Content

» Context Free Languages (CFL)
* Pumping Lemma for CFL

* Pushdown Automata (PDA)

« Examples of PDA

Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.

The University of Aizu » Convert CFL to PDA
Japan « Convert PDA to CFL
* Examples
Grammar Context Free Languages (CFL)
Regular Grammar ’ Context-free Grammar ‘ ’COntext—sensilive Grammar
L is a Context Free Language if and only if
there is a context free grammar G=(V,T,S,P)
such that:
Regular [| | Context Free [| |Context Sensitive [L= L(G) = { wET*: S =*w }

\Languages\ .

Context Free Languages (CFL)

‘Why Context Free Languages ‘

Context-free languages allow us to describe languages
that are nonregular like { 01" : n=0}.

CFLs are complex enough to give us a model for natural

languages (cf. Noam Chomsky) and programming languages.

The theory of CFLs is very closely related to the problem
of “parsing” a computer program.

Later we will see that CFLs are the languages that can
be recognized by automata that have one single stack:
{0"M":n=0}isa CFL
{ 00" : n=0 } is not a CFL

Context Free Languages (CFL)

‘ Properties of CFL: ‘

If L, and L, are Context Free Languages then:

1. The language L, U L, is context free

2. The language L, . L, is context free

3. The language I:1 and Ifz are context free

4. The language L, N L, may be NOT a context free

5. The languages L, and L, may be NOT a context free

6

Context Free Languages (CFL)

Consider the Context Free Languages:

L, = {a"b"c™: n20, m20}
L, = {a"b™c™: n20, m20}

1. Show that the languages L, UL,,L,. L,
and L, are context free?

2. Show that the languages L, N L, and L, are NOT
context free

Pumping Lemma for CFL

Let L be a context-free language

Then there exists P such that
if welLand |w|2P

then w = uvxyz, where:
1. |vy|>0
2. |vxy| <P
3. uvixyizeLforanyi20

Pumping Lemma for CFL

Idea: If w is long enough, then any parse
tree for w must have a path that contains a
variable more than once

T

>
A A A0 H

Pumping Lemma for CFL

Formal Proof: | ot b be the maximum number
of symbols on the right-hand side of a rule

If the height of a parse tree is h, the length of
the string generated is at most: b"

Let |V| be the number of variables in G
Define P = blvI*2
Let w be a string of length at least P

Let T be the parse tree for w with the
smallest number of nodes.

T must have height at least |V|+2 10

Pumping Lemma for CFL

The longest path in T must have 2 |V|+1 variables
Select R to be the variable that repeats among
the lowest |V|+1 variables

1. |vy|>0
2. |vxy|sP

(NN LN\

v X
Let T be the parse tree for w with the smallest numberyof
nodes. T must have height at least |V|+2

1

Pushdown
Automata

Push Down Automata (PDA)

Pushdown automata are for context-free languages while
finite automata are for regular languages.

Big difference though: PDAs have to be nondeterministic
(deterministic PDAs are not powerful enough).

PDAs are automata that have a single stack as memory.

Push Down Automata (PDA)

Definition

A Nondeterministic Pushdown Automaton, Acceptor

(NPDA) M is defined by a tuple (Q,Z,I',9,q,,z,F):

» Qs the finite set of internal states

* 2 is the finite input alphabet

« [is the finite stack alphabet

*0:Q x (ZU{A}) x ' — P(Q x ™) is the transition
function of M, where each d-value is a finite set

* qoEQ is the starting state of M

« zeT is the stack start symbol

» FCQ are the accepting, final states of M

It is the transition function d that we need to understand...

Push Down Automata (PDA)

FINITE _1 INPUT
STATE

CONTROL
_1

STACK
(Last in,
first out)

Push Down Automata (PDA)
inputw € *
o[1]1]o].[.[..[.]

The PDA M reads the
input w € Z* from left to right.
Depending on
input w; € ZU{A},
stack symbol S€ r,
and state q, €Q
...the PDAM
jumps to a new state € Q,
consume input w;
removes s; from the stack
and pushes new elements € I stack e ™

This is done in nondeterministic fashion.
After reading w, the PDA will accept or reject.

