Information Theory

By: Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu

Evaluation

Attendance and class activities 20\%

- Midterm Exam

35\%

- Final Exam

45\%

Contact

- Send e-mail to
hamada@u-aizu.ac.jp
- Office: Room 346-C

Course materials at
www.u-aizu.ac.jp/~hamada/education.html
Check every week for update

Goals

- Understand the concepts of information entropy and channel capacity
- Understand the digital communication model and its components
- Understand how the components operate
- Understand data compression
- Understand error detection and correction

Course Outline

- Introduction to set theory \& probability
- Introduction to information theory
- Coding techniques \& data compression
- Information Entropy
- Communication Channel

Error Detection and Correction

Today's Outline

Introduction to Set Theory and Probability

1. Sets, Operations on sets
2. Trial, Probability space, Events
3. Random variables, Probability distribution
4. Expected values, Variance
5. Conditional Probability
6. Bayes Theory

Sets

Sets

A set is a collection of objects without repetition. The order of elements is irrelevant.

A set can be expressed by writing all elements Example : even $=\{0,2,4,6,8,10\}$

OR can be expressed by suing a common property of its elements

Example : even $=\{x: 0 \leq x \leq 10$ and x is even $\}$

Sets

Elements of sets :

We use the symbols \in and \notin to show that an element belongs to a set or not

Example : even $=\{0,2,4,6,8,10\}$
$2 \in$ even
$3 \notin$ even

Subsets: A subset of a set A is a collection of elements that all belongs to A

$$
\text { Example : } \begin{aligned}
& S=\{2,4\} \Rightarrow S \subset \text { even } \\
& T=\{1,4\} \Rightarrow T \not \subset \text { even }
\end{aligned}
$$

Empty Set : is the set of no elements

$$
\phi=\{ \}
$$

Operations on sets

Set Union

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

Commutative $\mathrm{AUB}=\mathrm{BUA}$

$$
\begin{gathered}
\text { Example }: \text { even }=\{0,2,4,6\} \\
\\
\quad \text { odd }=\{1,3,5\}
\end{gathered}
$$

even U odd $=\{0,1,2,3,4,5,6\}$

Operations on sets

Set Intersection

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\}
$$

Commutative $A \cap B=B \cap A$

Example: even $=\{0,2,4,6\}$

$$
\text { odd }=\{1,3,5\}
$$

even \cap odd $=\phi$
even $\cap\{1,2,3\}=\{2\}$

Operations on sets

Set Subtraction

$$
A-B=\{x \mid x \in A \text { and } x \notin B\}
$$

Non commutative

$$
A-B \neq B-A
$$

$$
\begin{aligned}
\text { Example }: \text { even } & =\{0,2,4,6\} \\
& \operatorname{odd}=\{1,3,5\}
\end{aligned}
$$

even - odd = even

$$
\text { even }-\{1,2,3\}=\{0,4,6\}
$$

Operations on sets

Power Set

Power Set: is the set of all subsets

$$
P(A)=2^{A}=\{B \mid B \subseteq A\}
$$

Example: odd $=\{1,3,5\}$

$$
P(\text { odd })=2^{\text {odd }}=\{\phi,\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\}, \text { odd }\}
$$

Cardinality

Cardinality is the number (\#) of elements in a set

$$
\text { Example: \# (odd) }=3, \#\left(2^{\text {odd }}\right)=8=2^{3}=2^{\#(\text { odd })}
$$

Trials

Many problems in probabilities and statistics involve situations in which an experiment with the possible outcomes is repeated several times.

Each repetition of the experiment is called a trail.

Example : throw a dice

Probability

Probability:

A probability is a number associated with or assigned to a set in order to measure it in some sense

Probability Space:

Consider the symbols Ω and P where
Ω : universal set ;
P : is a probability function mapping power set to reals in the interval $[0,1] ; \quad$ i.e. $P: 2^{\Omega} \rightarrow[0,1]$
With the following 3 properties:
where $P\left(a_{n}\right)=P\left(\left\{a_{n}\right\}\right)$
(1) $P(\varnothing)=0$
(2) $P(\Omega)=1$
(3) $\forall A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \Omega$,

$$
P(A)=\sum_{n=1}^{m} P\left(a_{n}\right),
$$

Event

The subset of Ω to which a probability has been assigned is called an event

An event is a classification of trial outcome.

