is given

$$
H(Y \mid X)==\Sigma_{j} P\left(X=v_{j}\right) H\left(Y \mid X=v_{j}\right)
$$

Joint Entropy

Is the amount of information contained in both events X and Y
$H(X, Y)=-\sum_{x, Y} p(x, y) \log p(x, y)$

Chain Rule

Chain Rule
Relationship between conditional and joint entropy

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Entropy, Coding and Data Compression

Data vs. Information

- "yes," "not," "yes," "yes," "not" "not" ...
- In ASCII, each item is $3.8=24$ bits of data
- But if the only possible answers are "yes" and "not," there is only one bit of
information per item

Compression = Squeezing out the "Air"

- Suppose you want to ship pillows in boxes and are charged by the size of the box

- To use as few boxes as possible, squeeze out all the air, pack into boxes, fluff them up at the other end
- Lossless data compression = pillows are perfectly restored
- Lossy data compression = some damage to the pillows is OK (MP3 is a lossy compression standard for music)
- Loss may be OK if it is below human perceptual threshold
- Entropy is a measure of limit of lossless compression

Example: Telegraphy
 Source English letters -> Morse Code

Sender: from Hokkaido

Coding Messages with Fixed Length Codes

- Example: 4 symbols, A, B, C, D
- $A=00, B=01, C=10, D=11$
- In general, with n symbols, codes need to be of length $\lg n$, rounded up
- For English text, 26 letters + space $=27$ symbols, length $=5$ since $2^{4}<27<2^{5}$
(replace all punctuation marks by space)

Uniquely decodable codes

- If any encoded string has only one possible source string producing it then we have unique decodablity
- Example of uniquely decodable code is the prefix code

Prefix Coding (Instantaneous code)

- A prefix code is defined as a code in which no codeword is the prefix of some other code word.
- A prefix code is uniquely decodable.

Example		Prefix Code	
Source Symbol	Code A	Code ${ }^{\text {c }}$	Code C
	Symbol Codeword	Symbol Codeword	Symbol Codeword
S_{0}	0	0	0
s_{1}	1	10	01
s_{2}	00	110	011
s_{3}	11	111	0111

Decoding of a Prefix Code

Example

Code B	
Source Symbol s_{k}	Symbol Codeword c_{k}
$\mathrm{~s}_{0}$	0
$\mathrm{~s}_{1}$	10
$\mathrm{~s}_{2}$	110
$\mathrm{~s}_{3}$	111

- Example : Decode 1011111000
- Answer : $\mathrm{s}_{1} \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{0} \mathrm{~S}_{0}$

$$
0000100000000011000000000100
$$

Prefix Codes

Only one way to decode left to right when message received Example 1

Symbol	A	B	C	D
Probability	.7	.1	.1	.1
Code	0	100	101	110

Received message:

$$
A A A A \text { B AAAAAAA D AAAAAAAA B }
$$

$$
16
$$

Prefix Codes

Source	Code E	
Symbol s_{k}	Symbol Codeword c_{k}	
A	$\mathbf{0}$	
B	$\mathbf{1 0 0}$	
C	110	
D	11	

- IS CODE E A PREFIX CODE?
- NO
- WHY?
- Code of D is a prefix to code of C

Shannon's First Theorem: The Source Coding Theorem

-The outputs of an information source cannot be represented by a source code whose average length is less than the source entropy

Average Code Length				
Example				
Average bits per symbol:				
$\begin{aligned} & \mathrm{L}=.7 \cdot 1+.1 \cdot 3+.1 \cdot 3+.1 \cdot 3=1.6 \\ & \text { bits/symbol (down from } 2) \end{aligned}$	A	B	C	D
	. 7	. 1	. 1	. 1
	0	100	101	110
Another prefix code that is better$\mathrm{L}=.7 \cdot 1+.1 \cdot 2+.1 \cdot 3+.1 \cdot 3=1.5$	A	B	C	D
	. 7	. 1	. 1	. 1
	0	10	110	111
				21

Entropy, Compressibility, Redundancy

- Lower entropy <=> More redundant <=> More compressible
- Higher entropy <=> Less redundant <=> Less compressible

Entropy and Compression

- First-order entropy is theoretical minimum on code length when only frequencies are taken into account
- $\mathrm{L}=.7 \cdot 1+.1 \cdot 2+.1 \cdot 3+.1 \cdot 3=1.5$
- First-order Entropy $=1.353$

A	B	C	D
.7	.1	.1	.1
0	10	110	111

- First-order Entropy of English is about 4 bits/character based on "typical" English texts

Fewer Bits

Someone tells you that the probabilities are not equal
$P(X=A)=1 / 2 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 8 \quad P(X=D)=1 / 8$

Is it possible...
...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

Bits

You are watching a set of independent random samples of X
You see that X has four possible values
$P(X=A)=1 / 4 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 4 \quad P(X=D)=1 / 4$

So you might see output: BAACBADCDADDDA...
You transmit data over a binary serial link. You can encode each reading with two bits (e.g. $A=00, B=01, C=10, D=$ 11)

2 bits on average per symbol
01000010010011101100111111100...

