Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Content

- Context Free Languages (CFL)
- Pumping Lemma for CFL
- Pushdown Automata (PDA)
- Examples of PDA
- Convert CFL to PDA
- Convert PDA to CFL
- Examples

Definition

L is a **Context Free Language** if and only if there is a context free grammar G=(V,T,S,P)such that:

$$L = L(G) = \{ w \in T^* : S \Rightarrow^* w \}$$

Context Free Languages (CFL)

Why Context Free Languages

Context-free languages allow us to describe languages that are nonregular like { $0^n 1^n : n \ge 0$ }.

CFLs are complex enough to give us a model for natural languages (cf. Noam Chomsky) and programming languages. The theory of CFLs is very closely related to the problem of "parsing" a computer program.

Later we will see that CFLs are the languages that can be recognized by automata that have one single stack: $\{ 0^n 1^n : n \ge 0 \}$ is a CFL

 $\{0^n1^n0^n : n \ge 0\}$ is not a CFL

Context Free Languages (CFL)

Properties of CFL:

If L₁ and L₂ are Context Free Languages then:

- **1.** The language $L_1 U L_2$ is context free
- **2.** The language $L_1 \cdot L_2$ is context free
- 3. The language $\overset{*}{L_1}$ and $\overset{*}{L_2}$ are context free
- 4. The language $L_1 \cap L_2$ may be NOT a context free
- 5. The languages \overline{L}_1 and \overline{L}_2 may be NOT a context free

Context Free Languages (CFL)

Exercise

Consider the Context Free Languages:

- $L_1 = \{a^n b^n c^m : n \ge 0, m \ge 0\}$
- L₂ = {aⁿb^mc^m: n≥0, m≥0}

1. Show that the languages $L_1 U L_2$, $L_1 L_2$ and L_1^* are context free?

2. Show that the languages $L_1 \cap L_2$ and \overline{L}_1 are NOT context free

Let L be a context-free language

```
Then there exists P such that if w \in L and |w| \ge P
```

then w = uvxyz, where:

- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. $uv^ixy^iz \in L$ for any $i \ge 0$

Idea: If w is long enough, then any parse tree for w must have a path that contains a variable more than once

Formal Proof: Let b be the maximum number of symbols on the right-hand side of a rule

If the height of a parse tree is h, the length of the string generated is at most: **b**^h

Let |V| be the number of variables in G

```
Define P = b^{|v|+2}
```

Let w be a string of length at least P

Let T be the parse tree for w with the smallest number of nodes.

T must have height at least |V|+2

The longest path in T must have $\ge |V|+1$ variables Select R to be the variable that repeats among the lowest |V|+1 variables

Let T be the parse tree for w with the smallest number of nodes. T must have height at least |V|+2

11

Pushdown Automata

Pushdown automata are for context-free languages while finite automata are for regular languages.

Big difference though: PDAs have to be nondeterministic (deterministic PDAs are not powerful enough).

PDAs are automata that have a single *stack* as memory.

Definition

A Nondeterministic Pushdown Automaton, Acceptor (NPDA) M is defined by a tuple $(Q, \Sigma, \Gamma, \delta, q_0, z, F)$:

- Q is the finite set of internal states
- Σ is the finite input alphabet
- Γ is the finite stack alphabet
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow P(Q \times \Gamma^*)$ is the **transition** function of M, where each δ -value is a finite set
- $q_0 \in Q$ is the starting state of M
- $z \in \Gamma$ is the stack start symbol
- $F\subseteq Q$ are the accepting, final states of M

It is the transition function δ that we need to understand...

For given $w_j \in \Sigma \cup \{\lambda\}$, $s_j \in \Gamma$ and $q_k \in Q$, the nondeterminism allows several possibilities for M. (Note the possibility of nondeterministic λ -transitions.)

After the PDA has read input w it can be in different state \subseteq Q.

If it is possible to end in an accepting state \in F \subseteq Q, then M accepts w.