Example:

The set of events of throwing a dice is $\{1,2,3,4,5,6\}$

Random Variables

Random Variable is a numerical quantity whose value depends on chance.
Example : A person to be selected at random

For a universal set Ω and $\mathrm{a} \in \Omega$
The function X: $\Omega \rightarrow$ set of numerical values is called a random variable

Example : Throwing 2 dice we get

$$
\begin{array}{r}
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
\Omega=(3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}
$$

Random Variables

Proposition

If X and Y are random variables then $X+Y, X-Y, X Y$ and $X / Y(Y \neq 0)$ are random variables

Probability Distribution

The probability that the random variable X takes the value a_{n} is

$$
\begin{aligned}
& p_{n}=P\left(X=a_{n}\right) \\
& p_{n} \geq 0, \quad \sum p_{n}=1
\end{aligned}
$$

If certainty is 100% then probability $=1$ (unity)

In general $\forall \mathrm{n} \quad 0 \leq \mathrm{p}_{\mathrm{n}} \leq 1$
Example : fair coin front \uparrow

Probability Distribution

Example : fair dice

$\left(\begin{array}{cccccl}1 & 2 & 3 & 4 & 5 & 6 \\ 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6\end{array}\right)$

Example of random variable : sum of two dice throws
Consider the random variable X_{1} as outcome of the first dice:
$X_{1}((m, n))=m$
Consider the random variable X_{2} as outcome of the second dice:
$X_{2}((m, n))=n$
Consider the random variable X_{3} as sum of X_{1} and $X_{2} \quad\left(X_{3}=X_{1}+X_{2}\right)$:
$X_{3}((m, n))=m+n$

	+	1	2	3	4	5	6	Probability distribution of X_{1}
	1	2	3	4	5	6	7	
Probability distribution of \mathbf{X}_{2}	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	Probability distribution of X_{3}
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

Expected value (mean or average value)

The Expected value is designed as fallows :
Take the value of (the random variable) X at each point $a \in \Omega$, multiply it by the probability of that point (i.e $\mathrm{P}(\mathrm{a})$) and sum over all $\mathrm{a} \in \Omega$

$$
E(X)=\sum_{a \in \Omega} X(a) P(a)
$$

Note that:

$$
\begin{aligned}
& E(X+Y)=E(X)+E(Y) \\
& E(c X)=c E(X) \quad \text { (for constant } c)
\end{aligned}
$$

Expected value (mean or average value)

$$
E(X)=\sum_{a \in \Omega} X(a) P(a)
$$

Example

Consider a land with 100 acre with 50% of price $\$ 150$ per acre, 30% of price $\$ 100$ per acre and 20% of price $\$ 50$ per acre.

What is the average (expected or mean) price per acre for

30% $\$ 100$	20% $\$ 50$
50%	$\$ 150$

Answer:

$$
\begin{aligned}
& \Omega=\{50 \%, 30 \%, 20 \%\}=\{50 / 100,30 / 100,20 / 100\} \\
& E(X)=150 * 50 / 100+100 * 30 / 100+50 * 20 / 100=115 \$ \text { per acre }
\end{aligned}
$$

Variance

The Variance of a variable X (denoted by $V(X)$ or $\sigma^{2}(X)$ is defined by

$$
V(X)=E\left[(X-E(X))^{2}\right]
$$

Note that: for a constant c

$$
\begin{aligned}
V(c) & =E\left[(c-E(c))^{2}\right] \\
& =E\left[(c-c)^{2}\right] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
V(c X) & =E\left[(c X-E(c X))^{2}\right] \\
& =E\left[(c X-c E(X))^{2}\right] \\
& =E\left[c^{2}(X-E(X))^{2}\right] \\
& =c^{2} E\left[(X-E(X))^{2}\right] \\
& =c^{2} V(X)
\end{aligned}
$$

