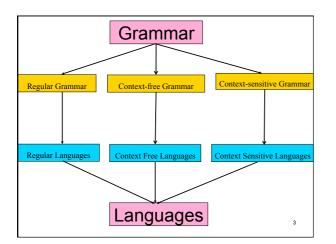
Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Content

- Context Free Languages (CFL)
- · Pumping Lemma for CFL
- Pushdown Automata (PDA)
- Examples of PDA
- Convert CFL to PDA
- · Convert PDA to CFL
- Examples



Context Free Languages (CFL)DefinitionL is a Context Free Language if and only if
there is a context free grammar G=(V,T,S,P)
such that:
 $L = L(G) = \{ w \in T^* : S \Rightarrow^* w \}$

Context Free Languages (CFL)

Why Context Free Languages

Context-free languages allow us to describe languages that are nonregular like { $0^{n1n} : n \ge 0$ }.

CFLs are complex enough to give us a model for natural languages (cf. Noam Chomsky) and programming languages. The theory of CFLs is very closely related to the problem of "parsing" a computer program.

Later we will see that CFLs are the languages that can be recognized by automata that have one single stack: $\{ 0^n 1^n : n \ge 0 \}$ is a CFL $\{ 0^n 1^n 0^n : n \ge 0 \}$ is not a CFL

Context Free Languages (CFL)

Properties of CFL:

If L₁ and L₂ are Context Free Languages then:

- 1. The language L₁ U L₂ is context free
- 2. The language $L_1 \cdot L_2$ is context free
- 3. The language $\dot{L_1}$ and $\dot{L_2}$ are context free
- 4. The language $L_1 \cap L_2$ may be NOT a context free
- 5. The languages \tilde{L}_1 and \tilde{L}_2 may be NOT a context free

Context Free Languages (CFL)

Exercise

Consider the Context Free Languages:

 $L_1 = \{a^n b^n c^m : n \ge 0, m \ge 0\}$

```
L<sub>2</sub> = {a<sup>n</sup>b<sup>m</sup>c<sup>m</sup>: n≥0, m≥0}
```

1. Show that the languages $L_1 \ U \ L_2$, L_1 . $\ L_2$ and L_1^* are context free?

2. Show that the languages $L_1\cap L_2$ and $\,\tilde{L}_1\, are\, NOT$ context free

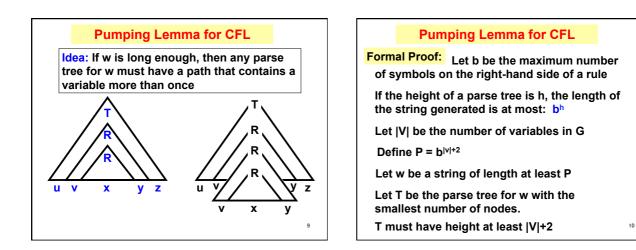
Pumping Lemma for CFL

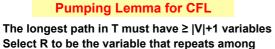
Let L be a context-free language

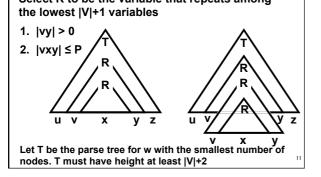
Then there exists P such that if $w \in L$ and $|w| \ge P$

then w = uvxyz, where:

- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. $uv^i xy^i z \in L$ for any $i \ge 0$







Pushdown Automata

12

Pushdown automata are for context-free languages while finite automata are for regular languages.

Big difference though: PDAs have to be nondeterministic (deterministic PDAs are not powerful enough).

PDAs are automata that have a single stack as memory.

Push Down Automata (PDA)

Definition

13

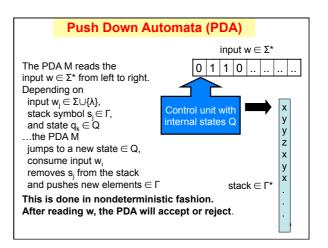
A Nondeterministic Pushdown Automaton, Acceptor

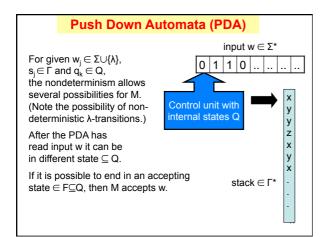
- (**NPDA**) M is defined by a tuple $(Q, \Sigma, \Gamma, \delta, q_0, z, F)$: • Q is the finite set of internal states
- Σ is the finite input alphabet
- Γ is the finite stack alphabet
- $\delta: \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \mathbf{P}(\mathbb{Q} \times \Gamma^*)$ is the **transition function** of M, where each δ -value is a finite set
- $q_0 \in Q$ is the starting state of M
- z∈Γ is the stack start symbol
- F⊆Q are the accepting, final states of M

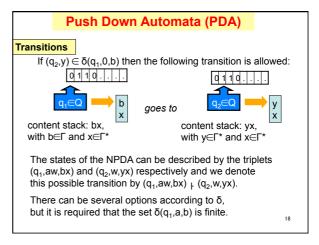
It is the transition function δ that we need to understand...

