

Today's Topics

- Overview of Information Theory
- Digital Communication
- History
- What is Information Theory

OVERVIEW OF INFORMATION THEORY FRAMEWORK

DIGITAL COMMUNICATION

DIGITAL COMMUNICATION

EGYPTIAN

Cryptography, ca. 1900BC

Geoffrey Chaucer, Treatise on the Astrolabe, 1391

Geoffrey Chaucer, Treatise on the Astrolabe, 1391

Geoffrey Chaucer, Treatise on the Astrolabe, 1391

Solving simple substitution ciphers

- Frequency analysis has been known since the $9^{\text {th }}$ century.
- Al Kindi's Manuscript on Deciphering Cryptographic Messages
Yaqub Ibn Ishaq al-Kindi (801-873)
- Throughout history, people continued to use insecure encryption methods -long after some methods have been broken because of ignorance, laziness or force of habit.
- Today also, people use insecure encryption (or no encryption at all). Many technology companies market encryption products that use methods that are insecure, or outright bogus.

Caesar cipher

- Replace each letter by the letter that comes some fixed distance before or after it in the alphabet.

Shift = abcdefghijkImnopqrstuvwxyz XYZABCDEFGHI JKLMNOPQRSTUVW

Omnia Gallia in tres partes divisa est

LJKF XDXI IFXF KQOB PMXO QBPA FSFP XBPQ

Vigenère Encryption

Morse Code (1838)

A	B	C	D	E	F	G	H	I	J	K	L	M
.-	$-\ldots$..--	..-	.	..-	.--	\ldots	..	.--	.--	..-	--
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
.-	---	..--	---	.-	\ldots	-	..-	$\ldots-$.--	..--	.---	..--

XWTNU NZ H JQRR ZPRU NOEJ GQXK LTVM IBWL YVG

OVERVIEW OF INFORMATION THEORY HISTORY
"Claude Shannon's creation in the 1940's of the subject of information theory is arguably one of the great intellectual achievements of the twentieth century"

Bell Labs
Computing and Mathematical
Sciences Research
http://cm.bell-labs.com/cm/ms/ what/shannonday/work.html

Claude Shannon
Father of Digital Communications

Shannon (1948) , Information theory, The Mathematical theory of Communication

The inventors

LZW (Lempel-Ziv-Welch) is an implementation of a
ossless data compression algorithm created by Lempel and Ziv. It was published by Terry Welch in 1984 as an improved version of the $L Z 78$ dictionary coding algorithm developed by Abraham Lempel and Jacob Ziv.

Fano

Shannon showed that it is possible to compress information. He produced examples of such codes which are now known as Shannon-Fano codes.

Robert Fano was an electrical engineer at MIT (the son of G. Fano, the Italian mathematician who pioneered the development of finite geometries and for whom the Fano Plane is named).

INFORMATION TRANSFER ACROSS CHANNELS

- In LA "Sunny" is a low information message and "cloudy" is a high information message
\qquad

AN INTERESTING ANALOGY

\qquad

What is Information theory about?

Information: knowledge that can be used

Communication: exchange of Information

Our goal: efficient; reliable; secure

Express everything in 0 and 1

Discrete ensemble:
$a, b, c, d \Rightarrow 00,01,10,11$
in general: k binary digits specify 2^{k} messages

Analogue signal:

1) sample and 2) represent sample value binary

Output
$00,10,01,01,11$

Shannon's contributions

Modeling: how to go from analogue to digital fundamental communication models $\checkmark \neg 1011$
Bounds: how far can we go?

- achievability
- impossibility

Constructions: constructive communication methods - with optimum performance
and many more!!!

efficient: speech

sampling speed 8000 samples/sec; accuracy 8 bits/ sample;
speed 64 kBit/s;
$\rightarrow 45$ minutes lecture $=45 * 60 * 64 \mathrm{k}=180 \mathrm{Mbit}=$ 45 books
$\rightarrow \quad$ compression possible to $4.8 \mathrm{kBit} / \mathrm{s}(1: 10)$

efficient: CD music

sampling speed 44.1 k samples/sec; accuracy 16 bits/sample
\rightarrow storage capacity for one hour stereo: 5 Gbit $=$ 1250 books
$\rightarrow \quad$ compression possible to 4 bits/sample ($1: 4$)

\square

efficient: dicital pictures

300×400 pixels $\times 3$ colors $\times 8$ bit/sample

efficient: summary

$\rightarrow 1$ book storage: $=4$ Mbit = 1 book

$\rightarrow_{\mathrm{Mb} / \mathrm{s}}$ 2.9 Mbit/picture; for 25 images/second we need 75 Mb/s

2 hour pictures need 540 Gbit $=130.000$
books
$\rightarrow \quad$ compression needed $(1: 100)$

speech
$\rightarrow 45$ minutes lecture $=45 * 60 * 64 \mathrm{~K}=180 \mathrm{Mbit}=45$ books

```
CD music:
```


\rightarrow storage capacity for one hour stereo: 5 Gbit = 1250 books

efficient: applications

> Text: Zip; GIF etc.
$>$ Music: MP3
> Pictures: JPEG, MPEG

Contributors in data reduction/compression:
Information theorists: A. Lempel and Jacob Ziv Huffman a.m.m.

Secure: example 1

Problem: Is B the owner of the open lock?

Secure: classical

Problem: Is the key present $a \dagger \mathrm{~B}$?

Secure: example 2

Reliable: 2 examples

Error Sensitivity: Illustration

Error sensitivity: $0.0001=0.01 \%$ Error sensitivity: $0.0005=0.05 \%$

Errors in networking

