
Automata and Languages

 Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu

Japan

Content

•  Context Free Languages (CFL)
•  Pumping Lemma for CFL
•  Pushdown Automata (PDA)
•  Examples of PDA
•  Convert CFL to PDA
•  Convert PDA to CFL
•  Examples

2

3

Grammar

Regular Grammar Context-free Grammar Context-sensitive Grammar

Regular Languages Context Free Languages Context Sensitive Languages

Languages

4

	

L is a Context Free Language if and only if
there is a context free grammar G=(V,T,S,P)
such that:

 L = L(G) = { w∈T* : S ⇒* w }

Context Free Languages (CFL)

Definition

5

Context-free languages allow us to describe languages
that are nonregular like { 0n1n : n≥0}.

CFLs are complex enough to give us a model for natural
languages (cf. Noam Chomsky) and programming languages.
The theory of CFLs is very closely related to the problem
of “parsing” a computer program.

Later we will see that CFLs are the languages that can
be recognized by automata that have one single stack:

 { 0n1n : n≥0 } is a CFL
 { 0n1n0n : n≥0 } is not a CFL

Why Context Free Languages

Context Free Languages (CFL)

6

Properties of CFL:

If L1 and L2 are Context Free Languages then:

1. The language L1 U L2 is context free

4. The language L1 ∩ L2 may be NOT a context free

2. The language L1 . L2 is context free

3. The language L1 and L2 are context free * *

5. The languages L1 and L2 may be NOT a context free - -

Context Free Languages (CFL)

7

Exercise

Consider the Context Free Languages:

L1 = {anbncm: n≥0, m≥0}

1. Show that the languages L1 U L2 , L1 . L2
and L1 are context free? *

2. Show that the languages L1 ∩ L2 and L1 are NOT
context free

-

L2 = {anbmcm: n≥0, m≥0}

Context Free Languages (CFL)

8

Let L be a context-free language
Then there exists P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then w = uvxyz, where:

3. uvixyiz ∈ L for any i ≥ 0
2. |vxy| ≤ P

Pumping Lemma for CFL

9

Idea: If w is long enough, then any parse
tree for w must have a path that contains a
variable more than once

T

R

R

u v x z y

T

u z

R

R

v y

R

R

v x y

Pumping Lemma for CFL

10

If the height of a parse tree is h, the length of
the string generated is at most:

Formal Proof: Let b be the maximum number
of symbols on the right-hand side of a rule

bh

Let |V| be the number of variables in G

Define P = b|v|+2

Let w be a string of length at least P

Let T be the parse tree for w with the
smallest number of nodes.
T must have height at least |V|+2

Pumping Lemma for CFL

11
Let T be the parse tree for w with the smallest number of
nodes. T must have height at least |V|+2

The longest path in T must have ≥ |V|+1 variables
Select R to be the variable that repeats among
the lowest |V|+1 variables

T

R

R

u v x z y

T

u z

R

v y

R

R

v x y

1. |vy| > 0
2. |vxy| ≤ P

Pumping Lemma for CFL

12

Pushdown
Automata

13

Pushdown automata are for context-free languages while
finite automata are for regular languages.

Big difference though: PDAs have to be nondeterministic
(deterministic PDAs are not powerful enough).

PDAs are automata that have a single stack as memory.

Push Down Automata (PDA)

14

A Nondeterministic Pushdown Automaton, Acceptor
(NPDA) M is defined by a tuple (Q,Σ,Γ,δ,q0,z,F):
•  Q is the finite set of internal states
•  Σ is the finite input alphabet
•  Γ is the finite stack alphabet
•  δ:Q × (Σ∪{λ}) × Γ → P(Q × Γ*) is the transition
 function of M, where each δ-value is a finite set
•  q0∈Q is the starting state of M
•  z∈Γ is the stack start symbol
•  F⊆Q are the accepting, final states of M

