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TURING MACHINES 
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Alan Turing (1912–1954), British mathematician 
and engineer and one of the most influential 
scientists of the last century.  

Turing Machines (TM) 

The Turing machine model has become the 
standard in theoretical computer science. 
Think of a Turing Machine as a DPDA that can  
move freely through its stack (= tape). 

The Turing machine is the ultimate model of 
computation. 

In 1936, Turing introduced his abstract  
model for computation. 
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Sample Rules: 
 
If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
Let’s see how they are carried out on a piece of 

paper that contains the reverse binary 
representation of 47: 111101 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
1 1 1 1 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 1 1 1 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 1 1 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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So the successor’s output on 111101 

was 000011 which is the reverse 
binary representation of 48. 

Similarly, the successor of 127 should be 
128: 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
1 1 1 1 1 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 1 1 1 1 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 1 1 1 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 1 1 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 1 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 0 1 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 0 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 0 0 0 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 
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If read 1, write 0, go right, repeat. 
If read 0, write 1, HALT! 
If read �, write 1, HALT! 
 
0 0 0 0 0 0 0 1 

Turing Machines (TM) 

A Thinking Machine 

Example: Successor Program 



20 

TM can both write to and read from the tape 

The head can move left and right 

The string doesn’t have to be read entirely 

Accept and Reject take immediate effect 

A Comparison with FA 

Turing Machines (TM) 
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Device Separate 
Input? 

Read/Write Data 
Structure 

Deterministic 
by default? 

FA 

PDA 

TM 

A Comparison with FA and PDA 

Turing Machines (TM) 
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Device Separate 
Input? 

Read/Write Data 
Structure 

Deterministic 
by default? 

FA Yes None Yes 

PDA 

TM 

A Comparison with FA and PDA 

Turing Machines (TM) 
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Device Separate 
Input? 

Read/Write Data 
Structure 

Deterministic 
by default? 

FA Yes None Yes 

PDA Yes LIFO Stack No 

TM 

A Comparison with FA and PDA 

Turing Machines (TM) 
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Device Separate 
Input? 

Read/Write Data 
Structure 

Deterministic 
by default? 

FA Yes None Yes 

PDA Yes LIFO Stack No 

TM No 
1-way infinite 
tape.  1 cell 

access per step. 

Yes 
(but will also 

allow crashes) 

A Comparison with FA and PDA 

Turing Machines (TM) 
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FINITE 
STATE 

CONTROL 

INFINITE TAPE 

I N P U T 

 
q0 
 

 
q1 
 

A 

Turing Machines (TM) 
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0 → 0, R 

read write move 

¨ → ¨, R 
0 → 0, R 

¨ → ¨, R 

0 → 0, R 
¨ → ¨, L 

Turing Machines (TM) 

Final state 
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An edge from the state p to the state q labeled 
by … 

•  aàb,D  means if in state p and tape head 
reading a, replace a by b and move in the 
direction D, and into state q 

•  aàD     means if in state p and tape head 
reading a, don’t change a and move in the 
direction D, and into state q 

•  a|b|…|z à …   means that given that the 
tape head is reading any of the pipe 
separated symbols, take same action on 
any of the symbols 

Turing Machines (TM) 

Notations 
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A TM’s next action is completely determined by 
current state and symbol read, so can 
predict all of future actions if know: 

1.  current state 
2.  current tape contents 
3.  current position of TM’s reading “head” 

Turing Machines (TM) 

Notations 
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A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, B, F), where:   

Q is a finite set of states 

Γ is the tape alphabet, where ¨ ∈ Γ and Σ ⊆ Γ 

q0 ∈ Q is the start state 

Σ is the input alphabet, where ¨ ∉ Σ  

δ : Q × Γ → Q × Γ × {L,R}  

B  is the empty input square ¨  

F ⊆ Q is the set of final states÷ 

Turing Machines (TM) 

Definition 
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CONFIGURATIONS 

11010q700110 
q7 

1 0 0 0 0 0 1 1 1 1 

Turing Machines (TM) 
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R L 

!__1#0_110

Internal State  
set Q 

Depending on x and q the, the transition function 
value δ(q,x) = (r,y,d) tells the TM to replace the 
letter x by y, move its head in direction d∈{L,R}, and 
change its internal state to r. 

