Information Theory

Mohamed Hamada

Software Engineering La

Email: hamada@u-aizu.ac.jp URL: http://www.u-aizu.ac.jp/~hamada

1

Today's Topics

- What is Entropy
- Information Source
- Measure of Information
- Self-Information
- Unit of Information
- Entropy
- Properties

2

Entropy

3

Entropy of What?

- We need a **theory** of information and compression
- An abstract model that
 - Fits many situations
 - Is amenable to mathematical analysis
 - $\bullet\,$ Stimulates predictions about what may be possible
 - Motivates search for new ideas about how to achieve what the theory says is possible

4

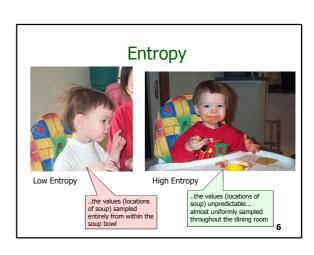
Entropy of What?

• In Simple words:

Entropy = Uncertainty

Or un-expected events.

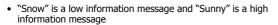
5



Low and High Information Content Messages

- The more frequent a message is, the less information it conveys when it occurs
- A weather forecast messages for Aizu in January for 8 days:

Sui



7

Information Theory

- The art of quantifying and communicating information
- Two Main Concepts
 - ENTROPY
 - CAPACITY

8

What is Entropy?

 A quantifiable means to describe the output of an information source

Video

Audio

Data

HOW COULD WE REPRESENT/COMPARE THE AMOUNT OF INFORMATION GENERATED AT THE OUTPUT OF THESE SOURCES?

9

10

So What's the Point?

- The same information source, i.e., TV
- In one scenario the information could be relayed in one sentence
- In the other scenario much more information needs to be communicated

ENTROPY REFLECTS HOW MUCH INFORMATION IS THE SOURCE GENERATING IN EACH SCENARIO

What will you Learn from Source Coding?

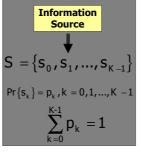
- What is Entropy? (i.e., How could we quantify information)
- Fundamental Limits
 - The **minimum** number of bits per symbol to represent an information source
 - The **maximum** rate at which information transmission can take place over a channel

12

11

Information Source

- Assume
 - Information Source Generates a group of symbols from a given alphabet **S**
 - Symbols are independent (Discrete Memoryless Source)
- Example
 - The English Language
 - Alphabet S={a,b,c,...,z} • Each symbol has a
 - probability: pa, pb, ...pz



Uncertainty and Measure of Information

- If $p_k=1$, $p_i=0$ i? k
 - There no uncertainty. The occurrence of the event does not correspond to any gain of information.
 - There is **no need** for communications because the receiver knows pretty much everything
- As p_k decreases,
 - The uncertainty increases
 - \bullet The reception of \boldsymbol{s}_k corresponds to some gain in information. BUT HOW MUCH?

Measure of Information

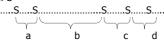
• The amount of Information gained after observing sk which has a probability pk

$$I(s_k) = log\left(\frac{1}{p_k}\right)$$

15

Self-Information = $H(S) = \lg(1/p)$

- Greater frequency <==> Less information
- Extreme case: p = 1, H(S) = Ig(1) = 0
- Why is this the right formula?
- 1/p is the average length of the gaps between recurrences of S



Average of a, b, c, d $\dots = 1/p$

Example

Number of bits to specify a gap is about lg(1/p)

16

Unit of Information

• Depends on the BASE of the Logarithm

$$I(s_k) = \log_2\left(\frac{1}{p_k}\right)$$
 Bits
$$I(s_k) = \log_e\left(\frac{1}{p_k}\right)$$
 Nats
$$I(s_k) = \log_{10}\left(\frac{1}{p_k}\right)$$
 Hartleys

17

Self-Information

• If a symbol S has frequency p, its selfinformation is $I(S) = \lg(1/p) = -\lg p$.

S	Α	В	С	D
р	.25	.25	.25	.25
I(S)	2	2	2	2
р	.7	.1	.1	.1
I(S)	.51	3.32	3.32	3.32

Properties of I(s_k)

- 1. $I(s_k)=0$ for $p_k=1$
- 2. $I(s_k)=0$ for $0=p_k=1$
- 3. $I(s_k)>I(s_i)$ for $p_k< p_i$
- 4. $I(s_k s_i) > I(s_k) + I(s_i)$ if s_k and s_i are independent

Entropy H(S)

• Entropy is the average information content of a source

$$H(S) = E[I(s_k)]$$

$$H(S) = \sum_{k=0}^{K-1} p_k \log_2 \left(\frac{1}{p_k}\right)$$

20

Entropy

The larger the entropy of a distribution...

- ...the harder it is to predict
- ...the harder it is to compress it
- ...the less spiky the distribution

21

Entropy

Example

pic								
	S	Α	В	С	D			
	р	.25	.25	.25	.25			
	-lgp	2	2	2	2			
	-plgp	.5	.5	.5	.5			
	р	.7	.1	.1	.1			
	-lgp	.51	3.32	3.32	3.32			
	-plgp	.357	.332	.332	.332			

-? plgp

2

1.353

22

What is the use of H(X)?

Shannon's first theorem (noiseless coding theorem)

For a memoryless discrete source X, its entropy H(X) defines the minimum average code length required to noiselessly code the source.

entropy

The <u>minimum</u> average number of binary digits needed to

specify a source output (message) uniquely is called

"SOURCE ENTROPY"

24

23

Entropy of English

Example

- Shannon Experiment
 - given a sequence of characters
 - ask speaker of language to predict what the next character might be
 - record the number of guesses taken to get the right character
 - $H(\text{English}) = -1/n \sum p(\text{guess} = \text{character}) \log p(\text{guess} = \text{character})$ over all characters (letters and space) n is 27

25

Example 3

- Calculate the Entropy of English language if
 - 1. All alphabet letters are equally probable

2. For a, e, o, t $P\{s_k\}=0.1$ For h, i, n, r, s $P{s_k}=0.07$ For c, d, f, l, m, p, u, y $P{s_k}=0.02$ $P{s_k}=0.01$ For b, g, j, k, q, v, w, x, z

1. H(S)=4.7bits

2. H(S)=4.17

26

Some Properties of Entropy

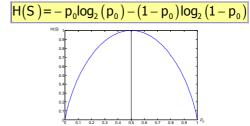
- $0=H(S) = log_2(K)$
 - 1. H(S)=0 if and only if $p_k=1$ for some k and all the remaining probabilities are zero (NO UNCERTAINTY)
 - 2. $H(S)=log_2(K)$ if and only if $p_k=1/K$ for all k Symbols of S are equiprobable

the "worst" we can do is just assign log_2M bits to each source output

27

Example 1: Entropy of a Binary **Memoryless Source**

• $S=\{s_0,s_1\}$, $Pr\{s_0\}=p_0$, $Pr\{s_1\}=p_1=1-p_0$



28

Entropy

Entropy is a measure of how much information is encoded in a message. Higher the entropy, higher the information content.

We could also say entropy is a measure of uncertainty in a message.

Information and uncertainty are equivalent concepts.

Entropy gives the actual number of bits of information contained in a message source.

Example: if the probability of the character `e` appearing in this slide is 1/16, then the information content of this character is 4 bits.

So the character string `eeeee` has a total of 20 bits (contrast this to using an 8-bit ASCII coding that could result in 40 bits to represent 'eeeee'.