Information Theory

Mohamed Hamada

Software Engineering Lab The University of Aizu

Email: hamada@u-aizu.ac.jp URL: http://www.u-aizu.ac.jp/~hamad

1

Today's Topics

- Entropy review
- Entropy and Data Compression
- Uniquely decodable codes
- Prefix Code
- Average Code Length
- Shannon's First Theorem
- Kraft-McMillan Inequality
- Code Efficiency
- Code Extension

2

Entropy H(S)

• Entropy is the average information content of a source

$$H(S) = E[I(S_k)]$$

$$H(S) = \sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right)$$

3

Conditional Entropy H(Y|X)

Is the amount of information contained in Y such that X is given

$$H(Y \mid X) = \sum_{i} P(X=v_i) H(Y \mid X=v_i)$$

4

Joint Entropy

Is the amount of information contained in both events X and Y

$$H(X, Y) = -\sum_{x,y} p(x,y) \log p(x,y)$$

5

Chain Rule

Chain Rule

Relationship between conditional and joint entropy

$$H(X,Y) = H(X) + H(Y|X)$$

Entropy, Coding and Data Compression

Data vs. Information

- "yes," "not," "yes," "yes," "not" "not" ...
- In ASCII, each item is 3.8 = 24 bits of data
- But if the only possible answers are "yes" and "not," there is only one bit of information per item

•

8

Compression = Squeezing out the "Air"

 Suppose you want to ship pillows in boxes and are charged by the size of the hox

- To use as few boxes as possible, squeeze out all the air, pack into boxes, fluff them up at the other end
- Lossless data compression = pillows are perfectly restored
- Lossy data compression = some damage to the pillows is OK (MP3 is a lossy compression standard for music)
- Loss may be OK if it is below human perceptual threshold
- Entropy is a measure of limit of lossless compression

9

Fixed length code

Example: Morse Code

Α	В	С	D	Ε	F	G	Н	I	J	K	L	М
.08	.01	.03	.04	.12	.02	.02	.06	.07	.00	.01	.04	.02
											. -	-
N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
.07	.08	.02	.00	.06	.06	.09	.03	.01	.02	.00	.02	.00
		Ι.		·	:	1	':	- ':	١.	<u>'</u> :	Ι.	;

10

Example: Telegraphy Source English letters -> Morse Code Sender: from Hokkaido War→ .--.-. .--.-. War Receiver: in Tokyo

Coding Messages with Fixed Length Codes

- Example: 4 symbols, A, B, C, D
- A=00, B=01, C=10, D=11
- In general, with *n* symbols, codes need to be of length lg *n*, rounded up
- For English text, 26 letters + space = 27 symbols, length = 5 since 2⁴ < 27 < 2⁵

(replace all punctuation marks by space)

Uniquely decodable codes

- If any encoded string has only one possible source string producing it then we have unique decodablity
- Example of uniquely decodable code is the prefix code

13

Prefix Coding (Instantaneous code)

- A **prefix code** is defined as a code in which **no** codeword is the prefix of some other code word.
- A prefix code is uniquely decodable.

xample			
		Prefix Code	
Source	Code A	Code B	Code C
Symbol	Symbol Codeword	Symbol Codeword	Symbol Codeword
s ₀	0	0	0
s_1	1	10	01
s ₂	00	110	011
S ₃	11	111	0111
			_

Uniquely Decodable Codes

Example: Morse Code G Н .08 | .01 | .03 | .04 | .12 | .02 | .02 | .06 | .07 | .00 | .01 | .04 | .02 R U ٧ W 0 Q S Τ Χ Ζ .07 | .08 | .02 | .00 | .06 | .06 | .09 | .03 | .01 | .02 | .00 | .02 | .00 Average codeword length

Shannon's First Theorem: The Source Coding Theorem

•The outputs of an information source cannot be represented by a source code whose average length is less than the source entropy

20

Average Code Length

Example

Average bits per symbol:

L=
$$.7 \cdot 1 + .1 \cdot 3 + .1 \cdot 3 + .1 \cdot 3 = 1.6$$
 bits/symbol (down from 2)

Another prefix code that is better

$$L=.7\cdot1+.1\cdot2+.1\cdot3+.1\cdot3=1.5$$

Α		В		U	D	
.7		.1		.1	.1	
0	0		100		110	
Α	В			С	D	
.7		.1		.1	.1	
0		10		110	111	
			_		21	

Source Entropy Examples

Robot Example

• 4-way random walk

4-way random walk
$$prob(x = S) = \frac{1}{2}, prob(x = N) = \frac{1}{4}$$

$$prob(x = E) = prob(x = W) = \frac{1}{8}$$

$$H(X) = -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{8}\log_2\frac{1}{8} + \frac{1}{8}\log_2\frac{1}{8}) = 1.75bps$$

22

Source Entropy Examples **Prefix Codes** Robot Example fixed-length variable-length symbol k codeword codeword 0.5 S 00 0 0.25 N 10 01 E 0.125 10 110 0.125 11 111 symbol stream: SSNWSENNNWSSSNESS 32bits variable length: $\underline{0}\ \underline{0}\ \underline{10}\ \underline{111}\ \underline{0}\ \underline{110}\ \underline{10}\ \underline{10}\ \underline{111}\ \underline{0}\ \underline{0}\ \underline{0}\ \underline{10}\ \underline{110}\ \underline{0}\ \underline{0}$ 28bits 4 bits savings achieved by VLC (redundancy eliminated) 23

Entropy, Compressibility, Redundancy

- Lower entropy <=> More redundant <=> More compressible
- Higher entropy <=> Less redundant <=> Less compressible

Entropy and Compression

- First-order entropy is theoretical minimum on code length when only frequencies are taken into account
- L=.7·1+.1·2+.1·3+.1·3 = 1.5
- First-order Entropy = 1.353
- First-order Entropy of English is about 4 bits/character based on "typical" English texts

25

.1 .1

10 110

Bits

You are watching a set of independent random samples of X You see that X has four possible values

P(X=A) = 1/4 | P(X=B) = 1/4 | P(X=C) = 1/4 | P(X=D) = 1/4

So you might see output: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A=00, B=01, C=10, D=11)

01000010010011101100111111100...

