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L is a Context Free Language if and only if 
there is a context free grammar G=(V,T,S,P) 
such that: 

 L = L(G) = { w∈T* : S ⇒* w } 

Context Free Languages (CFL) 

Definition 
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Context-free languages allow us to describe languages  
that are nonregular like { 0n1n : n≥0}. 
 
CFLs are complex enough to give us a model for natural  
languages (cf. Noam Chomsky) and programming languages. 
The theory of CFLs is very closely related to the problem 
of “parsing” a computer program. 

Later we will see that CFLs are the languages that can 
be recognized by automata that have one single stack:   

 { 0n1n : n≥0 } is a CFL 
 { 0n1n0n : n≥0 } is not a CFL 

Why Context Free Languages 

Context Free Languages (CFL) 



6 

Properties of CFL: 

If L1 and L2 are Context Free Languages then: 

1. The language L1 U L2 is context free 

4. The language L1 ∩ L2 may be NOT a context free 

2. The language L1 . L2 is context free 

3. The language L1 and L2 are context free * * 

5. The languages L1 and L2 may be NOT a context free - - 

Context Free Languages (CFL) 
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Exercise 

Consider the Context Free Languages: 

L1 = {anbncm: n≥0, m≥0} 

1. Show that the languages L1 U L2 , L1 .  L2 
and L1 are context free? * 

2. Show that the languages L1 ∩ L2 and  L1 are NOT 
context free 

- 

L2 = {anbmcm: n≥0, m≥0} 

Context Free Languages (CFL) 
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Let L be a context-free language 
Then there exists P such that  
if  w ∈ L and |w| ≥ P 

1.  |vy| > 0 
then w = uvxyz, where: 

3.  uvixyiz ∈ L for any i ≥ 0 
2.  |vxy| ≤ P 

Pumping Lemma for CFL 
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Idea: If w is long enough, then any parse 
tree for w must have a path that contains a 
variable more than once 

T 

R 

R 

u v x z y 

T 

u z 

R 

R 

v y 

R 

R 

v x y 

Pumping Lemma for CFL 
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If the height of a parse tree is h, the length of 
the string generated is at most: 

Formal Proof:                         Let b be the maximum number 
of symbols on the right-hand side of a rule 

bh 

Let |V| be the number of variables in G 

Define P = b|v|+2  

Let w be a string of length at least P 

Let T be the parse tree for w with the 
smallest number of nodes.  
T must have height at least |V|+2 

Pumping Lemma for CFL 
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Let T be the parse tree for w with the smallest number of 
nodes. T must have height at least |V|+2 

The longest path in T must have ≥ |V|+1 variables 
Select R to be the variable that repeats among 
the lowest |V|+1 variables 

T 

R 

R 

u v x z y 

T 

u z 

R 

v y 

R 

R 

v x y 

1.  |vy| > 0 
2.  |vxy| ≤ P 

Pumping Lemma for CFL 



12 

Pushdown 
Automata 
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Pushdown automata are for context-free languages while 
finite automata are for regular languages. 
 
 

Big difference though: PDAs have to be nondeterministic 
(deterministic PDAs are not powerful enough). 
 

PDAs are automata that have a single stack as memory. 

Push Down Automata (PDA) 
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A Nondeterministic Pushdown Automaton, Acceptor 
(NPDA) M is defined by a tuple (Q,Σ,Γ,δ,q0,z,F): 
•  Q is the finite set of internal states 
•  Σ is the finite input alphabet 
•  Γ is the finite stack alphabet 
•  δ:Q × (Σ∪{λ}) × Γ → P(Q × Γ*) is the transition  
  function of M, where each δ-value is a finite set 
•  q0∈Q is the starting state of M 
•  z∈Γ is the stack start symbol  
•  F⊆Q are the accepting, final states of M  

It is the transition function δ that we need to understand… 

Definition 
Push Down Automata (PDA) 
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FINITE 
STATE 

CONTROL 

STACK 
(Last in,  
first out) 

INPUT 

Push Down Automata (PDA) 
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input w ∈ Σ* 

x 
y 
y 
z 
x 
y 
x 
. 
. 
. 
 

stack ∈ Γ*  

The PDA M reads the  
input w ∈ Σ* from left to right. 
Depending on 
  input wj ∈ Σ∪{λ}, 
  stack symbol sj ∈ Γ,  
  and state qk ∈ Q 
…the PDA M  
  jumps to a new state ∈ Q, 
  consume input wi 
  removes sj from the stack  
  and pushes new elements ∈ Γ 
 

This is done in nondeterministic fashion. 
After reading w, the PDA will accept or reject. 

