Information Theory

By: Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu

Evaluation

Attendance and class activities 20%

Midterm Exam
 35%

Final Exam45%

Contact

Send e-mail to

hamada@u-aizu.ac.jp

- Office: Room 346-C
- Course materials at

www.u-aizu.ac.jp/~hamada/education.html

Check every week for update

Goals

- Understand the concepts of information entropy and channel capacity
- Understand the digital communication model and its components
- Understand how the components operate
- Understand data compression
- Understand error detection and correction

Course Outline

- Introduction to set theory & probability
- Introduction to information theory
- Coding techniques & data compression
- Information Entropy
- Communication Channel
- Error Detection and Correction

Today's Outline

Introduction to Set Theory and Probability

- 1. Sets, Operations on sets
- 2. Trial, Probability space, Events
- 3. Random variables, Probability distribution
- 4. Expected values, Variance
- 5. Conditional Probability
- 6. Bayes Theory

Sets

Sets

A set is a collection of objects without repetition. The order of elements is irrelevant.

A set can be expressed by writing all elements

Example: even = $\{0, 2, 4, 6, 8, 10\}$

OR can be expressed by suing a common property of its elements

Example: even = $\{x : 0 \le x \le 10 \text{ and } x \text{ is even } \}$

Sets

Elements of sets

We use the symbols ∈ and ∉ to show that an element belongs to a set or not

```
Example: even = { 0, 2, 4, 6, 8, 10 }
2 ∈ even
3 ∉ even
```

Subsets: A subset of a set A is a collection of elements that all belongs to A

Example:
$$S = \{2,4\} \Rightarrow S \subset \text{even}$$

 $T = \{1, 4\} \Rightarrow T \not\subset \text{even}$

Empty Set: is the set of no elements $\phi = \{ \}$

Set Union

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

Commutative AUB=BUA

even U odd = $\{0, 1, 2, 3, 4, 5, 6\}$

Set Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

Commutative $A \cap B = B \cap A$

even
$$\cap$$
 odd = ϕ

even
$$\cap \{1, 2, 3\} = \{2\}$$

Set Subtraction

$$A - B = \{x \mid x \in A \text{ and } x \notin B \}$$

Non commutative

$$A-B \neq B-A$$

even
$$-\{1, 2, 3\} = \{0, 4, 6\}$$

Power Set

Power Set: is the set of all subsets

$$P(A) = 2^A = \{B \mid B \subseteq A\}$$

Example: odd = {1, 3, 5} P(odd) = 2^{odd} = { ϕ , {1}, {3}, {5}, {1,3}, {1,5}, {3,5}, odd }

Cardinality

Cardinality is the number (#) of elements in a set

Example: # (odd) = 3, $\# (2^{odd}) = 8 = 2^3 = 2^{\#(odd)}$

Trials

Many problems in probabilities and statistics involve situations in which an experiment with the possible outcomes is repeated several times.

Each repetition of the experiment is called a trail.

Example: throw a dice

Probability

Probability:

A probability is a number associated with or assigned to a set in order to measure it in some sense

Probability Space:

Consider the symbols Ω and P where

 Ω : universal set;

P: is a probability function mapping power set to reals in the

interval [0,1]; i.e. $P: 2^{\Omega} \rightarrow [0,1]$

With the following 3 properties:

$$(1) P(\emptyset) = 0$$

(2)
$$P(\Omega) = 1$$

(3)
$$\forall A = \{a_1, a_2, ..., a_m\} \subset \Omega$$
,

$$P(A) = \sum_{n=1}^{m} P(a_n),$$

where
$$P(a_n) = P(\{a_n\})$$

Event

The subset of Ω to which a probability has been assigned is called an event

An event is a classification of trial outcome.

Example:

The set of events of throwing a dice is {1,2,3,4,5,6}

Random Variables

Random Variable is a numerical quantity whose value depends on chance.

Example: A person to be selected at random

For a universal set Ω and $a \in \Omega$

The function $X : \Omega \rightarrow \text{set of numerical values is called a random variable}$

Example: Throwing 2 dice we get

$$\Omega = \{ (m,n) \mid m,n \in \{1,2,..., 6\} \}$$

```
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
\Omega = (3,1), (3,2), (3,3), (3,4), (3,5), (3,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
```

Random Variables

Proposition

If X and Y are random variables then X+Y, X-Y, XY and X/Y (Y ≠0) are random variables

Probability Distribution

The probability that the random variable X takes the value a_n is

$$p_n = P(X = a_n)$$

 $p_n \ge 0, \sum p_n = 1$

If certainty is 100% then probability = 1 (unity)

In general $\forall n \quad 0 \le p_n \le 1$

Example: fair coin front ↑

Probability Distribution

Example: fair dice

Example of random variable : sum of two dice throws

Consider the random variable X₁ as outcome of the first dice:

$$X_1$$
 ((m, n)) = m

Consider the random variable X_2 as outcome of the second dice:

$$X_2$$
 ((m, n)) = n

Consider the random variable X_3 as sum of X_1 and X_2 ($X_3=X_1+X_2$):

$$X_3$$
 ((m, n)) = m + n

	+	1	2	3	4	5	6
4	1	2	3	4	5	6	7
l	2	3	4	5	6	7	8
١	3	4	5	6	7	8	9 -
١	4	5	6	7	8	9	10
١	5	6	7	8	9	10	11
١	6	7	8	9	10	11	12

Probability distribution of X₁

Probability distribution of X₃

Probability distribution of X₂

Expected value (mean or average value)

The Expected value is designed as fallows:

Take the value of (the random variable) X at each point $a \in \Omega$, multiply it by the probability of that point (i.e P(a)) and sum over all $a \in \Omega$

$$E(X) = \sum_{a \in \Omega} X(a) P(a)$$

Note that:

$$E(X + Y) = E(X) + E(Y)$$

 $E(cX) = c E(X)$ (for constant c)

Expected value (mean or average value)

$$E(X) = \sum_{a \in \Omega} X(a) P(a)$$

Example

Consider a land with 100 acre with 50% of price \$150 per acre, 30% of price \$100 per acre and 20% of price \$50 per acre.

