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Today’s Topics

e Entropy

o Conditional Entropy
e Example

e Joint Entropy

e Chain Rule



Entropy H(S)

e Entropy is the average information content of
a source




Entropy

Comments

Entropy is a measure of how much information is encoded
in @ message. Higher the entropy, higher the
information content.

We could also say entropy is a measure of
uncertainty in a message.

Information and uncertainty are
equivalent concepts.

Entropy gives the actual number of bits of information
contained in a message source.

Example: if the probability of the character e appearing in
this slide is 1/16, then the information content of this
character is 4 bits.

So the character string eeeee’ has a total of 20 bits
(contrast this to using an 8-bit ASCII coding that could
result in 40 bits to represent eeeee’.



Conditional Entropy



Conditional Entropy

H(Y | X=V)

Suppose I'm trying to predict output Y and I have input X



Conditional Entropy H(Y|X=V)
m If I know the student's major could I predict if he

likes computer games?
Input: X = College Major

Output: Y = Likes "Computer Games”

Marginal distribution for X

X Y

Math Yes
History |No X Y |Yes No
CS Yes

Math 0.25 0.25 P(X=Math)=0.5
Math No
Math No CS 0.25 0 P(X=CS)=0.25
CS Yes

Histo 0 0.25 P(X=History)=0.25
History | No Y
Math Yes P(Y=Yes)=0.5 | P(Y=No0)=0.5 1
Marginal distribution for Y /




Conditional Entropy H(Y|X=v)
m If I know the student's major could I predict if he

likes computer games?
Input: X = College Major

Output: Y = Likes "Computer Games”

X Y
Math Yes
History | No
CS Yes
Math No
Math No
CS Yes
History | No
Math Yes

X Y | Yes No
Math~._ [0.25 0.25 P(X=Math)=0.5
CS 0.25 0 P(X=CS)=0.25
History |0 0.25 P(X=History)=0.25
P(Y=Yes)=0.5 | P(Y=No)=0.5 1
H(X) = - 0.5 log 0.5 — 0.25 log 0.25 — 0.25 log 0.25 =1.5

H(Y) = - 0.5 log 0.5 - 0.5 log 0.5 =1
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Specific Conditional Entropy H(Y|X=V)
m Definition of Specific Conditional

Entropy:
H(Y |X=v) = The entropy of Y
X Y among only those records in which
Math Yes X has value v
History |No
CS Yes
Math No
Math No
CS Yes
History |No
Math Yes




Specific Conditional Entropy H(Y|X=V)
m Definition of Specific Conditional

Entropy:
H(Y |X=v) = The entropy of Y
among only those records in which
X Y g Y
Math Yes X has value v
History | No Example:
CsS Yes H(Y|X=Math) = - S p(y|X=Math) log p(y|X=Math)
Math |No VP CYes Noy
Math NO =-p(Yes | X=Math) log p(Yes | X=Math) -p(No | X=Math) log p(No | X=Math)
=-0.5log 0.5—-0.5log 0.5 =1
CS Yes
Math Yes
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Specific Conditional Entropy H(Y|X=V)
m Definition of Specific Conditional

Entropy:
H(Y |X=v) = The entropy of Y
X Y among only those records in which
Math | Yes X has value v
History |No Example:
€S ves H(Y|X=History) =-S p(y|X=History) log p(y|X=History)
Math NO y ?2{Yes, No} |
Math No =-p(Yes| X=History) log p(Yes | X=History) -p(No | X=History) log p(No | X=History)
=-0log0—-1log 1 =0
CS Yes
o ye H(Y | X=History) =0 _
Math Yes
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Specific Conditional Entropy H(Y|X=V)
m Definition of Specific Conditional

Entropy:
H(Y |[X=v) = The entropy of Y
X Y among only those records in which

Math Yes X has value v
History |No Example:
CS Yes

H(Y|X=CS) =-S X=CS) lo X=CS
Math No ( | ) y?{Yes,l?\Jg)Y| ) Y p(Yl )
Math No =-p(Yes | X=CS) log p(Yes | X=CS) -p(No | X=CS) log p(No | X=CS)
CS Yes =-1llog1-0log0 =0
. H(Y|X=CS) =0 _
Math Yes
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Specific Conditional Entropy H(Y|X=V)
m Definition of Specific Conditional

Entropy:
H(Y |X=v) = The entropy of Y
X Y among only those records in which
Math Yes X has value v
History |No Example:
CS Yes * H(Y|X=Math) = 1
Math No " 0
Math No e H(Y|X=History) =
CS Yes e H(Y|X=CS) =0
History |No
Math Yes
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Conditional Entropy H(Y|X)

Is the amount of information contained in Y such that X is given

m Definition of Conditional

Entropy:

X Y H(Y |X) = The average specific
Math | Yes conditional entropy of Y
History |No
CS Yes = if you choose a record at random what
Math No will be the conditional entropy of Y,
Math No conditioned on that row’s value of X
CS Yes = Expected number of bits to transmit Y if
History | No both sides will know the value of X
Math Yes

= 5;Prob(X=v;) H(Y | X =v;) 14



Conditional Entropy

Definition of Conditional Entropy:

H(Y|X) = The average conditional
entropy of Y

= SProb(X=v;) H(Y | X = v;)

Example:
V; Prob(X=v;) |H(Y | X = v;)
Math 0.5 1
History |0.25 0
CS 0.25 0

X Y
Math Yes
History |No
CS Yes
Math No
Math No
CS Yes
History |No
Math Yes

HCY]X) = 0.5 %1 + 0.25* 0 + 0.25 % 0 = 0.5
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Joint Entropy
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Joint Entropy

Is the amount of information contained in both events Xand Y
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Joint Entropy

Chain Rule

Relationship between conditional and joint entropy

H(X,Y) = H(X) + H(Y|X)

Proof:

H(X,Y)=- a P(x,y)log,P(x,y) =- a P(x,y)log,P(x)P(y | x)

X, Y X, Y
=8 P& Py [X)10g2P(X)- & P(X,Y)I0gaP(y [x) =HOO+H(Y )

HX|Y) =- Xé’lYP(X, y)log,P(x|y)
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Joint Entropy

Is the amount of information contained in both events Xand Y

H(X,Y) = H(X) + H(Y|X)

Also H(X,Y) = H(Y) + H(X]Y)

Intuition: first describe Y and then X given'Y
From this: H(X) —H(X[Y) = H(Y) —H(Y|X)
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Joint Entropy

H(X,Y) = H(X) + H(Y|X)

X Y V; Prob(X=v;) |H(Y | X = v;)
Math | Yes Math 0.5 1
History |No .
o< Voo History |0.25 0
Math  |No CS 0.25 0
Math No H(X) =1.5
CS Yes
History |No H(Y) =1
Math Yes H(Y|X) = 0.5

H(X,Y) = H(X) + H(Y|X)=1.5+0.5=2
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Joint Entropy
Comments |

H(X,Y,Z) = H(X) + H(Y|X) + H(Z|XY)
£H(X)+H(®Y)+ H(Z)