Variance

Example:

For a fair coin toss (with front denoted by \uparrow and back denoted by \downarrow) we have

	Ω				
	(\uparrow, \uparrow)	(\uparrow, \downarrow)	(\downarrow, \uparrow)	(\downarrow, \downarrow)	\sum
p	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	1
$x=\#(\uparrow)$	2	1	1	0	4
$x P(x)$	$2 / 4$	$1 / 4$	$1 / 4$	$0 / 4$	$\mathrm{E}[\mathrm{X}]=1$
$(x-\mathrm{E}[x])^{2} \mathrm{P}(x)$	$(2-1)^{2} / 4$	$(1-1)^{2} / 4$	$(1-1)^{2} / 4$	$(0-1)^{2} / 4$	$\mathrm{~V}[\mathrm{X}]=1 / 2$

Exercise

Prove this equality

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}
$$

Exercise: Answer

Prove this equality

$$
V(X)=E\left(X^{2}\right)-E(X)^{2}
$$

Answer:

$$
\begin{aligned}
V(X) & =E\left[(X-E(X))^{2}\right] \\
& =E[(X-E(X))(X-E(X))] \\
& =E\left[X^{2}-2 X E(X)+E(X)^{2}\right] \\
& =E\left(X^{2}\right)-2 E(X)^{2}+E(X)^{2} \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

Conditional Probability

Conditional probability is the probability of A when B is known

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Example:

If a dice is rolled:
Let an event $\mathrm{A}=$ the dice comes up with $5=\{5\}$
Let an event $B=$ the dice comes up odd $=\{1,3,5\}$
Then: $P(A)=1 / 6, P(B)=P(\{1,3,5\})=P(\{1\})+P(\{3\})+P(\{5\})=1 / 6+1 / 6+1 / 6=1 / 2$

$$
A \cap B=\{5\}, P(A \cap B)=P(\{5\})=1 / 6
$$

Hence $P(A \mid B)=P(A \cap B) / P(B)=(1 / 6) /(1 / 2)=1 / 3$

Conditional Probability

Note that :

$$
P(B)=P(A \cap B)+P(B-A) \geq P(A \cap B) \quad \Rightarrow \quad P(A \mid B) \leq 1
$$

If $B \subseteq A \Rightarrow A \cap B=B \Rightarrow P(A \mid B)=1$

Bayes Theorem

$$
P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}
$$

Knowing the outcome of a particular situation, one (using Bayes theorem) can find the probability that the outcome occurred as a result of a particular previous event.

Note that:

1. in general $P(A \mid B) \neq P(B \mid A)$
2. $P(A \mid B)=P(B \mid A)$ only if $P(A)=P(B)$

Bayes Theorem

Example: Throw a single dice: let $A=\{x \mid x$ odd $\}, B=\{1,2\}$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 6}{2 / 6}=1 / 2 \\
& P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}=\frac{(2 / 6)(1 / 2)}{3 / 6}=1 / 3
\end{aligned}
$$

Bayes Theorem

Properties:

$$
\begin{aligned}
& \text { 1. } P(\phi \mid B)=\frac{P(\phi \cap B)}{P(B)}=\frac{P(\phi)}{P(B)}=\frac{0}{P(B)}=0 \\
& \text { 2. } P(\Omega \mid B)=\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1
\end{aligned}
$$

$$
\text { 3. } P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\sum_{a \in A} P(\{a\} \cap B)}{P(B)}=\sum_{a \in A} P(\{a\} \cap B), \sum_{a \in A} P(\{a\} \mid B)
$$

Independence of Random Variables

Two discrete random variables, X_{1} and X_{2} are independent if
\forall value $j, k \quad P\left(X_{1}=j \cap X_{2}=k\right)=P\left(X_{1}=j\right) P\left(X_{2}=K\right)$

Note that:

If X_{1} and X_{2} are independent random variables then it is easy to show that:

$$
P\left(X_{1}=j \mid X_{2}\right)=P\left(X_{1}=j\right)
$$

END

