
Automata and Languages

 Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu

Japan

2

TURING MACHINES

3

Alan Turing (1912–1954), British mathematician
and engineer and one of the most influential
scientists of the last century.

Turing Machines (TM)

The Turing machine model has become the
standard in theoretical computer science.
Think of a Turing Machine as a DPDA that can
move freely through its stack (= tape).

The Turing machine is the ultimate model of
computation.

In 1936, Turing introduced his abstract
model for computation.

4

Sample Rules:

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

Let’s see how they are carried out on a piece of

paper that contains the reverse binary
representation of 47: 111101

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

5

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

1 1 1 1 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

6

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 1 1 1 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

7

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 1 1 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

8

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

9

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

10

So the successor’s output on 111101

was 000011 which is the reverse
binary representation of 48.

Similarly, the successor of 127 should be
128:

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

11

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

1 1 1 1 1 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

12

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 1 1 1 1 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

13

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 1 1 1 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

14

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 1 1 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

15

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 1 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

16

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 1 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

17

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

18

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 0

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

19

If read 1, write 0, go right, repeat.
If read 0, write 1, HALT!
If read �, write 1, HALT!

0 0 0 0 0 0 0 1

Turing Machines (TM)

A Thinking Machine

Example: Successor Program

20

TM can both write to and read from the tape

The head can move left and right

The string doesn’t have to be read entirely

Accept and Reject take immediate effect

A Comparison with FA

Turing Machines (TM)

21

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA

PDA

TM

A Comparison with FA and PDA

Turing Machines (TM)

22

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA

TM

A Comparison with FA and PDA

Turing Machines (TM)

23

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM

A Comparison with FA and PDA

Turing Machines (TM)

24

Device Separate
Input?

Read/Write Data
Structure

Deterministic
by default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No
1-way infinite
tape. 1 cell

access per step.

Yes
(but will also

allow crashes)

A Comparison with FA and PDA

Turing Machines (TM)

25

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q0

q1

A

Turing Machines (TM)

26

0 → 0, R

read write move

¨ → ¨, R
0 → 0, R

¨ → ¨, R

0 → 0, R
¨ → ¨, L

Turing Machines (TM)

Final state

27

An edge from the state p to the state q labeled
by …

•  aàb,D means if in state p and tape head
reading a, replace a by b and move in the
direction D, and into state q

•  aàD means if in state p and tape head
reading a, don’t change a and move in the
direction D, and into state q

•  a|b|…|z à … means that given that the
tape head is reading any of the pipe
separated symbols, take same action on
any of the symbols

Turing Machines (TM)

Notations

28

A TM’s next action is completely determined by
current state and symbol read, so can
predict all of future actions if know:

1.  current state
2.  current tape contents
3.  current position of TM’s reading “head”

Turing Machines (TM)

Notations

29

A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, δ, q0, B, F), where:

Q is a finite set of states

Γ is the tape alphabet, where ¨ ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where ¨ ∉ Σ

δ : Q × Γ → Q × Γ × {L,R}

B is the empty input square ¨

F ⊆ Q is the set of final states÷

Turing Machines (TM)

Definition

30

CONFIGURATIONS

11010q700110
q7

1 0 0 0 0 0 1 1 1 1

Turing Machines (TM)

31

R L

!__1#0_110

Internal State
set Q

Depending on x and q the, the transition function
value δ(q,x) = (r,y,d) tells the TM to replace the
letter x by y, move its head in direction d∈{L,R}, and
change its internal state to r.

At every step,
the head of the
TM M reads a
letter x from the
tape of size ω.

Turing Machines (TM)

Informal Description

32

The computation can proceed indefinitely, or the
machines reaches one of the two halting states:

or

!! _vv m1
!! _vv m1

accept state t

reject state r

Turing Machines (TM)

Output Convention

33

A TM recognizes a language if it accepts all
and only those strings in the language

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called Turing-recognizable or
recursively enumerable if some TM
recognizes it

A language is called decidable or recursive
if some TM decides it

Turing Machines (TM)

34

A language is called Turing-recognizable or
recursively enumerable if some TM
recognizes it

A language is called decidable or recursive
if some TM decides it

recursive
languages

r.e.
languages

Turing Machines (TM)

35

0 → ¨, R

¨ → ¨, R

qf q5

0 → x, R

x → x, R
¨ → ¨, R

x → x, R

0 → 0, L
x → x, L

x → x, R
¨ → ¨, L ¨ → ¨, R

0 → x, R
0 → 0, R

¨ → ¨, R
x → x, R

{ 0 | n ≥ 0 } 2n

q0 q1

q2

q3

q4

Turing Machines (TM)

36

q00000
¨q1000
¨xq300
¨x0q40
¨x0xq3
¨x0q2x
¨xq20x
¨q2x0x
q2¨x0x

Turing Machines (TM)

37

0
1

5

0à$,R

qf

 � àR

2 1à$,R

0|XàR

1|XàR

3

 � àR

0àX,L

1àX,L 0|1|XàL

4

$àR

XàR

0àX,R

1àX,R

 � àR

L={w∈{0,1}* : #(0)=#(1)}?