At every step,  
the head of the  
TM M reads a  
letter x from the  
tape of size ω. 

Turing Machines (TM) 

Informal Description 
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The computation can proceed indefinitely, or the  
machines reaches one of the two halting states: 

or 

!! _vv m1
!! _vv m1

accept state t 
 

reject state r 
 

Turing Machines (TM) 

Output Convention 
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A TM recognizes a language if it accepts all 
and only those strings in the language 

A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language 

A language is called Turing-recognizable or 
recursively enumerable if some TM 
recognizes it 

A language is called decidable or recursive 
if some TM decides it 

Turing Machines (TM) 
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A language is called Turing-recognizable or 
recursively enumerable if some TM 
recognizes it 

A language is called decidable or recursive 
if some TM decides it 

recursive 
languages 

r.e.  
languages 

Turing Machines (TM) 
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0 → ¨, R 

¨ → ¨, R 

qf q5 

0 → x, R 

x → x, R 
¨ → ¨, R 

x → x, R 

0 → 0, L 
x → x, L 

x → x, R 
¨ → ¨, L ¨ → ¨, R 

0 → x, R 
0 → 0, R 

¨ → ¨, R 
x → x, R 

{ 0   | n ≥ 0 } 2n 

q0 q1 

q2 

q3 

q4 

Turing Machines (TM) 
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q00000 
¨q1000 
¨xq300 
¨x0q40 
¨x0xq3 
¨x0q2x 
¨xq20x 
¨q2x0x 
q2¨x0x 

Turing Machines (TM) 
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0 
1 

5 

0à$,R 

qf 

 �   àR

2 1à$,R 

0|XàR 

1|XàR 

3 

 �   àR

0àX,L 

1àX,L 0|1|XàL 

4 

$àR 

XàR 

0àX,R 

1àX,R 

 �   àR

L={w∈{0,1}* : #(0)=#(1)}? 

Turing Machines (TM) 

Example 
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Suppose TM’s configuration at time t is given by uapxv 
where p is the current state, ua is what’s to the left of 
the head, x is what’s being read, and v is what’s to 
the right of the head. 

If δ(p,x) = (q,y,R) then write: 
uapxv  ⇒  uayqv 

With resulting configuration uayqv at time t+1.    
If, δ(p,x) = (q,y,L) instead, then write: 

uapxv  ⇒  uqayv 
There are also two special cases: 

–  head is forging new ground –pad with the blank symbol  � 
–  head is stuck at left end –by def. head stays put (only case) 

“⇒” is read as “yields” 

Turing Machines (TM) 

Definition 
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As with context free grammars, one can consider the 
reflexive, transitive closure “⇒*” of “⇒”.  i.e. this is the 
relation between strings recursively defined by: 

•   if u = v  then u ⇒* v 
•   if u ⇒v  then u ⇒* v 
•   if u ⇒*v  and v ⇒* w, then  u ⇒*w 
“⇒*” is read as “computes to” 
A string x is said to be accepted  by M  if the start 

configuration q0 x computes to some accepting 
configuration y –i.e., a configuration containing qacc. 

The language accepted by M is the set of all accepted 
strings.  I.e: 

L(M) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y } 

Turing Machines (TM) 

Definition 
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Three possibilities occur on a given input w : 
1.  The TM M eventually enters qacc and 

therefore halts and accepts.  (w ∈ L(M) ) 
2.  The TM M eventually enters qrej or crashes 

somewhere.  M rejects w . (w ∉ L(M) ) 
3.  Neither occurs!  i.e., M never halts its 

computation and is caught up in an infinite 
loop, never reaching qacc or qrej.  In this case 
w is neither accepted nor rejected. However, 
any string not explicitly accepted is 
considered to be outside the accepted 
language. (w ∉ L(M) ) 

Turing Machines (TM) 

TM Acceptor and Deciders 
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Any Turing Machines is said to be a recognizer and 
recognizes L(M); if in addition, M never enters an 
infinite loop, M is called a decider and is said to 
decide L(M). 