Fewer Bits

$P(X=A)=1 / 2 \quad P(X=B)=1 / 4 \quad P(X=C)=1 / 8 \quad P(X=D)=1 / 8$
It's possible...
...to invent a coding for your transmission that only uses
1.75 bits on average per symbol.

A	0
B	10
C	110
D	111

(This is just one of several ways)

Fewer Bits

Suppose there are three equally likely values...

```
P(X=A)=1/3 P(X=B) =1/3 P(X=C) =1/3
```

Here's a naïve coding, costing 2 bits per symbol

A	$\mathbf{0 0}$
B	$\mathbf{0 1}$
C	$\mathbf{1 0}$

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

Kraft-McMillan Inequality

- If codeword lengths of a code satisfy the Kraft McMillan's inequality, then a prefix code with these codeword lengths can be constructed.
- For code D
- $2^{-1}+2^{-2}+2^{-3}+2^{-2=9 / 8}$
- $2^{-1}+2^{-2}+2^{-3}+2^{-2=9 / 8}$ This means that Code D IS NOT A PREFIX CODE

Use of Kraft-McMillan Inequality

- We may use it if the number of symbols are large such that we cannot simply by inspection judge whether a given code is a prefix code or not
- WHAT Kraft-McMillan Inequality Can Do:
- It can determine that a given code IS NOT A PREFIX CODE
- It can identify that a prefix code could be constructed from a set of codeword lengths
- WHAT Kraft-McMillan Inequality Cannot Do:
- It cannot guarantee that a given code is indeed a prefix code
- For code E

Example

Source	Code E	
Symbo I s_{k}	Symbol Codewor d	Codeword Length c_{k}
$\mathrm{s}_{\mathbf{0}}$	0	1
$\mathrm{~s}_{\mathbf{1}}$	100	3
$\mathrm{~s}_{\mathbf{2}}$	110	3
$\mathrm{~s}_{3}$	11	2

- $2^{-1}+2^{-2}+2^{-3}+2^{-3=} 1$ and hence satisfy Kraft-Mcmillan inequality
- IS CODE E A PREFIX CODE?
- NO
- WHY?
- s_{3} is a prefix to s_{2}

Code Efficiency η

- An efficient code means $\eta \rightarrow 1$

Examples

| Source |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol |
| s_{k} | $\mathrm{c}_{\text {Symbol }}^{\text {Probability }}$| p_{k} |
| :---: |\quad| Code I | | Code II | |
| :---: | :---: | :---: | :---: |
| | | | |

- Source Entropy
- $H(S)=1 / 2 \log _{2}(2)+1 / 4 \log _{2}(4)+1 / 8 \log _{2}(8)+1 / \log _{2}(8)$
$=13 / 4 \mathrm{bits} / \mathrm{symbol}$

Increasing Efficiency by Source Extension

- By extending the source we may potentially increase efficiency
- The drawback is
- Increased decoding complexity

$$
\begin{aligned}
& \mathrm{H}\left(S^{n}\right) \leq L_{n}<\mathrm{H}\left(S^{n}\right)+1 \\
& n \mathrm{H}(S) \leq L_{n}<n \mathrm{H}(S)+1 \\
& \mathrm{H}(S) \leq \frac{L_{n}}{n}<\mathrm{H}(S)+\frac{1}{n} \\
& \eta=\frac{\mathrm{H}(S)}{/ n} \\
& \eta \rightarrow 1 \text { when } \\
& \eta \rightarrow 1 \\
& n \rightarrow \infty
\end{aligned}
$$

Extension of a Discrete Memoryless Source

- Treats Blocks of n successive symbols

Example

- $\mathrm{S}=\left\{s_{01} S_{1,}, \boldsymbol{S}_{2}\right\}, p_{0}=1 / 4, p_{1}=1 / 4, p_{2}=1 / 2$
- $H(S)=(1 / 4) \log _{2}(4)+(1 / 4) \log _{2}(4)+(1 / 2) \log _{2}(2)$ $H(S)=3 / 2$ bits

Second-Order Extended Source

Symbols of S^{2}	σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}	σ_{8}
Sequence of Symbols from S	$s_{0} s_{0}$	$s_{0} s_{1}$	$s_{0} s_{2}$	$s_{1} s_{0}$	$s_{1} s_{1}$	$s_{1} s_{2}$	$s_{2} s_{0}$	$s_{2} s_{1}$	$s_{2} s_{2}$
$\mathrm{P}\left\{\sigma_{i\}}, \mathrm{i}=0,1, \ldots, 8\right.$	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$

By Computing: $\mathrm{H}\left(\mathcal{S}^{2}\right)=3$ bits

- Efficient representation of information sources
- Source Coding

Requirements

- Uniquely Decodable Codes
- Prefix Codes
- No codeword is a prefix to some other code word

Kraft's Inequality
$\sum_{k=0}^{K-1} 2^{-I_{k}} \leq 1$
Source Coding Theorem

$\mathrm{H}(S) \leq$ $\mathrm{H}(S)+1$ 39

End

