Information Theory

Mohamed Hamada

Software Engineering Lab The University of Aizu

Email: hamada@u-aizu.ac.jp URL: http://www.u-aizu.ac.jp/~hamada

1

Today's Topics

- What is Entropy
- Information Source
- Measure of Information
- Self-Information
- Unit of Information
- Entropy
- Properties

Entropy of What?

- We need a **theory** of information and compression
- An abstract model that
 - Fits many situations
 - Is amenable to mathematical analysis
 - Stimulates predictions about what may be possible
 - Motivates search for new ideas about how to achieve what the theory says is possible

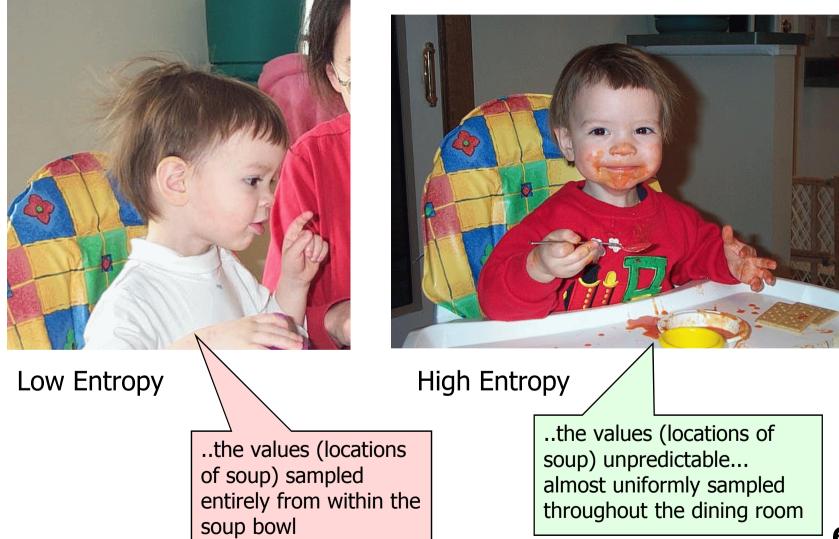
Entropy of What?

• In Simple words:

Entropy = Uncertainty

Or un-expected events.

Entropy



Low and High Information Content Messages

- The more frequent a message is, the less information it conveys when it occurs
- A weather forecast messages for Aizu in January for 8 days:

• "Snow" is a low information message and "Sunny" is a high information message

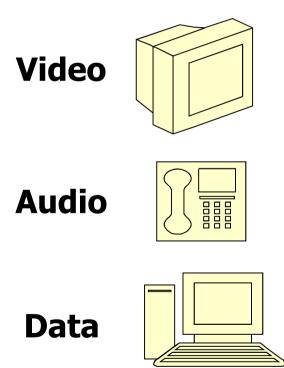
Information Theory

The art of **quantifying and communicating** information

- Two Main Concepts
 - ENTROPY
 - CAPACITY

What is Entropy?

• A quantifiable means to describe the output of an information source



HOW COULD WE REPRESENT/COMPARE THE AMOUNT OF INFORMATION GENERATED AT THE OUTPUT OF THESE SOURCES?

So What's the Point?

- The same information source, i.e., TV
- In one scenario the information could be relayed in one sentence
- In the other scenario much more information needs to be communicated

ENTROPY REFLECTS HOW MUCH INFORMATION IS THE SOURCE GENERATING IN EACH SCENARIO

What will you Learn from Source Coding?

