Information Theory

Mohamed Hamada

Software Engineering Lab
The University of Aizu

Email: hamada@u-aizu.ac.jp

URL: http://www.u-aizu.ac.jp/~hamada

Today's Topics

- Entropy
- Conditional Entropy
- Example
- Joint Entropy
- Chain Rule

Entropy H(S)

 Entropy is the average information content of a source

$$H(S) = E[I(s_k)]$$

$$H(S) = \sum_{k=0}^{K-1} p_k \log_2 \left(\frac{1}{p_k}\right)$$

Entropy

Comments

- Entropy is a measure of how much information is encoded in a message. Higher the entropy, higher the information content.
- We could also say entropy is a measure of uncertainty in a message.
- Information and uncertainty are equivalent concepts.
- Entropy gives the actual number of bits of information contained in a message source.
- Example: if the probability of the character `e` appearing in this slide is 1/16, then the information content of this character is 4 bits.
- So the character string `eeeee` has a total of 20 bits (contrast this to using an 8-bit ASCII coding that could result in 40 bits to represent `eeeee`.

Conditional Entropy

Conditional Entropy

$$H(Y|X=v)$$

Suppose I'm trying to predict output Y and I have input X

Conditional Entropy H(Y|X=v)

Example

If I know the student's major could I predict if he likes computer games?

Input: X = College Major

Output: Y = Likes "Computer Games"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Yes No P(X=Math)=0.50.25 0.25 **Math** P(X=CS)=0.25CS 0.25 0 P(X=History)=0.25**History** 0 0.25 P(Y=Yes)=0.5 $P(Y=N_0)=0.5$

Marginal distribution for X

Marginal distribution for Y

Conditional Entropy H(Y|X=v)

Example

If I know the student's major could I predict if he likes computer games?

Input: X = College Major

Output: Y = Likes "Computer Games"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

XY	Yes	No	
Math	0.25	0.25	P(X=Math)=0.5
CS	0.25	0	P(X=CS)=0.25
History	0	0.25	P(X=History)=0.25
	P(Y= Yes)=0.5	P(Y=No)=0.5	1

 $H(X) = -0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25 = 1.5$

 $H(Y) = -0.5 \log 0.5 - 0.5 \log 0.5 = 1$

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those records in which X has value v

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those records in which X has value v

$$H(Y|X=Math) = -S p(y|X=Math) log p(y|X=Math)$$

$$= -p(Yes|X=Math) log p(Yes|X=Math) - p(No|X=Math) log p(No|X=Math)$$

$$= -0.5 log 0.5 - 0.5 log 0.5 = 1$$

$$H(Y|X=Math) = 1$$

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those records in which X has value v

$$H(Y|X=History) = 0$$

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those records in which X has value v

$$H(Y|X=CS) = -S p(y|X=CS) log p(y|X=CS)$$

$$H(Y|X=CS)=0$$

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those records in which X has value v

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- H(Y|X=CS) = 0

Conditional Entropy H(Y|X)

Is the amount of information contained in Y such that X is given

Example

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y | X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= S_j \operatorname{Prob}(X=v_j) H(Y \mid X=v_j)$$
 14

Conditional Entropy

Example

Math Yes **History** No CS Yes Math No Math No CS Yes **History** No **Math** Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

=
$$S_j$$
Prob($X=v_j$) H($Y \mid X = v_j$)

v _j	Prob(X=v _j)	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

Is the amount of information contained in both events X and Y

$$H(X, Y) = -S p(x,y) log p(x,y)$$

Chain Rule

Relationship between conditional and joint entropy

$$H(X,Y) = H(X) + H(Y|X)$$

Proof:

$$\begin{split} H(X,Y) &= -\sum_{X,Y} P(x,y) \log_2 P(x,y) = -\sum_{X,Y} P(x,y) \log_2 P(x) P(y \mid x) \\ &= -\sum_{X} P(x) \sum_{Y} P(y \mid x) \log_2 P(x) - \sum_{X,Y} P(x,y) \log_2 P(y \mid x) = H(X) + H(Y \mid X) \\ H(X \mid Y) &= -\sum_{X,Y} P(x,y) \log_2 P(x \mid y) \end{split}$$

Is the amount of information contained in both events X and Y

$$H(X,Y) = H(X) + H(Y|X)$$

Also
$$H(X,Y) = H(Y) + H(X|Y)$$

- Intuition: first describe Y and then X given Y
- From this: H(X) H(X|Y) = H(Y) H(Y|X)

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

V _j	Prob(X=v _j)	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(X) = 1.5$$

$$H(Y) = 1$$

$$H(Y|X) = 0.5$$

$$H(X,Y) = H(X) + H(Y|X)=1.5+0.5=2$$

Comments

$$H(X,Y) = H(X) + H(Y|X)$$
$$= H(Y) + H(X|Y)$$

$$H(X,Y,Z) = H(X) + H(Y|X) + H(Z|XY)$$

$$£ H(X) + H(Y) + H(Z)$$