It is the transition function δ that we need to understand…

Definition
Push Down Automata (PDA)

15

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

Push Down Automata (PDA)

16

input w ∈ Σ*

x
y
y
z
x
y
x
.
.
.

stack ∈ Γ*

The PDA M reads the
input w ∈ Σ* from left to right.
Depending on
 input wj ∈ Σ∪{λ},
 stack symbol sj ∈ Γ,
 and state qk ∈ Q
…the PDA M
 jumps to a new state ∈ Q,
 consume input wi
 removes sj from the stack
 and pushes new elements ∈ Γ

This is done in nondeterministic fashion.
After reading w, the PDA will accept or reject.

Control unit with
internal states Q

0 1 1 0

Push Down Automata (PDA)

17

x
y
y
z
x
y
x
.
.
.

stack ∈ Γ*

For given wj ∈ Σ∪{λ},
sj ∈ Γ and qk ∈ Q,
the nondeterminism allows
several possibilities for M.
(Note the possibility of non-
deterministic λ-transitions.)

After the PDA has
read input w it can be
in different state ⊆ Q.

If it is possible to end in an accepting
state ∈ F⊆Q, then M accepts w.

Control unit with
internal states Q

input w ∈ Σ*

0 1 1 0

Push Down Automata (PDA)

18

If (q2,y) ∈ δ(q1,0,b) then the following transition is allowed:

b
x

content stack: bx,
with b∈Γ and x∈Γ*

q1∈Q y
x

content stack: yx,
with y∈Γ* and x∈Γ*

q2∈Q goes to

The states of the NPDA can be described by the triplets
(q1,aw,bx) and (q2,w,yx) respectively and we denote
this possible transition by (q1,aw,bx) (q2,w,yx).

There can be several options according to δ,
but it is required that the set δ(q1,a,b) is finite.

Transitions

0 1 1 0 0 1 1 0

Push Down Automata (PDA)

˧

19

b
x

content stack: bx,
with b∈Γ and x∈Γ*

q1∈Q y
x

content stack: yx,
with y∈Γ* and x∈Γ*

q2∈Q goes to

λ-Transitions

0 1 1 0 0 1 1 0

If (q2,y) ∈ δ(q1,λ,b) then the following transition is allowed:

Here the NPDA does not read a input letter and makes
a λ-transition (compare λ-transitions for NFA).

In general, if the NPDA is allowed to make several
steps we write: (q,w1…wn,x) * (q’,wi…wn,x’).

Push Down Automata (PDA)
˧

20

• Definition: Given a NPDA M = (Q,Σ,Γ,δ,q0,z,F), the
language accepted by M is defined by:
 L(M) = { w∈Σ* : (q0,w,z) * (p,λ,u) with p∈F, u∈Γ* }.

• Note that the input part has to be empty (λ) in the end.
• The content of the stack does not matter.
• We only require that there is a possible transition.
• The only role of z∈Γ is to start with a nonempty stack.

Accepted Language

Push Down Automata (PDA)

˧

21

λ, λ → $ 0, λ → 0

1,0 → λ

1,0 → λ
λ,$ → λ

q0 q1

q2 q3

Q = {q0, q1, q2, q3} Γ = Σ =

δ:Q × (Σ∪{λ}) × Γ → P(Q × Γ*)