- What is Entropy? (i.e., How could we quantify information)
- Fundamental Limits
 - The **minimum** number of bits per symbol to represent an information source
 - The **maximum** rate at which information transmission can take place over a channel

Information Source

- Assume
 - Information Source Generates a group of symbols from a given alphabet S
 - Symbols are independent (Discrete Memoryless Source)
- Example
 - The English Language
 - Alphabet **S**={a,b,c,...,z}
 - Each symbol has a probability: p_a, p_b, ...p_z

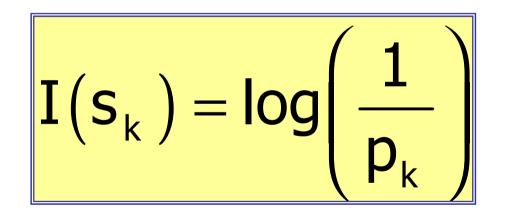
$$\begin{array}{l}
\textbf{Information}\\
\textbf{Source}\\
\textbf{S} = \left\{ \textbf{S}_{0}, \textbf{S}_{1}, \dots, \textbf{S}_{K-1} \right\} \\
\textbf{Pr}\left\{ \textbf{s}_{k} \right\} = \textbf{p}_{k}, k = 0, 1, \dots, K - 1 \\
\begin{array}{l}
\textbf{K} = \textbf{1}\\
\textbf{K} = \textbf{0}
\end{array}$$

Uncertainty and Measure of Information

- If p_k=1, p_i=0 i? k
 - There no uncertainty. The occurrence of the event does not correspond to any gain of information.
 - There is **no need** for communications because the receiver knows pretty much everything
- As p_k decreases,
 - The uncertainty increases
 - The reception of s_k corresponds to some gain in information. BUT HOW MUCH?

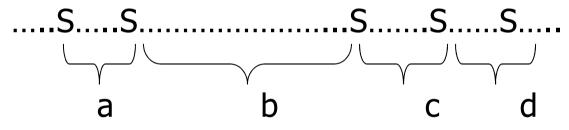
Measure of Information

• The amount of Information gained after observing s_k which has a probability p_k



Self-Information = H(S) = lg(1/p)

- Greater frequency <==> Less information
- Extreme case: p = 1, H(S) = lg(1) = 0
- Why is this the right formula?
- 1/p is the average length of the gaps between recurrences of S

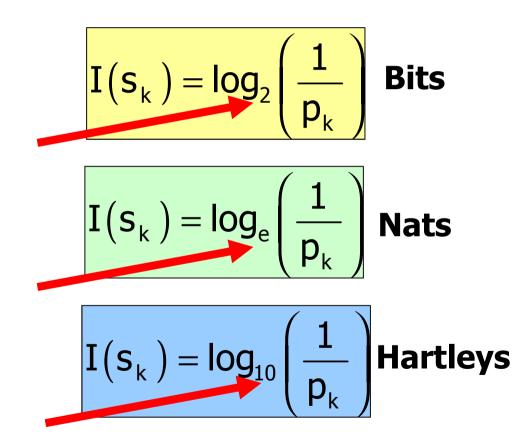


Average of a, b, c, d $\dots = 1/p$

Number of bits to specify a gap is about lg(1/p)

Unit of Information

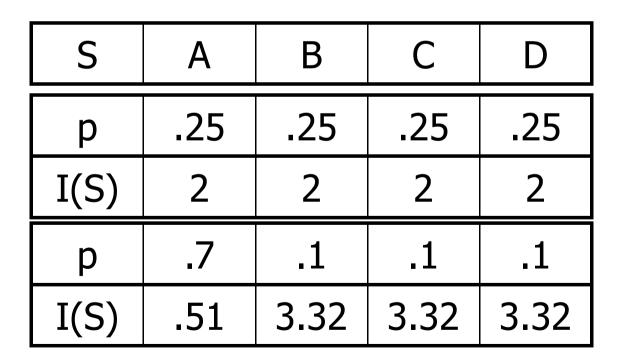
• Depends on the BASE of the Logarithm



Self-Information

Example

 If a symbol S has frequency p, its selfinformation is I(S) = lg(1/p) = -lg p.