Turing Machines (TM)

Example

38

Suppose TM’s configuration at time t is given by uapxv
where p is the current state, ua is what’s to the left of
the head, x is what’s being read, and v is what’s to
the right of the head.

If δ(p,x) = (q,y,R) then write:
uapxv ⇒ uayqv

With resulting configuration uayqv at time t+1.
If, δ(p,x) = (q,y,L) instead, then write:

uapxv ⇒ uqayv
There are also two special cases:

–  head is forging new ground –pad with the blank symbol �
–  head is stuck at left end –by def. head stays put (only case)

“⇒” is read as “yields”

Turing Machines (TM)

Definition

39

As with context free grammars, one can consider the
reflexive, transitive closure “⇒*” of “⇒”. i.e. this is the
relation between strings recursively defined by:

•  if u = v then u ⇒* v
•  if u ⇒v then u ⇒* v
•  if u ⇒*v and v ⇒* w, then u ⇒*w
“⇒*” is read as “computes to”
A string x is said to be accepted by M if the start

configuration q0 x computes to some accepting
configuration y –i.e., a configuration containing qacc.

The language accepted by M is the set of all accepted
strings. I.e:

L(M) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

Turing Machines (TM)

Definition

40

Three possibilities occur on a given input w :
1.  The TM M eventually enters qacc and

therefore halts and accepts. (w ∈ L(M))
2.  The TM M eventually enters qrej or crashes

somewhere. M rejects w . (w ∉ L(M))
3.  Neither occurs! i.e., M never halts its

computation and is caught up in an infinite
loop, never reaching qacc or qrej. In this case
w is neither accepted nor rejected. However,
any string not explicitly accepted is
considered to be outside the accepted
language. (w ∉ L(M))

Turing Machines (TM)

TM Acceptor and Deciders

41

Any Turing Machines is said to be a recognizer and
recognizes L(M); if in addition, M never enters an
infinite loop, M is called a decider and is said to
decide L(M).

Q: Is the above M an recognizer? A decider? What is

L(M)?

0

1

3 qf

2

� àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders

42

0

1

3 qf

2

� àR

1àR

0àR

1àR 0àR

0àR
1àL

Turing Machines (TM)

TM Acceptor and Deciders
A: M is an recognizer but not a decider because 101

causes an infinite loop.
L(M) = 1+ 0+

Q: Is L(M) decidable ?

43

A: Yes. All regular languages are decidable
because can always convert a DFA into a
TM without infinite loops.

Turing Machines (TM)

TM Acceptor and Deciders

44

A non-Deterministic Turing Machine N allows
more than one possible action per given
state-tape symbol pair.

A string w is accepted by N if after being put on
the tape and letting N run, N eventually enters
qf on some computation branch.

If, on the other hand, given any branch, N
eventually enters qrej or crashes or enters an
infinite loop on, w is not accepted.

Symbolically as before:
L(N) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y }

(No change needed as ⇒ need not be function)

Non-Deterministic Turing Machines (NTM)

Content

•  Decidability
•  The Halting Problem
•  Complexity
•  The class P
•  The class NP
•  The class P vs. NP
•  The class NP-Complete

45

Decidability
•  What are the limits of algorithmic

solvability?
•  How can we tell if two Regular

Expressions define the same language?
–  or, can we?

•  A language is decidable if some TM
decides it (always either accepts or
rejects, always halts)

46

A TM decides a language if it accepts
all strings in the language and rejects
all strings not in the language

Remember:

Example 1

•  Acceptance Problem (DFA): Does a given
DFA, B, accept a given string w?

•  In terms of languages (because we have
defined computation as accept/reject a
language):
– ADFA = { <B, w> | B is a DFA that accepts w }
– For ALL input pairs <B, w> can a single TM be

constructed that will decide <B,w> ∈ ADFA
•  can we build one TM that will work for all DFAs?
•  is there an algorithmic way to solve this problem? 47

Decidability

•  ADFA is decidable
– given <B, w> we can decide if <B, w> ∈ ADFA

or <B, w> ∉ ADFA

•  Proof Idea:
– Use a TM, M, to simulate B with input w
– Keep track of current state and current

position on the input string
– Update according to the DFA’s δ

Similarly: ANFA and ARegular Expression are also
decidable

Note:

48

Example 1
Theorem

CFGs

•  ACFG = {<G, w> | G is a CFG that
generates w}

•  ACFG is decidable
•  Could enumerate all strings produced

by G: could be infinite, though
•  Proof Idea

– Put G in CNF
– How deep is the parse tree for string w?
– Check only derivations of this length

•  possibly large, but definitely finite 49

Example 2

Equivalence of CFGs

•  EQCFG = {<G, H> | G and H are CFG and
L(G) = L(H)}
– not decidable
– CFGs are not closed under complement or ∩

50

Example 3

51

The Halting Problem

52

The Halting Problem

In computability theory, the halting problem is the
problem
of determining, from a description of an arbitrary
computer program and an input, whether the program
will finish running or continue to run forever.