{0,1} {$,0,1}

δ(q1,1,0) = { (q2, λ) } δ(q2,1,1) = ∅

PDA: Example 1 δ:(q0,λ, λ) ={(q1,$)}

22

λ, λ→$ 0, λ→0

1,0 → λ

1,0 → λ
λ,$ → λ

string pop push

0011

STACK

$
0011 011

$ 0

11

$ 0

1

PDA: Example 1

23

λ, λ → $ 0, λ → 0

1,0 → λ

1,0 → λ
λ,$ → λ

string pop push

001

STACK $ $ 0 $ 0

1 01 001

PDA to recognize L = { 0n1n | n ≥ 0 }

PDA: Example 1

24

EVEN-LENGTH PALINDROMES
Σ = {a, b, c, …, z}

λ, λ → $

λ, λ → λ

σ,σ → λ λ,$ → λ

q0 q1

q2 q3

σ, λ → σ

PDA: Example 2

25

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

λ, λ → $

b,a → λ

λ,$ → λ q0

q5 q1

q3

a, λ → a

q2

q4 q6 λ, λ → λ λ, λ → λ λ,$ → λ

b, λ → λ c,a → λ

c, λ → λ

PDA: Example 3

26

• How to make a NPDA that accepts {w∈{a,b}* : #a = #b}?
• Central idea push/pull counting symbols 0 (for a) and
1 (for b) on the stack as you read the string w.
• Answer: NPDA M = ({q0,qf},{a,b},{0,1,z},δ,q0,z,{qf}) with:
• δ(q0,λ,z) = {(qf,z)}
δ(q0,a,z) = {(q0,0z)}
δ(q0,b,z) = {(q0,1z)}
δ(q0,a,0) = {(q0,00)}
δ(q0,b,0) = {(q0,λ)}
δ(q0,a,1) = {(q0,λ)}
δ(q0,b,1) = {(q0,b,11)}

Processing baab gives:
(q0,baab,z) (q0,aab,1z)

 (q0,ab,z)
 (q0,b,0z)
 (q0,λ,z)
 (qf,λ,z).

Example 4

Push Down Automata (PDA)

˧
˧
˧
˧
˧

27

• How to recognize wwR∈{a,b}* ?
• Idea: Read w and put it on the stack (first
in, last out).
At the half-way point, start checking the
remaining
input string wR against the stack content wR.

• Crucial observation: We have to guess the
half-way point.

Exercise

Push Down Automata (PDA)

28

A language L is context-free if and only if there is a non-
deterministic pushdown automaton M that recognizes L.

Two step proof:
Theorem 1: Given a CFG G, we can construct a

 NPDA MG such that L(G)=L(MG).
Theorem 2: Given a PDA M, we can construct a

 CFG G such that L(G)=L(MG).

Central idea: Use Greibach normal form for the CFG
and put the variables on the stack while reading letters.

PDA CFL

29

• Without loss of generality, we assume that the CFG is in Greibach
normal form, for which we know that the derivation of w1…wn has to
look like (assuming A→wiu):
• S⇒…⇒w1…wi–1Ay⇒w1…wiuy⇒…⇒w1…wn with y,u∈V*.

• Idea for PDA implementation: when reading the input string w1…wn
from left to right on put possible u∈V* on stack:

w1…wn

S

z

q

w1…wi…wn

A
y
z

q …

w1…wi+1…wn

u
y
z

q …

w1…wn

z q …

(q,wi,A) (q,u)

note empty
stack in end

PDA CFL
Proof Idea

˧

30

• Given a CFG G=(V,T,S,P) in Greibach
normal form, the NPDA
M=({q0,q1,qf},T,V∪{z},δ,q0,z,{qf}) accepts
L(G):

•  δ(q0,λ,z) = {(q1,Sz)} (start with S on the stack)
•  (q1,u) ∈ δ(q1,a,A) for all A→au rules
•  δ(q1,λ,z) = {(qf,z)}

Proof details

PDA CFL

31

S à λ |a | b | aSa | bSb

Example

S à λ |a | b | aSA | bSB

A à a, Bà b

GNF

δ(q0,λ,z) = {(q1,Sz)}

δ(q1,λ,z) = {(qf,z)}

(q1, λ) ∈ δ(q1, λ,S)
(q1, λ) ∈ δ(q1, a,S)

(q1, λ) ∈ δ(q1, b,S)

(q1, SA) ∈ δ(q1, a,S)

(q1, λ) ∈ δ(q1, a,A)
(q1, SB) ∈ δ(q1, b,S)

(q1, λ) ∈ δ(q1, b,B)

PDA CFL

32

• To prove that for every NPDA there is a
corresponding CFG we use the same ideas as for
the previous proofs.

