

Evaluation

- Attendance and class activities 20%
- Midterm Exam
 35%
- Final Exam 45%

Contact

- Send e-mail to
 - hamada@u-aizu.ac.jp
- Office: Room 346-C
 Course materials at

www.u-aizu.ac.jp/~hamada/education.html

Check every week for update

Goals

- Understand the concepts of information entropy and channel capacity
- Understand the digital communication model and its components
- Understand how the components operate
- Understand data compression
- Understand error detection and correction

Course Outline

- Introduction to set theory & probability
- Introduction to information theory
- Coding techniques & data compression
- Information Entropy
- Communication Channel
- Error Detection and Correction

Today's Outline

Introduction to Set Theory and Probability

- 1. Sets, Operations on sets
- 2. Trial, Probability space, Events
- 3. Random variables, Probability distribution
- 4. Expected values, Variance
- 5. Conditional Probability
 - 6. Bayes Theory

Sets

Sets

A set is a collection of objects without repetition. The order of elements is irrelevant.

A set can be expressed by writing all elements Example : even = { 0, 2, 4, 6, 8, 10 }

OR can be expressed by suing a common property of its elements

Example: even = $\{x : 0 \le x \le 10 \text{ and } x \text{ is even} \}$

Example : even = {0, 2, 4, 6 } odd = {1, 3, 5 }

even U odd = {0, 1, 2, 3, 4, 5, 6}

Operations on sets

Set Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Commutative $A \cap B = B \cap A$

Example: even = {0, 2, 4, 6 } odd = {1, 3, 5 }

even \cap odd = ϕ

even ∩ {1, 2, 3 } = {2}

Operations on sets

Set Subtraction

A – B = {x | x ∈ A and x ∉ B }

Non commutative $A - B \neq B - A$

Example : even = {0, 2, 4, 6 } odd = {1, 3, 5 }

even – odd = even

even - {1, 2, 3} = {0, 4, 6 }

Operations on sets

Power Set

Power Set: is the set of all subsets

 $\mathsf{P}(\mathsf{A}) = 2^{\mathsf{A}} = \{\mathsf{B} \mid \mathsf{B} \subseteq \mathsf{A}\}$

Example: odd = {1, 3, 5 } P(odd) = 2^{odd} = { ϕ , {1}, {3}, {5}, {1,3}, {1,5}, {3,5}, odd }

Cardinality

Cardinality is the number (#) of elements in a set

Example: # (odd) = 3, # (2^{odd}) = 8 = 2³ = 2^{#(odd)}

Random Variables

Proposition

If X and Y are random variables then X+Y, X-Y, XY and X/Y (Y ≠0) are random variables

Variance					
	Ω				
	(↑,↑)	(↑,↓)	(↓,↑)	(↓,↓)	Σ
р	1⁄4	1⁄4	1⁄4	1⁄4	1
x = # (↑)	2	1	1	0	4
<i>x</i> P(<i>x</i>)	2/4	1/4	1⁄4	0/4	E[X] = 1
				(0.4)2.14	