Control unit with -

internal states Q

X< X N< < x|

Push Down Automata (PDA)

inputw € 2*

Push Down Automata (PDA)

Transitions

For given w; € ZU{A},

s;€ Iand q, € Q,

the nondeterminism allows
several possibilities for M.
(Note the possibility of non-
deterministic A-transitions.)

After the PDA has
read input w it can be
in different state C Q.

If it is possible to end in an accepting
state € FCQ, then M accepts w.

Control unit with -

internal states Q

X< X N<< x|

stack € ™

If (qz,y) € 6(q1,0 b) then the following transition is allowed:

@ -
goes to

content stack: bx,
with bel” and xelr*

content stack: yx,
with yel™* and xel

The states of the NPDA can be described by the triplets
(a4,aw,bx) and (q,,w,yx) respectively and we denote
this possible transition by (q,aw,bx) } (q,,w,yx).

There can be several options according to 9,
but it is required that the set 8(q4,a,b) is finite.

Push Down Automata (PDA)

A-Transitions

If (9,,y) € 8(q4,A, b) then the following transition is allowed:

CEECH

@ - goes to @

X

content stack: bx,
with bel" and xel™*

content stack: yx,
with yel™* and xel*

Here the NPDA does not read a input letter and makes
a A-transition (compare A-transitions for NFA).

In general, if the NPDA is allowed to make several
steps we write: (q,W4...W,,X) +* (@ ,W;...w,,X").

Push Down Automata (PDA)

Accepted Language ‘

Definition: Given a NPDA M = (Q,%,I",8,q9,,2,F), the
language accepted by M is defined by:
L(M) = { wEX* : (qp,W,2) I* (p,A,u) with pEF, uer* }.

*Note that the input part has to be empty (A) in the end.
*The content of the stack does not matter.

*We only require that there is a possible transition.
*The only role of z€T is to start with a nonempty stack.

PDA: Example 1 _ | Si(aoh M) =((@r.9)}

»M:)o,mo

1,0 > A

Mj) 102

Q={dp a1, d2r 4z} Z={0,1} T={$,0,1}

5:Q x (SU{A}) x T — P(Q x ™)

6(C|1,1,0) = { (qZ!)‘) } 6((12!111) = @

PDA: Example 1

string pop push

~ | 7
»@m.?)
©<M®:) 1,0 - A

PDA: Example 1

[stack Jo]o]s]

PDA to recognize L={0""|n20}

23

PDA: Example 2

EVEN-LENGTH PALINDROMES
z={ab,c,..., 2}

_. LISIN WEIE:

ANA—A

@2 @00

PDA: Example 3

Build a PDA to recognize
L={abick|i,j,k=20and(i=jori=k)}

Push Down Automata (PDA)

Example 4

How to make a NPDA that accepts {w&{a,b} : #a = #b}?
*Central idea push/pull counting symbols 0 (for a) and

1 (for b) on the stack as you read the string w.

*Answer: NPDA M = ({qy,9:}.{a,b},{0,1,2},8,90,2,{qs}) with:
*5(doA2) = {(@n2)}

8(do,a,2) = {(d0,02)} Processing baab gives:

5(qp,b,z) = {(q0,12)} (ap,baab,z) } (qg,aab,1z)

5(@0a0) = (@00} Tt ab

8(0p.0.0) = {(a0.\)} b (do,b,02)

8(qo.a,1) = {(do.A)} b (QeA2Z)

8(do.b. 1) = {(d0,b, 11)} b (q,M2).
Push Down Automata (PDA) PDA <> CFL

Exercise

How to recognize wwR&{a,b} ?

ldea: Read w and put it on the stack (first
in, last out).

At the half-way point, start checking the
remaining

input string wR against the stack content wR.

+Crucial observation: We have to guess the
half-way point.

Alanguage L is context-free if and only if there is a non-
deterministic pushdown automaton M that recognizes L.

Two step proof:

Theorem 1: Given a CFG G, we can construct a
NPDA Mg such that L(G)=L(Mg).

Theorem 2: Given a PDA M, we can construct a
CFG G such that L(G)=L(Mg).

Central idea: Use Greibach normal form for the CFG
and put the variables on the stack while reading letters.

PDA <— CFL

Proof Idea

*Without loss of generality, we assume that the CFG is in Greibach
normal form, for which we know that the derivation of w,...w, has to
look like (assuming A—w,u):

S=. =W, W Ay=W, L WUy=. =W, W, With y,uEV*.