• The proof uses the assumption that the NPDA has
only one accepting state qf that is entered when
the stack is empty, and all transitions are of the
form (q,a,A) (q’,λ) or (q’,BC).
• This assumption can be made without loss of
generality.

PDA CFL

˧

33

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that
L(G)=L(P)

First, simplify P to have the following form:

(1) It has a single accept state, qaccept

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

PDA CFL

34

λ,λ → $ 0,λ → 0

1,0 → λ

1,0 → λ
λ,$ → λ

SIMPLIFY

q0 q1

q2 q3

λ,λ → λ

λ,λ → λ

λ,0 → λ

λ,λ → 0

λ,λ → 0

q4

q5

PDA CFL

35

Idea: for each pair of states p and q in P, the
grammar will have a variable Apq that generates
all strings that can take P from p with an empty
stack to q with an empty stack

V = {Apq | p,q∈Q }

S = Aq0qaccpet

PDA CFL

36

λ,λ → $ 0,λ → 0

1,0 → λ

1,0 → λ
λ,$ → λ

q0 q1

q2 q3

λ,0 → λ

λ,λ → 0

λ,λ → 0

q4

q5

PDA CFL

37

What strings does Aq0q1 generate?
What strings does Aq1q2 generate?
What strings does Aq1q3 generate?

none
{0n1n | n > 0}
none

PDA CFL

λ,λ → $ 0,λ → 0

1,0 → λ

1,0 → λ λ,$ → λ

q0 q1

q2 q3

λ,0 → λ

λ,λ → 0

λ,λ → 0

q4

q5

38

Apq generates all strings that take p with an empty
stack to q with an empty stack

Let x be such a string
•  P’s first move on x must be a push
•  P’s last move on x must be a pop

Two possibilities:

1. The symbol popped at the end is the
one pushed at the beginning

2. The symbol popped at the end is not
the one pushed at the beginning

PDA CFL

39

stack
height

input
string p q

Apq → aArsb

r s

1. The symbol popped at the end is the
one pushed at the beginning

b a

δ(p,a,z) = {(r,H)} δ(s,b,H) = {(q,z)}

PDA CFL

40

stack
height

input
string p r q

Apq → AprArq

2. The symbol popped at the end is not
the one pushed at the beginning

δ(p,a,z) = {(n,H)} δ(m,b,E) = {(q,z)}

PDA CFL

41

V = {Apq | p,q∈Q }
S = Aq0qaccpet

Formally:

For each p,q,r,s ∈ Q, t ∈ Γ and a,b ∈ Σλ

If (r,t) ∈ δ(p,a,λ) and (q, λ) ∈ δ(s,b,t)
Then add the rule Apq → aArsb

For each p,q,r ∈ Q,
add the rule Apq → AprArq

For each p ∈ Q,
add the rule App → λ

PDA CFL

42

λ,λ → $ 0,λ → 0

1,0 → λ

1,0 → λ
λ,$ → λ

q0 q1

q2 q3

λ,0 → λ

λ,λ → 0

λ,λ → 0

q4

q5

PDA CFL Example

43

What strings does Aq0q1 generate?
What strings does Aq1q2 generate?
What strings does Aq1q3 generate?

Aq0q3 → λAq1q2λ

Aqq → λ
Apq → AprArq

Aq1q2 → 0Aq1q21
Aq1q2 → 0Aq1q11

none
{0n1n | n > 0}
none

PDA CFL Example
λ,λ → $ 0,λ → 0

1,0 → λ

1,0 → λ λ,$ → λ

q0 q1

q2 q3

λ,0 → λ

λ,λ → 0

λ,λ → 0

q4

q5