 
 
 
 
 
 
Q:  Is the above M an recognizer?  A decider?  What is 

L(M)? 

0 

1 

3 qf 

2 

�   àR 

1àR 

0àR 

1àR 0àR 

0àR 
1àL 

Turing Machines (TM) 

TM Acceptor and Deciders 
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0 

1 

3 qf 

2 

�   àR 

1àR 

0àR 

1àR 0àR 

0àR 
1àL 

Turing Machines (TM) 

TM Acceptor and Deciders 
A:  M is an recognizer but not a decider because 101 

causes an infinite loop. 
L(M) = 1+ 0+ 
 
 
 
 
 
 
 
 
 
 
 
 

Q:  Is L(M ) decidable ? 
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A:  Yes.  All regular languages are decidable 
because can always convert a DFA into a 
TM without infinite loops. 

Turing Machines (TM) 

TM Acceptor and Deciders 
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A non-Deterministic Turing Machine N allows 
more than one possible action per given 
state-tape symbol pair.  

A string w is accepted by N if after being put on 
the tape and letting N run, N eventually enters 
qf on some computation branch.  

If, on the other hand, given any branch, N 
eventually enters qrej or crashes or enters an 
infinite loop on, w is not accepted. 

Symbolically as before: 
L(N) = { x ∈ Σ* | ∃ accepting config. y, q0 x ⇒* y } 

(No change needed as ⇒ need not be function) 

Non-Deterministic Turing Machines (NTM) 



Content 

•  Decidability  
•  The Halting Problem 
•  Complexity 
•  The class P  
•  The class NP 
•  The class P vs. NP 
•  The class NP-Complete 
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Decidability 
•  What are the limits of algorithmic 

solvability? 
•  How can we tell if two Regular 

Expressions define the same language? 
–  or, can we? 

•  A language is decidable if some TM 
decides it (always either accepts or 
rejects, always halts) 

46 

A TM decides a language if it accepts 
all strings in the language and rejects 
all strings not in the language 

Remember: 



Example 1 

•  Acceptance Problem (DFA): Does a given 
DFA, B, accept a given string w? 

•  In terms of languages (because we have 
defined computation as accept/reject a 
language):  
– ADFA = { <B, w> | B is a DFA that accepts w } 
– For ALL input pairs <B, w> can a single TM be 

constructed that will decide <B,w> ∈ ADFA  
•  can we build one TM that will work for all DFAs? 
•  is there an algorithmic way to solve this problem? 47 

Decidability 



•  ADFA is decidable 
– given <B, w> we can decide if <B, w> ∈ ADFA 

or <B, w> ∉ ADFA 

•  Proof Idea: 
– Use a TM, M, to simulate B with input w 
– Keep track of current state and current 

position on the input string 
– Update according to the DFA’s δ 

Similarly: ANFA and ARegular Expression are also 
decidable 

Note: 

48 

Example 1 
Theorem 



CFGs 

•  ACFG = {<G, w> | G is a CFG that 
generates w} 

•  ACFG is decidable 
•  Could enumerate all strings produced 

by G: could be infinite, though 
•  Proof Idea 

– Put G in CNF 
– How deep is the parse tree for string w? 
– Check only derivations of this length 

•  possibly large, but definitely finite 49 

Example 2 



Equivalence of CFGs 

•  EQCFG = {<G, H> | G and H are CFG and 
L(G) = L(H)} 
– not decidable 
– CFGs are not closed under complement or ∩  

50 

Example 3 
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The Halting Problem 
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The Halting Problem 

In computability theory, the halting problem is the 
problem  
of determining, from a description of an arbitrary 
computer program and an input, whether the program 
will finish running or continue to run forever. 

Alan Turing proved in 1936 that a general algorithm to solve  
the halting problem for all possible program-input pairs cannot exist.  
A key part of the proof was a mathematical definition of a computer  
and program, which became known as a Turing machine; 
the halting problem is undecidable over Turing machines.  
It is one of the first examples of a decision problem. 