Transitions

If $(q_2,y) \in \delta(q_1,0,b)$ then the following transition is allowed:

The states of the NPDA can be described by the triplets (q_1,aw,bx) and (q_2,w,yx) respectively and we denote this possible transition by $(q_1,aw,bx) + (q_2,w,yx)$.

There can be several options according to δ , but it is required that the set $\delta(q_1,a,b)$ is finite.

λ -Transitions

If $(q_2, y) \in \delta(q_1, \lambda, b)$ then the following transition is allowed:

Here the NPDA does not read a input letter and makes a λ -transition (compare λ -transitions for NFA).

In general, if the NPDA is allowed to make several steps we write: $(q,w_1...w_n,x) + (q',w_1...w_n,x')$.

Accepted Language

•Definition: Given a NPDA M = $(Q, \Sigma, \Gamma, \delta, q_0, z, F)$, the language accepted by M is defined by: $L(M) = \{ w \in \Sigma^* : (q_0, w, z) \}^* (p, \lambda, u) \text{ with } p \in F, u \in \Gamma^* \}.$

- •Note that the input part has to be empty (λ) in the end.
- •The content of the stack does not matter.
- •We only require that there is a possible transition.
- •The only role of $z \in \Gamma$ is to start with a nonempty stack.

Ρ

 $Q = \{q_0, q_1, q_2, q_3\} \qquad \Sigma = \{0, 1\} \qquad \Gamma = \{\$, 0, 1\}$

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \to \mathbf{P}(Q \times \Gamma^*)$

 $\delta(q_1, 1, 0) = \{ (q_2, \lambda) \}$ $\delta(q_2, 1, 1) = Ø$

PDA: Example 1

PDA: Example 1

PDA to recognize $L = \{ 0^n 1^n | n \ge 0 \}$

EVEN-LENGTH **PALINDROMES** Σ = {a, b, c, ..., z}

PDA: Example 3

Example 4

•How to make a NPDA that accepts $\{w \in \{a,b\}^* : \#a = \#b\}$?

•Central idea push/pull counting symbols 0 (for a) and 1 (for b) on the stack as you read the string w.

•Answer: NPDA M = ($\{q_0,q_f\},\{a,b\},\{0,1,z\},\delta,q_0,z,\{q_f\}$) with:

$$\begin{split} \bullet \delta(q_0, \lambda, z) &= \{(q_f, z)\} \\ \delta(q_0, a, z) &= \{(q_0, 0z)\} \\ \delta(q_0, b, z) &= \{(q_0, 1z)\} \\ \delta(q_0, a, 0) &= \{(q_0, 1z)\} \\ \delta(q_0, a, 0) &= \{(q_0, 00)\} \\ \delta(q_0, b, 0) &= \{(q_0, \lambda)\} \\ \delta(q_0, b, 1) &= \{(q_0, \lambda)\} \\ \delta(q_0, b, 1) &= \{(q_0, b, 11)\} \end{split}$$

Processing baab gives: $(q_0, baab, z) \downarrow (q_0, aab, 1z)$ $\vdash (q_0, ab, z)$ $\vdash (q_0, b, 0z)$ $\vdash (q_0, \lambda, z)$ $\vdash (q_f, \lambda, z).$ Exercise

- •How to recognize ww^R∈{a,b}* ?
- Idea: Read w and put it on the stack (first in, last out).
 At the half-way point, start checking the remaining input string w^R against the stack content w^R.

•Crucial observation: We have to guess the half-way point.

PDA 🔶 CFL

A language L is context-free if and only if there is a nondeterministic pushdown automaton M that recognizes L.

Two step proc	of:
Theorem 1:	Given a CFG G, we can construct a
	NPDA M _G such that L(G)=L(M _G).
Theorem 2:	Given a PDA M, we can construct a
	CFG G such that L(G)=L(M _G).

Central idea: Use Greibach normal form for the CFG and put the variables on the stack while reading letters.