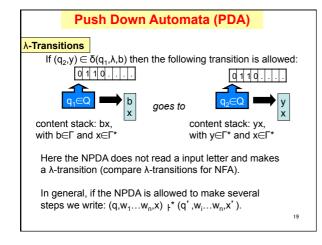
14

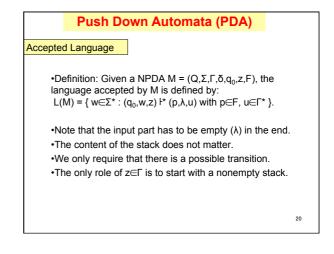
Push Down Automata (PDA)

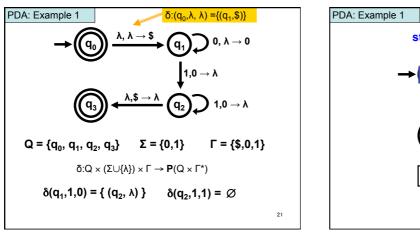


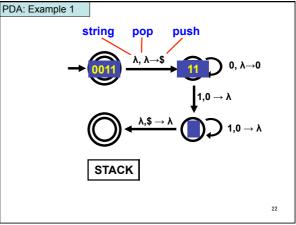


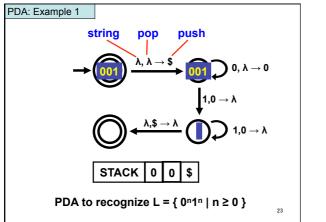


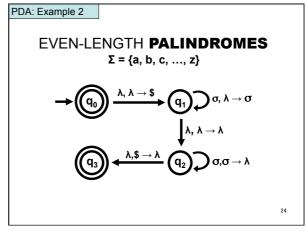








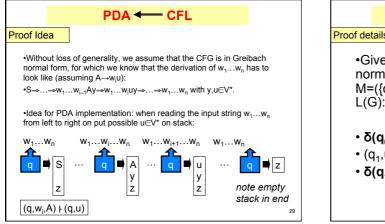


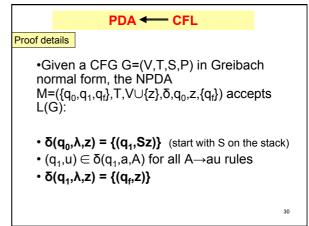


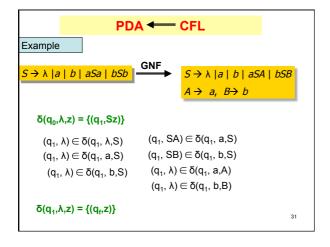


	Push Down Automata (PDA)		
Exercise			
	 w to recognize ww ^R ∈{a,b}* ?		
 Idea: Read w and put it on the stack (first in, last out). At the half-way point, start checking the 			
	aining It string w ^R against the stack content w ^R .	-	
	ucial observation: We have to guess the -way point.		
		27	

	PDA 🔶 CFL	
0 0	is context-free if and only if there is a non- pushdown automaton M that recognizes L.	
Two step prod		
Theorem 1:	Given a CFG G, we can construct a NPDA M_G such that L(G)=L(M_G).	
Theorem 2:	Given a PDA M, we can construct a CFG G such that $L(G)=L(M_G)$.	
	Use Greibach normal form for the CFG ariables on the stack while reading letters.	
		28







PDA → CFL	
•To prove that for every NPDA there is a corresponding CFG we use the same ideas the previous proofs.	as for
•The proof uses the assumption that the NF only one accepting state q_f that is entered w the stack is empty, and all transitions are of form (q,a,A) (q \; , λ) or (q',BC). •This assumption can be made without loss generality.	hen the
	32

PDA→→ CFL

Given PDA P = (Q, Σ , Γ , δ , q, F)

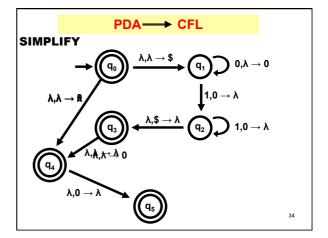
Construct a CFG G = (V, Σ , R, S) such that L(G)=L(P)

First, simplify P to have the following form:

(1) It has a single accept state, q_{accept}

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or pops a symbol, but not both at the same time



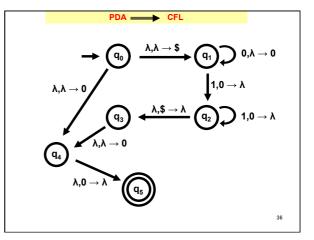
PDA ----> CFL

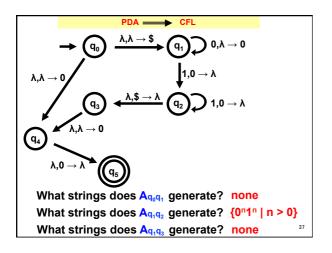
Idea: for each pair of states p and q in P, the grammar will have a variable A_{pq} that generates all strings that can take P from p with an empty stack to q with an empty stack

V = {A_{pq} | p,q∈Q }

35

 $\mathbf{S} = \mathbf{A}_{\mathbf{q}_{0}\mathbf{q}_{\mathrm{accpet}}}$





 \mathbf{A}_{pq} generates all strings that take p with an empty stack to q with an empty stack

Let x be such a string

- P's first move on x must be a push
- P's last move on x must be a pop

Two possibilities:

1. The symbol popped at the end is the one pushed at the beginning

2. The symbol popped at the end is not the one pushed at the beginning

38