Will it ever stop? 
•  ATM = { <M, w> | M is a TM and M accepts w } 

– undecidable 
–  remember, decidable means that the TM will 

eventually reach an accept or reject state; it will 
halt 

– U is a Universal TM 
– TM U recognizes ATM: 

•  1. Simulate M on input w with U 
•  2. If M accepts then U accepts; if M rejects then U 

rejects; if M never halts then U never halts 
•  If we could get U to halt, then we could get M to halt 

53 



Complexity 

54 



COMPLEXITY THEORY 
Studies what can and can’t be computed under 
limited resources such as time, space, etc 

Time complexity 
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Definition: Let M be a TM that halts on all inputs. The 
running time or time-complexity of M is the function 
f : N → N, where f(n) is the maximum number of steps 
that M uses on any input of length n. 

•  M is a “f(n) time TM” 
TM is our model for computation, so 
TM ≈ algorithm 
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Time complexity 

Notation: 



Example 

•  f(n) = 5n3 + 2n2 + 22n + 6 
•  O(f(n)) = n3 

•  let c = 6 and n0 = 10 
•  5n3 + 2n2 + 22n + 6 <= 6n3  

–  for every n >= n0 

•  O(f(n)) = n4 as well, but we want the 
tightest upper bound 
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Definition: TIME(t(n)) = { L | L is a language 
decided by a O(t(n)) time using a deterministic 
Turing Machine } 

A = { 0k1k | k ≥ 0 } ∈ TIME(n2) 

Definition:  NTIME(t(n)) = { L | L is decided by a 
O(t(n))-time non-deterministic Turing machine } 

TIME(t(n)) ⊆ NTIME(t(n)) 
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Time Complexity classes 

We define the following two time complexity classes: 



P and NP 
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Polynomial vs Exponential 

•  Polynomial: n3 

•  Exponential: 3n 

•  n=1 to 10 

•  What if  
   n = 1000? 

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10

Polynomial

Exponential
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P =       TIME(nk) ∪  
k ∈ N 

61 

The class P 

A language L is in P if and only if there exists a deterministic 
Turing machine M, such that: 

•  M runs for polynomial time on all inputs 
•  For all x in L, M outputs YES (1) 
•  For all x not in L, M outputs NO (0) 

•  P is the class of languages that are 
decidable in polynomial time on a 
deterministic Turing machine 



The class P 

2.  Every context-free language is in P 
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Examples: 

1.  The class P is known to contain many natural 
problems, including: 

•  Calculating the greatest common divisor 
•  Determining if a number is prime 



Real Life 

•  Problems in class P are usually 
manageable on a real computer 
– nK 
–  though k=100 may introduce some practical 

problems 
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The class NP 

•  NP is the class of languages that are 
decidable in polynomial time on a 
nondeterministic Turing machine 
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NP =       NTIME(nk) ∪ 
k ∈ N 
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1. The decision problem version of the integer factorization problem: 

The class NP 
Examples: 

•  given integers n and k, is there a factor f with 
1 < f < k and f dividing n? 

2. The graph isomorphism problem: 

•  It is the problem of determining 
whether two graphs can be drawn 
identically 

3. A variant of the traveling salesman problem: 

•  where we want to know if there is a route 
of some length that goes through all the 
nodes in a certain network 



The class NP-complete 
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Reducibility 

A language A is polynomial time reducible to 
language B, written A ≤P B, if there is a polynomial 
time computable function f : Σ* → Σ*, where for 
every w, 

w ∈ A ⇔ f(w) ∈ B 

f is called a polynomial time reduction of A to B 
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Definition: A language L is NP-complete if: 

1. L ∈ NP 

2. Every language in NP is reducible to L 
(in this case  L is called: NP-hard) 
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•  A problem p in NP is NP-complete if every other 
problem in NP can be transformed (or reduced) 
into p in polynomial time. 

The class NP-complete 
 

In other words: 
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NP-Complete Problems 
Here is a list of some NP-complete problems: 

1.  Punch-Card Puzzle 

2.  Discrete Linear Algebra 

3.  Traveling Salesperson 

4.  Hamiltonian Path 

ANTM  is NOT NP-complete 

An example of a NOT NP-complete problems: 



HAMILTONIAN PATHS 

b 

a 

e 

c 

d 

f 

h 
i 

g 
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