Control unit with 
internal states Q  

0 1 1 0 .. .. .. .. 

Push Down Automata (PDA) 
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x 
y 
y 
z 
x 
y 
x 
. 
. 
. 
 

stack ∈ Γ*  

For given wj ∈ Σ∪{λ},  
sj ∈ Γ and qk ∈ Q,  
the nondeterminism allows  
several possibilities for M. 
(Note the possibility of non- 
deterministic λ-transitions.) 
 

After the PDA has  
read input w it can be 
in different state ⊆ Q. 
 

If it is possible to end in an accepting  
state ∈ F⊆Q, then M accepts w. 
 

Control unit with 
internal states Q  

input w ∈ Σ* 

0 1 1 0 .. .. .. .. 

Push Down Automata (PDA) 
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If (q2,y) ∈ δ(q1,0,b) then the following transition is allowed: 

b 
x 

content stack: bx, 
with b∈Γ and x∈Γ*  

q1∈Q  y 
x 

content stack: yx, 
with y∈Γ* and x∈Γ*  

q2∈Q  goes to 

The states of the NPDA can be described by the triplets  
(q1,aw,bx) and (q2,w,yx) respectively and we denote  
this possible transition by (q1,aw,bx)    (q2,w,yx). 
 

There can be several options according to δ,  
but it is required that the set δ(q1,a,b) is finite.  

Transitions 

0 1 1 0 . . . . 0 1 1 0 . . . .

Push Down Automata (PDA) 

˧ 
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b 
x 

content stack: bx, 
with b∈Γ and x∈Γ*  

q1∈Q  y 
x 

content stack: yx, 
with y∈Γ* and x∈Γ*  

q2∈Q  goes to 

λ-Transitions 

0 1 1 0 . . . . 0 1 1 0 . . . .

If (q2,y) ∈ δ(q1,λ,b) then the following transition is allowed: 

Here the NPDA does not read a input letter and makes 
a λ-transition (compare λ-transitions for NFA).  
 
In general, if the NPDA is allowed to make several  
steps we write: (q,w1…wn,x)   * (q’,wi…wn,x’). 

Push Down Automata (PDA) 
˧ 
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• Definition: Given a NPDA M = (Q,Σ,Γ,δ,q0,z,F), the 
language accepted by M is defined by: 
 L(M) = { w∈Σ* : (q0,w,z)  * (p,λ,u) with p∈F, u∈Γ* }. 

• Note that the input part has to be empty (λ) in the end. 
• The content of the stack does not matter. 
• We only require that there is a possible transition.  
• The only role of z∈Γ is to start with a nonempty stack. 

Accepted Language 

Push Down Automata (PDA) 

˧ 
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λ, λ → $ 0, λ → 0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

q0 q1 

q2 q3 

Q = {q0, q1, q2, q3} Γ = Σ = 

δ:Q × (Σ∪{λ}) × Γ → P(Q × Γ*) 

{0,1} {$,0,1} 

δ(q1,1,0) =  { (q2, λ) } δ(q2,1,1) =  ∅ 

PDA: Example 1 δ:(q0,λ, λ) ={(q1,$)} 
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λ, λ→$ 0, λ→0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

string pop push 

0011 

STACK 

$
0011 011 

$ 0 

11 

$ 0 

1   

PDA: Example 1 
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λ, λ → $ 0, λ → 0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

string pop push 

001 

STACK $ $ 0 $ 0 

1 01 001 

PDA to recognize L = { 0n1n | n ≥ 0 } 

PDA: Example 1 
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EVEN-LENGTH PALINDROMES 
Σ = {a, b, c, …, z} 