+Idea for PDA implementation: when reading the input string w;...w,
from left to right on put possible u€V* on stack:

Wi W, Wy

Wi W, Wi W W, W, w,

[UCI . TR Ui Na
y y

z z z note empty

stack in end
(qvwivA) I' (qu) 29

PDA «<— CFL
Proof details

*Given a CFG G=(V,T,S,P) in Greibach
normal form, the NPDA
ME(){go,m,qf},T,VU{z},é,qo,z,{qf}) accepts

* 8(qq,A,2) = {(94,52)} (start with S on the stack)
* (g4,u) € 8(q4,a,A) for all A—au rules

* 8(a4,A.2) = {(ar2)}

PDA <— CFL

Example

GNF
S>\lalb|asa|bSb|—» S>\|a|b|aSA| bSB
A> a B>b

a(qox)"z) = {(q1 ,SZ)}

(91, M) €5(ay, A.S)
(a1, M) €5(qy, a,5)
(a1, \) €5(qy, b,S)

(ar. SA) €5(q;, a8)
(ar. SB) €5(a;, b,S)
(@ N €5(a;, aA)
(ar. \) € 8(qy, b,B)

5(q4,A.2) = {(a52)}

PDA—> CFL

*To prove that for every NPDA there is a
corresponding CFG we use the same ideas as for
the previous proofs.

*The proof uses the assumption that the NPDA has
only one accepting state g; that is entered when
the stack is empty, and all transitions are of the
form (q,a,A) (q%A)or (q’,BC).

*This assumption can be made without loss of
generality.

PDA=— CFL

Given PDAP=(Q,Z, T, $, q, F)

Construct a CFG G = (V, Z, R, S) such that
L(G)=L(P)

First, simplify P to have the following form:
(1) It has a single accept state, q,.cept
(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

PDA— CFL
SIMPLIFY

—> M,D 0A—0

A=A 11,0—"\

MD 1,0 - A
LY ¥ Y]

PDA—> CFL

Idea: for each pair of states p and q in P, the
grammar will have a variable A, that generates
all strings that can take P from p with an empty
stack to q with an empty stack

V={A,|paeQ}

S= ACIuQaccpet

PDA ==p CFL

— MD 0A—0

)\,)\Ho 11,0—»)\

MD 1,0 - A
A/A,A—>0

PDA ——p CFL

- L"s,:) 0A—0

A — 0 11,04>)\

PRLEYS :) 1,0 > A
AA—0
h

What strings does Aq,q, generate? none
What strings does Aq,q, generate? {0"1"|n > 0}
What strings does Aq,q, generate? none &

PDA—> CFL

A, generates all strings that take p with an empty
stack to g with an empty stack

Let x be such a string
P’ s first move on x must be a push
« P’ s last move on x must be a pop
Two possibilities:

1. The symbol popped at the end is the
one pushed at the beginning

2. The symbol popped at the end is not
the one pushed at the beginning

PDA—> CFL

1. The symbol popped at the end is the
one pushed at the beginning

PDA—> CFL

2. The symbol popped at the end is not
the one pushed at the beginning

1

stack
height
input
string p r q_
5(p.az) = {(n} é(m,b ={(@2)}
Apqg = ApArg w

10

PDA= CFL Example

PDA—> CFL

Formally: V={A, |p,a€Q}
S= Aqoqaccpet
Foreachp,qrs€Q,tElMandabekz,
If (r,t) € 8(p,a,A) and (q, A) € §(s,b,t)
Then add the rule A, — aA b

For each p,q,r € Q,
add the rule A,, — A, A,

For each p € Q,
add the rule A,; — A u

- M.:) 0A—0
AA— 0 l1,0—>)\

MD 1,0 > A

A —0
\
AO — A

42

PDA= CFL Example
- M 0A—0
Agg— A

@22 @D

~
AO A

What strings does Aq,q, generate? none
What strings does Aq,q, generate? {0"1" | n > 0}
What strings does Aq,q, generate? none

s o
Apg = ApArg

Aq,a; — Ma,q,A

M —0
[CI4> Aqg,q, — 0Aqq,1
Aq,q, — 0Aqq,1

11