PDA 🗲 CFL

Proof Idea

•Without loss of generality, we assume that the CFG is in Greibach normal form, for which we know that the derivation of $w_1...w_n$ has to look like (assuming $A \rightarrow w_i u$):

•S
$$\Rightarrow$$
... \Rightarrow W₁...W_{i-1}Ay \Rightarrow W₁...W_iUy \Rightarrow ... \Rightarrow W₁...W_n with y,u \in V*.

•Idea for PDA implementation: when reading the input string $w_1...w_n$ from left to right on put possible $u \in V^*$ on stack:

PDA 🗲 CFL

Proof details

•Given a CFG G=(V,T,S,P) in Greibach normal form, the NPDA M=($\{q_0,q_1,q_f\},T,V\cup\{z\},\delta,q_0,z,\{q_f\}$) accepts L(G):

- $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$ (start with S on the stack)
- $(q_1,u) \in \delta(q_1,a,A)$ for all $A \rightarrow au$ rules
- $\delta(q_1,\lambda,z) = \{(q_f,z)\}$

PDA
$$\leftarrow$$
 CFLExampleS $\rightarrow \lambda |a| b | aSa | bSb$ $S \rightarrow \lambda |a| b | aSA | bSB$ A $\rightarrow a, B \rightarrow b$

$\delta(q_0,\lambda,z) = \{(q_1,Sz)\}$

$$(q_1, \lambda) \in \delta(q_1, \lambda, S)$$

 $(q_1, \lambda) \in \delta(q_1, a, S)$
 $(q_1, \lambda) \in \delta(q_1, b, S)$

$$(q_1, SA) \in \delta(q_1, a, S)$$

 $(q_1, SB) \in \delta(q_1, b, S)$
 $(q_1, \lambda) \in \delta(q_1, a, A)$
 $(q_1, \lambda) \in \delta(q_1, b, B)$

 $\delta(q_1,\lambda,z) = \{(q_f,z)\}$

- •To prove that for every NPDA there is a corresponding CFG we use the same ideas as for the previous proofs.
- •The proof uses the assumption that the NPDA has only one accepting state q_f that is entered when the stack is empty, and all transitions are of the form (q,a,A) (q'_i, λ) or (q',BC).
- •This assumption can be made without loss of generality.

- Given PDA P = (Q, Σ, Γ, δ, q, F)
- Construct a CFG G = (V, Σ, R, S) such that L(G)=L(P)
- First, simplify P to have the following form:
 - (1) It has a single accept state, q_{accept}
 - (2) It empties the stack before accepting
 - (3) Each transition either pushes a symbol or pops a symbol, but not both at the same time

Idea: for each pair of states p and q in P, the grammar will have a variable A_{pq} that generates all strings that can take P from p with an empty stack to q with an empty stack

 $S = Aq_0q_{accpet}$

 A_{pq} generates all strings that take p with an empty stack to q with an empty stack

Let x be such a string

- P's first move on x must be a push
- P's last move on x must be a pop

Two possibilities:

1. The symbol popped at the end is the one pushed at the beginning

2. The symbol popped at the end is not the one pushed at the beginning

PDA — CFL

1. The symbol popped at the end is the one pushed at the beginning

2. The symbol popped at the end is not the one pushed at the beginning

 $A_{pq} \rightarrow A_{pr}A_{rq}$

40

Formally: $V = \{A_{pq} | p,q \in Q\}$ $S = A_{q_0q_{accpet}}$

> For each p,q,r,s \in Q, t \in Γ and a,b \in Σ_{λ} If (r,t) $\in \delta$ (p,a, λ) and (q, λ) $\in \delta$ (s,b,t) Then add the rule $A_{pq} \rightarrow aA_{rs}b$

For each p,q,r \in Q, add the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ For each p \in Q, add the rule $A_{pp} \rightarrow \lambda$

What strings does $A_{q_0q_1}$ generate? none What strings does $A_{q_1q_2}$ generate? { $0^n1^n | n > 0$ } What strings does $A_{q_1q_3}$ generate? none 43