λ, λ → $ 

λ, λ → λ 

σ,σ → λ λ,$ → λ 

q0 q1 

q2 q3 

σ, λ → σ 

PDA: Example 2 
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Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) } 

λ, λ → $ 

b,a → λ 

λ,$ → λ q0 

q5 q1 

q3 

a, λ → a 

q2 

q4 q6 λ, λ → λ λ, λ → λ λ,$ → λ 

b, λ → λ c,a → λ 

c, λ → λ 

PDA: Example 3 
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• How to make a NPDA that accepts {w∈{a,b}* : #a = #b}? 
• Central idea push/pull counting symbols 0 (for a) and  
1 (for b) on the stack as you read the string w.  
• Answer: NPDA M = ({q0,qf},{a,b},{0,1,z},δ,q0,z,{qf}) with: 
• δ(q0,λ,z) = {(qf,z)} 
δ(q0,a,z) = {(q0,0z)} 
δ(q0,b,z) = {(q0,1z)} 
δ(q0,a,0) = {(q0,00)} 
δ(q0,b,0) = {(q0,λ)} 
δ(q0,a,1) = {(q0,λ)} 
δ(q0,b,1) = {(q0,b,11)} 

Processing baab gives: 
(q0,baab,z)      (q0,aab,1z)  

     (q0,ab,z)  
     (q0,b,0z)  
     (q0,λ,z)  
     (qf,λ,z).  

Example 4 

Push Down Automata (PDA) 

˧ 
˧ 
˧ 
˧ 
˧ 
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• How to recognize wwR∈{a,b}* ? 
• Idea: Read w and put it on the stack (first 
in, last out). 
At the half-way point, start checking the 
remaining  
input string wR against the stack content wR. 

• Crucial observation: We have to guess the 
half-way point. 
 

Exercise 

Push Down Automata (PDA) 
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A language L is context-free if and only if there is a non-
deterministic pushdown automaton M that recognizes L.  

Two step proof:  
Theorem 1:  Given a CFG G, we can construct a 

 NPDA MG such that L(G)=L(MG). 
Theorem 2:  Given a PDA M, we can construct a 

 CFG G such that L(G)=L(MG). 
 
Central idea: Use Greibach normal form for the CFG 
and put the variables on the stack while reading letters. 

PDA          CFL 
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• Without loss of generality, we assume that the CFG is in Greibach 
normal form, for which we know that the derivation of w1…wn has to 
look like (assuming A→wiu):  
• S⇒…⇒w1…wi–1Ay⇒w1…wiuy⇒…⇒w1…wn with y,u∈V*. 

• Idea for PDA implementation: when reading the input string w1…wn 
from left to right on put possible u∈V* on stack: 

w1…wn 

S
 
z 

q 

w1…wi…wn 

A
y 
z 

q … 

w1…wi+1…wn 

u
y 
z 

q … 

w1…wn 

z q … 

(q,wi,A)   (q,u) 

note empty  
stack in end 

PDA          CFL 
Proof Idea 

˧ 
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• Given a CFG G=(V,T,S,P) in Greibach 
normal form, the NPDA 
M=({q0,q1,qf},T,V∪{z},δ,q0,z,{qf}) accepts 
L(G):  

•  δ(q0,λ,z) = {(q1,Sz)}  (start with S on the stack) 
•  (q1,u) ∈ δ(q1,a,A) for all A→au rules 
•  δ(q1,λ,z) = {(qf,z)} 

Proof details 

PDA          CFL 
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S à λ |a | b | aSa | bSb  

Example 

S à λ |a | b | aSA | bSB 

A à  a,  Bà b 

GNF 

δ(q0,λ,z) = {(q1,Sz)} 

δ(q1,λ,z) = {(qf,z)} 

(q1, λ) ∈ δ(q1, λ,S) 
(q1, λ) ∈ δ(q1, a,S) 

(q1, λ) ∈ δ(q1, b,S) 

(q1, SA) ∈ δ(q1, a,S) 

(q1, λ) ∈ δ(q1, a,A) 
(q1, SB) ∈ δ(q1, b,S) 

(q1, λ) ∈ δ(q1, b,B) 

PDA          CFL 
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• To prove that for every NPDA there is a 
corresponding CFG we use the same ideas as for 
the previous proofs. 