Alan Turing proved in 1936 that a general algorithm to solve
the halting problem for all possible program-input pairs cannot exist.
A key part of the proof was a mathematical definition of a computer
and program, which became known as a Turing machine;
the halting problem is undecidable over Turing machines.
It is one of the first examples of a decision problem.

Will it ever stop?
•  ATM = { <M, w> | M is a TM and M accepts w }

– undecidable
–  remember, decidable means that the TM will

eventually reach an accept or reject state; it will
halt

– U is a Universal TM
– TM U recognizes ATM:

•  1. Simulate M on input w with U
•  2. If M accepts then U accepts; if M rejects then U

rejects; if M never halts then U never halts
•  If we could get U to halt, then we could get M to halt

53

Complexity

54

COMPLEXITY THEORY
Studies what can and can’t be computed under
limited resources such as time, space, etc

Time complexity

55

Definition: Let M be a TM that halts on all inputs. The
running time or time-complexity of M is the function
f : N → N, where f(n) is the maximum number of steps
that M uses on any input of length n.

•  M is a “f(n) time TM”
TM is our model for computation, so
TM ≈ algorithm

56

Time complexity

Notation:

Example

•  f(n) = 5n3 + 2n2 + 22n + 6
•  O(f(n)) = n3

•  let c = 6 and n0 = 10
•  5n3 + 2n2 + 22n + 6 <= 6n3

–  for every n >= n0

•  O(f(n)) = n4 as well, but we want the
tightest upper bound

57

Definition: TIME(t(n)) = { L | L is a language
decided by a O(t(n)) time using a deterministic
Turing Machine }

A = { 0k1k | k ≥ 0 } ∈ TIME(n2)

Definition: NTIME(t(n)) = { L | L is decided by a
O(t(n))-time non-deterministic Turing machine }

TIME(t(n)) ⊆ NTIME(t(n))

58

Time Complexity classes

We define the following two time complexity classes:

P and NP

59

Polynomial vs Exponential

•  Polynomial: n3

•  Exponential: 3n

•  n=1 to 10

•  What if
 n = 1000?

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Polynomial

Exponential

60

P = TIME(nk) ∪
k ∈ N

61

The class P

A language L is in P if and only if there exists a deterministic
Turing machine M, such that:

•  M runs for polynomial time on all inputs
•  For all x in L, M outputs YES (1)
•  For all x not in L, M outputs NO (0)

•  P is the class of languages that are
decidable in polynomial time on a
deterministic Turing machine

The class P

2. Every context-free language is in P

62

Examples:

1.  The class P is known to contain many natural
problems, including:

•  Calculating the greatest common divisor
•  Determining if a number is prime

Real Life

•  Problems in class P are usually
manageable on a real computer
– nK
–  though k=100 may introduce some practical

problems

63

The class NP

•  NP is the class of languages that are
decidable in polynomial time on a
nondeterministic Turing machine

64

NP = NTIME(nk) ∪
k ∈ N

65

1. The decision problem version of the integer factorization problem:

The class NP
Examples:

•  given integers n and k, is there a factor f with
1 < f < k and f dividing n?

2. The graph isomorphism problem:

•  It is the problem of determining
whether two graphs can be drawn
identically

3. A variant of the traveling salesman problem:

•  where we want to know if there is a route
of some length that goes through all the
nodes in a certain network

The class NP-complete

66

Reducibility

A language A is polynomial time reducible to
language B, written A ≤P B, if there is a polynomial
time computable function f : Σ* → Σ*, where for
every w,

w ∈ A ⇔ f(w) ∈ B

f is called a polynomial time reduction of A to B

67

Definition: A language L is NP-complete if:

1. L ∈ NP

2. Every language in NP is reducible to L
(in this case L is called: NP-hard)

68

•  A problem p in NP is NP-complete if every other
problem in NP can be transformed (or reduced)
into p in polynomial time.

The class NP-complete

In other words:

69

NP-Complete Problems
Here is a list of some NP-complete problems:

1.  Punch-Card Puzzle

2.  Discrete Linear Algebra

3.  Traveling Salesperson

4.  Hamiltonian Path

ANTM is NOT NP-complete

An example of a NOT NP-complete problems:

HAMILTONIAN PATHS

b

a

e

c

d

f

h
i

g

70