What is the average (expected or mean) price per acre for the whole land?

30% \$100	20% \$50
50%	\$150

Answer:

$$\Omega = \{50\%, 30\%, 20\%\} = \{50/100, 30/100, 20/100\}$$

$$E(X) = 150 * 50/100 + 100 * 30/100 + 50 * 20/100 = 115 $ per acre$$

Variance

The Variance of a variable X (denoted by V(X) or $\sigma^2(X)$ is defined by

$$V(X) = E[(X - E(X))^2]$$

Note that: for a constant c

$$V (c) = E [(c - E (c))^{2}]$$

= $E [(c - c)^{2}]$
= 0

$$V (cX) = E [(cX - E(cX))^{2}]$$

$$= E [(cX - cE(X))^{2}]$$

$$= E [c^{2}(X - E(X))^{2}]$$

$$= c^{2} E [(X - E(X))^{2}]$$

$$= c^{2} V(X)$$

Variance

Example:

For a fair coin toss (with front denoted by ↑ and back denoted by ↓) we have

	(↑,↑)	(↑,↓)	(↓,↑)	(↓,↓)	Σ
р	1/4	1/4	1/4	1/4	1
x = # (↑)	2	1	1	0	4
<i>x</i> P(<i>x</i>)	2/4	1/4	1/4	0/4	E[X] = 1
$(x-E[x])^2 P(x)$	(2-1)2/4	(1-1) ² /4	(1-1)2/4	(0-1) ² /4	V[X] = 1/2

Exercise

Prove this equality

$$V(X) = E(X^2) - E(X)^2$$

Exercise: Answer

Prove this equality

$$V(X) = E(X^2) - E(X)^2$$

Answer:

$$V(X) = E[(X - E(X))^{2}]$$

$$= E[(X - E(X))(X - E(X))]$$

$$= E[X^{2} - 2XE(X) + E(X)^{2}]$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Conditional Probability

Conditional probability is the probability of A when B is known

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Example:

If a dice is rolled:

Let an event A =the dice comes up with $5 = \{5\}$

Let an event B =the dice comes up odd $= \{1,3,5\}$

Then:
$$P(A)=1/6$$
, $P(B)=P(\{1,3,5\})=P(\{1\})+P(\{3\})+P(\{5\})=1/6+1/6+1/6=1/2$
 $A \cap B = \{5\}$, $P(A \cap B)=P(\{5\})=1/6$

Hence
$$P(A \mid B) = P(A \cap B) / P(B) = (1/6) / (1/2) = 1/3$$

Conditional Probability

Note that:

$$P(B) = P(A \cap B) + P(B - A) \ge P(A \cap B)$$
 \Rightarrow $P(A \mid B) \le 1$

If
$$B \subseteq A \Rightarrow A \cap B = B \Rightarrow P(A \mid B) = 1$$

Bayes Theorem

$$P(B|A) = \frac{P(B) P(A|B)}{P(A)}$$

Knowing the outcome of a particular situation, one (using Bayes theorem) can find the probability that the outcome occurred as a result of a particular previous event.

Note that:

- 1. in general $P(A \mid B) \neq P(B \mid A)$
- 2. P(A | B) = P(B | A) only if P(A) = P(B)

Bayes Theorem

Example: Throw a single dice: let $A = \{x \mid x \text{ odd }\}, B = \{1,2\}$

$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{2/6}$$

$$P(B|A) = \frac{P(B) P(A|B)}{P(A)} = \frac{(2/6) (1/2)}{P(A)} = 1/3$$

Bayes Theorem

Properties:

1.
$$P(\phi|B) = \frac{P(\phi \cap B)}{P(B)} = \frac{P(\phi)}{P(B)} = 0$$

$$P(\phi|B) = \frac{P(\phi \cap B)}{P(B)} = \frac{P(\phi)}{P(B)} = 0$$

P
$$(\Omega \cap B)$$
 P (B)
2. P $(\Omega \mid B)$ = $\frac{P(B)}{P(B)}$ = $\frac{P(B)}{P(B)}$

3.
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\sum_{a \in A} P(\{a\} \cap B)}{P(B)} = \sum_{a \in A} P(\{a\} \cap B)} = \sum_{a \in A} P(\{a\} \mid B)$$

Independence of Random Variables

Two discrete random variables, X_1 and X_2 are independent if

$$\forall$$
 value j, k $P(X_1 = j \cap X_2 = k) = P(X_1 = j) P(X_2 = k)$

Note that:

If X₁ and X₂ are independent random variables then it is easy to show that:

$$P(X_1 = j | X_2) = P(X_1 = j)$$

END