• The proof uses the assumption that the NPDA has 
only one accepting state qf that is entered when 
the stack is empty, and all transitions are of the 
form (q,a,A)   (q’,λ) or (q’,BC). 
• This assumption can be made without loss of 
generality. 

PDA          CFL 

˧ 
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Given PDA P = (Q, Σ, Γ, δ, q, F) 

Construct a CFG G = (V, Σ, R, S) such that  
L(G)=L(P)  

First, simplify P to have the following form: 

(1) It has a single accept state, qaccept 

(2) It empties the stack before accepting 

(3) Each transition either pushes a symbol or 
pops a symbol, but not both at the same time 

PDA          CFL 
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λ,λ → $ 0,λ → 0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

SIMPLIFY 

q0 q1 

q2 q3 

λ,λ → λ 

λ,λ → λ 

λ,0 → λ 

λ,λ → 0 

λ,λ → 0 

q4 

q5 

PDA          CFL 
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Idea: for each pair of states p and q in P, the 
grammar will have a variable Apq that generates 
all strings that can take P from p with an empty 
stack to q with an empty stack 

V = {Apq | p,q∈Q } 

S = Aq0qaccpet 

PDA          CFL 
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λ,λ → $ 0,λ → 0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

q0 q1 

q2 q3 

λ,0 → λ 

λ,λ → 0 

λ,λ → 0 

q4 

q5 

PDA                  CFL 
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What strings does Aq0q1  generate? 
What strings does Aq1q2  generate? 
What strings does Aq1q3  generate? 

none 
{0n1n | n > 0} 
none 

PDA                  CFL 

λ,λ → $ 0,λ → 0 

1,0 → λ 

1,0 → λ λ,$ → λ 

q0 q1 

q2 q3 

λ,0 → λ 

λ,λ → 0 

λ,λ → 0 

q4 

q5 
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Apq generates all strings that take p with an empty 
stack to q with an empty stack 

Let x be such a string 
•  P’s first move on x must be a push  
•  P’s last move on x must be a pop 

Two possibilities: 

1. The symbol popped at the end is the 
one pushed at the beginning 

2. The symbol popped at the end is not 
the one pushed at the beginning 

PDA          CFL 
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stack 
height 

input 
string p q 

Apq → aArsb 

r s 

1. The symbol popped at the end is the 
one pushed at the beginning 

b a 

δ(p,a,z) = {(r,H)} δ(s,b,H) = {(q,z)} 

PDA          CFL 
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stack 
height 

input 
string p r q 

Apq → AprArq 

2. The symbol popped at the end is not 
the one pushed at the beginning 

δ(p,a,z) = {(n,H)} δ(m,b,E) = {(q,z)} 

PDA          CFL 
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V = {Apq | p,q∈Q } 
S = Aq0qaccpet 

Formally: 

For each p,q,r,s ∈ Q, t ∈ Γ and a,b ∈ Σλ 

If (r,t) ∈ δ(p,a,λ) and (q, λ) ∈ δ(s,b,t)  
Then add the rule Apq → aArsb 

For each p,q,r ∈ Q, 
add the rule Apq → AprArq  

For each p ∈ Q, 
add the rule App → λ  

PDA          CFL 
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λ,λ → $ 0,λ → 0 

1,0 → λ 

1,0 → λ 
λ,$ → λ 

q0 q1 

q2 q3 

λ,0 → λ 

λ,λ → 0 

λ,λ → 0 

q4 

q5 

PDA          CFL Example 
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What strings does Aq0q1  generate? 
What strings does Aq1q2  generate? 
What strings does Aq1q3  generate? 

Aq0q3 → λAq1q2λ  

Aqq → λ  
Apq → AprArq  

Aq1q2 → 0Aq1q21 
Aq1q2 → 0Aq1q11 

none 
{0n1n | n > 0} 
none 

PDA          CFL Example 
λ,λ → $ 0,λ → 0 

1,0 → λ 

1,0 → λ λ,$ → λ 

q0 q1 

q2 q3 

λ,0 → λ 

λ,λ → 0 

λ,λ → 0 

q4 

q5 


