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Today’s Topics

• What is Entropy
• Information Source
• Measure of Information
• Self-Information 
• Unit of Information
• Entropy
• Properties
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Entropy
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Entropy of What?
• We need a theory of information and compression
• An abstract model that 

• Fits many situations
• Is amenable to mathematical analysis
• Stimulates predictions about what may be possible 
• Motivates search for new ideas about how to achieve 

what the theory says is possible
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Entropy of What?
• In Simple words:

Entropy = Uncertainty 

Or un-expected events.

5

Entropy

Low Entropy High Entropy

..the values (locations 
of soup) sampled 
entirely from within the 
soup bowl

..the values (locations of 
soup) unpredictable... 
almost uniformly sampled 
throughout the dining room
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Low and High Information Content 
Messages

• The more frequent a message is, the less information it 
conveys when it occurs

• A weather forecast messages for Aizu in January for 8 days:

• “Snow” is a low information message and “Sunny” is a high 
information message  

Sunny snow

Aizu:
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Information Theory

• The art of quantifying and 
communicating information

• Two Main Concepts
• ENTROPY
• CAPACITY
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What is Entropy?
• A quantifiable means to describe the 

output of an information source

Video

Audio

Data

HOW COULD WE 
REPRESENT/COMPARE 
THE AMOUNT OF 
INFORMATION 
GENERATED AT THE 
OUTPUT OF THESE 
SOURCES?
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on TV?
What’s 
on TV?

on TV?
What’s 
on TV?

TV Programs 
have Ended

team surround him and … …

… Minutes passed from 2nd half, 
The score is …,The ball is with 

…, two Players from white 
team surround him and … …

Aizu Tokyo
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So What’s the Point?
• The same information source, i.e., TV

• In one scenario the information could be 
relayed in one sentence

• In the other scenario much more 
information needs to be communicated

ENTROPY REFLECTS HOW MUCH INFORMATION 
IS THE SOURCE GENERATING IN EACH SCENARIO
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What will you Learn from Source 
Coding?

• What is Entropy? (i.e., How could we 
quantify information)

• Fundamental Limits
• The minimum number of bits per symbol to 

represent an information source
• The maximum rate at which information 

transmission can take place over a channel
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Information Source
• Assume

• Information Source 
Generates a group of 
symbols from a given 
alphabet S

• Symbols are independent 
(Discrete Memoryless 
Source)

• Example
• The English Language

• Alphabet S={a,b,c,…,z}
• Each symbol has a 

probability: pa, pb , …pz

Information 
Source
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Uncertainty and Measure of 
Information

• If pk=1, pi=0 i? k
• There no uncertainty. The occurrence of the 

event does not correspond to any gain of 
information. 

• There is no need for communications because 
the receiver knows pretty much everything

• As pk decreases, 
• The uncertainty increases
• The reception of sk corresponds to some gain in 

information. BUT HOW MUCH?
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Measure of Information
• The amount of Information gained after 

observing sk which has a probability pk

( ) 1
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Self-Information = H(S) = lg(1/p) 
• Greater frequency <==> Less information
• Extreme case: p = 1, H(S) = lg(1) = 0
• Why is this the right formula?
• 1/p is the average length of the gaps between recurrences 

of S
…..S…..S…………………...S…….S……S…..

a b c d
Average of a, b, c, d … = 1/p
Number of bits to specify a gap is about lg(1/p) 
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Unit of Information
• Depends on the BASE of the Logarithm

( ) 2

1
I logk

k

s
p

 
=  

 

( ) 10

1
I logk

k

s
p

 
=  

 

( ) e

1
I logk

k

s
p

 
=  

 

Bits

Nats

Hartleys
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Self-Information

• If a symbol S has frequency p, its self-
information is I(S) = lg(1/p) = -lg p.

S A B C D

p .25 .25 .25 .25

I(S) 2 2 2 2

p .7 .1 .1 .1

I(S) .51 3.32 3.32 3.32

Example
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Properties of I(sk)
1. I(sk)=0 for pk=1
2. I(sk)=0 for 0=pk =1
3. I(sk)>I(si) for pk< pi

4. I(sksi)> I(sk) + I(si) if sk and si are 
independent
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Entropy H(S)
• Entropy is the average information content of 

a source
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Entropy

The larger the entropy of a distribution…

…the harder it is to predict

…the harder it is to compress it

…the less spiky the distribution
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Entropy

S A B C D

p .25 .25 .25 .25

-lgp 2 2 2 2

-plgp .5 .5 .5 .5

p .7 .1 .1 .1

-lgp .51 3.32 3.32 3.32

-plgp .357 .332 .332 .332

-? plgp

2

1.353

Example
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What is the use of H(X)?

Shannon’s first theorem (noiseless coding theorem)
For a memoryless discrete source X, its entropy H(X)
defines the minimum average code length required to
noiselessly code the source.
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entropy

The minimum average number of  binary digits  needed 

to

specify a source output (message)  uniquely  is called  

“SOURCE ENTROPY”

24



Entropy of English

• Shannon Experiment
• given a sequence of characters
• ask speaker of language to predict what the next character might 

be
• record the number of guesses taken to get the right character
• H(English) = -1/n ∑ p(guess = character) log p(guess = character)

• over all characters (letters and space)
• n is 27

Example
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Example 3
• Calculate the Entropy of English language if

1. All alphabet letters are equally probable
2. For a, e, o, t P{sk}=0.1

For h, i, n, r, s P{sk}=0.07
For c, d, f, l, m, p, u, y P{sk}=0.02
For b, g, j, k, q, v, w, x, z P{sk}=0.01

1. H(S)=4.7 bits
2. H(S)=4.17 bits
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Some Properties of Entropy
• 0=H(S) =log2(K)

1. H(S)=0 if and only if pk=1 for some k and all 
the remaining probabilities are zero (NO 
UNCERTAINTY)

2. H(S)=log2(K) if and only if pk=1/K for all k 
Symbols of S are equiprobable

the “worst“ we can do is 
just assign  log2M bits to each source output
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Example 1: Entropy of a Binary 
Memoryless Source

• S={s0,s1}, Pr{s0}=p0 ,Pr{s1}=p1=1-p0

( ) ( ) ( ) ( )0 2 0 0 2 0H = log 1 log 1S p p p p− − − −
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Entropy 

Entropy is a measure of how much information is encoded 
in a message. Higher the entropy, higher the 
information content.

We could also say entropy is a measure of 
uncertainty in a message.

Information and uncertainty are 
equivalent concepts.

Entropy gives the actual number of bits of information 
contained in a message source. 

Example: if the probability of the character `e` appearing in 
this slide is 1/16, then the information content of this 
character is 4 bits.

So the character string `eeeee` has a total of 20 bits 
(contrast this to using an 8-bit ASCII coding that could 
result in 40 bits to represent `eeeee`.

Comments

29