Properties of I(s_k)

- 1. $I(s_k)=0$ for $p_k=1$
- 2. $I(s_k)=0$ for $0=p_k=1$
- 3. $I(s_k) > I(s_i)$ for $p_k < p_i$
- 4. $I(s_k s_i) > I(s_k) + I(s_i)$ if s_k and s_i are independent

Entropy H(S)

• Entropy is the average information content of a source

$$H(S) = E[I(s_k)]$$
$$H(S) = \sum_{k=0}^{K-1} p_k \log_2\left(\frac{1}{p_k}\right)$$

Entropy

The larger the entropy of a distribution...

- ...the harder it is to predict
- ...the harder it is to compress it
- ...the less spiky the distribution

Entropy

Example

S	А	В	С	D	-?plgp
р	.25	.25	.25	.25	
-lgp	2	2	2	2	
-plgp	.5	.5	.5	.5	2
р	.7	.1	.1	.1	
-lgp	.51	3.32	3.32	3.32	
-plgp	.357	.332	.332	.332	1.353

22

What is the use of H(X)?

<u>Shannon's first theorem</u> (noiseless coding theorem) For a memoryless discrete source X, its entropy H(X) defines the minimum average code length required to noiselessly code the source.

entropy

The <u>minimum</u> average number of binary digits needed to specify a source output (message) uniquely is called **"SOURCE ENTROPY"**

Entropy of English

Example

• Shannon Experiment

- given a sequence of characters
- ask speaker of language to predict what the next character might be
- record the number of guesses taken to get the right character
- $H(English) = -1/n \sum p(guess = character) \log p(guess = character)$
 - over all characters (letters and space)
 - n is 27

Example 3

- Calculate the Entropy of English language if
 - 1. All alphabet letters are equally probable
 - 2. For a, e, o, t $P\{s_k\}=0.1$ For h, i, n, r, s $P\{s_k\}=0.07$ For c, d, f, l, m, p, u, y $P\{s_k\}=0.02$ For b, g, j, k, q, v, w, x, z $P\{s_k\}=0.01$
 - 1. H(S)=4.7 bits
 - 2. H(S)=4.17 bits

Some Properties of Entropy

- $0=H(S)=\log_2(K)$
 - H(S)=0 if and only if p_k=1 for some k and all the remaining probabilities are zero (NO UNCERTAINTY)
 - 2. $H(S)=log_2(K)$ if and only if $p_k=1/K$ for all k Symbols of S are equiprobable

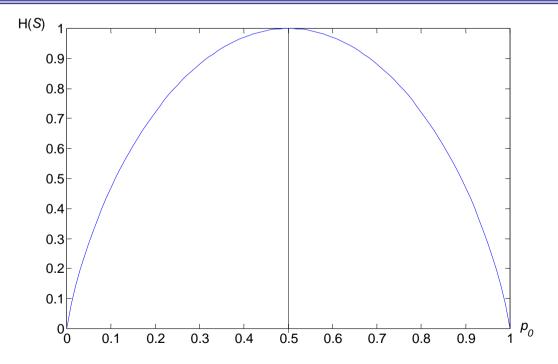
the "worst" we can do is

just assign log₂M bits to each source output

Example 1: Entropy of a Binary Memoryless Source

• $S = \{s_0, s_1\}, Pr\{s_0\} = p_0, Pr\{s_1\} = p_1 = 1-p_0$

$$H(S) = -p_0 log_2(p_0) - (1 - p_0) log_2(1 - p_0)$$



Entropy

Comments

Entropy is a measure of how much information is encoded in a message. Higher the entropy, higher the information content.

We could also say entropy is a measure of uncertainty in a message.

Information and uncertainty are equivalent concepts.

- Entropy gives the actual number of bits of information contained in a message source.
- Example: if the probability of the character `e` appearing in this slide is 1/16, then the information content of this character is 4 bits.
- So the character string `eeeee` has a total of 20 bits (contrast this to using an 8-bit ASCII coding that could result in 40 bits to represent `eeeee`.