26

Fewer Bits

Someone tells you that the probabilities are not equal

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

Is it possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol. How?

27

Fewer Bits

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

It's possible...

...to invent a coding for your transmission that only uses 1.75 bits on average per symbol.

Α	0
В	10
С	110
2	111

(This is just one of several ways)

28

Fewer Bits

Suppose there are three equally likely values...

P(X=A) = 1/3 | P(X=B) = 1/3 | P(X=C) = 1/3

Here's a naïve coding, costing 2 bits per symbol

Α	00
В	01
С	10

Can you think of a coding that would need only 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

29

Kraft-McMillan Inequality

 If codeword lengths of a code satisfy the Kraft McMillan's inequality, then a prefix code with these codeword lengths can be constructed.

- For code D
- 2⁻¹+ 2⁻²+ 2⁻³+ 2⁻²=9/8
 This means that Code D
- This means that Code D IS NOT A PREFIX CODE

Use of Kraft-McMillan Inequality

- We may use it if the number of symbols are large such that we cannot simply by inspection judge whether a given code is a prefix code or not
- WHAT Kraft-McMillan Inequality Can Do:
 - It can determine that a given code IS NOT A PREFIX CODE
 - It can identify that a prefix code could be constructed from a set of codeword lengths
- WHAT Kraft-McMillan Inequality Cannot Do:
 - It cannot guarantee that a given code is indeed a prefix

Example

Source	Code E					
Symbo	Symbol	Codeword				
	Codewor	Length				
Sk	a	I_k				
	Ck					
S ₀	0	1				
S ₁	100	3				
S ₂	110	3				
S ₃	11	2				

- For code E
- 2-1+ 2-2+ 2-3+ 2-3=1 and hence satisfy Kraft-Mcmillan inequality
- IS CODE E A PREFIX CODE?
- WHY?
 - s₃ is a prefix to s₂

32

Code Efficiency n

$$\eta = \frac{\mathsf{H}(\mathcal{S})}{L}$$

An efficient code means n→1

33

Examples

Source	Symbol	Coc	le I	Code II		
Symbol s _k	Probability P _k	Symbol Codeword	Codeword Length	Symbol Codeword	Codeword Length	
		C _k	I_k	C _k	I_k	
S ₀	1/2	00	2	0	1	
S ₁	1/4	01	2	10	2	
S ₂	1/8	10	2	110	3	
S ₃	1/8	11	2	111	3	

- Source Entropy
 - $H(S) = 1/2\log_2(2) + 1/4\log_2(4) + 1/8\log_2(8) + 1/\log_2(8)$ =1 3/4 bits/symbol

Code I
$$L = 2 \times \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8}\right) = 2$$

$$\eta = \frac{7/4}{2} = 0.875$$

34

For a Prefix Code

• Shannon's First Theorem
$$H(S) \le L < H(S) + 1$$

$$L = H(S)$$
 if $p_k = 2^{-l_k} \forall k$

What is the Efficiency n ?

if $p_k \neq 2^{-l_k}$ for some $k \Longrightarrow \eta < 1$

However, we may increase efficiency by extending the source

Increasing Efficiency by Source Extension

- By extending the source we may potentially increase efficiency
- The drawback is
 - Increased decoding complexity

$$H(S^{n}) \leq L_{n} < H(S^{n}) + 1$$

$$nH(S) \leq L_{n} < nH(S) + 1$$

$$H(S) \leq \frac{L_{n}}{n} < H(S) + \frac{1}{n}$$

$$\eta = \frac{H(S)}{L_{n}/n}$$

$$\eta \to 1 \text{ when}$$

$$n \to \infty$$

Extension of a Discrete Memoryless Source

• Treats Blocks of *n* successive symbols

Example

- S={ s_0 , s_1 , s_2 }, p_0 =1/4, p_1 =1/4, p_2 =1/2
- $H(S)=(1/4)\log_2(4)+(1/4)\log_2(4)+(1/2)\log_2(2)$ H(S)=3/2 bits

Second-Order Extended Source

	Symbols of S ²	$\sigma_{\!\scriptscriptstyle 0}$	σ_1	σ_2	σ_3	σ_4	σ_{5}	σ_6	σ_7	$\sigma_{\!\scriptscriptstyle g}$
•	Sequence of Symbols from S	<i>s</i> ₀ <i>s</i> ₀	$s_0 s_1$	<i>s</i> ₀ <i>s</i> ₂	$s_1 s_0$	$s_1 s_1$	$s_1 s_2$	s ₂ s ₀	$s_2 s_1$	<i>s</i> ₂ <i>s</i> ₂
	$P\{\sigma_{j}\}, i=0,1,,8$	1/16	1/16	1/8	1/16	1/16	1/8	1/8	1/8	1/4

By Computing: $H(S^2)=3$ bits

38

Summery

- Source Encoding
 - **Efficient** representation of information sources
- Source Coding Requirements
 - Uniquely Decodable Codes
- Prefix Codes
 - No codeword is a prefix to some other code word

Code Efficiency

Kraft's Inequality

Source Coding Theorem

$$H(S) \le L < H(S) + 1$$

39

End