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• L is a Regular Language if and only if 
there exist a finite automaton  

M = (Q, Σ, δ, q0, F )   
such that: 

 L = L(M) = { w∈ Σ* : δ (q0,w) ∈ F} 

Regular Languages 

5 

If L is a regular language then there is a right-linear 
grammar G =(V,T,S,P ) such that L=L(G). 

 
Proof. L is a regular implies (by def.) there exist a finite 

automaton M = (Q, Σ, δ, q0, F ) such that L(M)=L. Now 
we construct the equivalent grammar G as follows:  
–  Variables are the states:  V = Q 
–  Start symbol is start state:  S = q0 

–  Same alphabet of terminals T=Σ
–  A transition δ(q1,a)=q2  becomes the rule  q1 àaq2 
–  Accept states q ∈ F  define the λ-productions q à λ 

Accepted paths give rise to terminating derivations and 
vice versa.   L(G)=L(M).   

Equivalence between Regular Grammars and Regular Languages 

Theorem 1 
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The DFA above can be simulated by the grammar 
x à 0x | 1y 
y à 0x | 1z 
z à 0x | 1z | λ
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y à 0x | 1z 

z à 0x | 1z | λ
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x ⇒ 1y  
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x ⇒ 1y ⇒ 10x  
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x ⇒ 1y ⇒ 10x ⇒ 100x  
  

 
10011 

0 
	

1 

0 

0 

1 

1 

x y z 
x à 0x | 1y 

y à 0x | 1z 

z à 0x | 1z | λ
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x ⇒ 1y ⇒ 10x ⇒ 100x ⇒ 1001y  
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x ⇒ 1y ⇒ 10x ⇒ 100x ⇒ 1001y  
 ⇒ 10011z 
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z à 0x | 1z | λ

Equivalence between Regular Grammars and Regular Languages 

Example 1 



19/01/16 

3 

13 

	

	

	

x ⇒ 1y ⇒ 10x ⇒ 100x ⇒ 1001y  
 ⇒ 10011z ⇒ 10011 
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ACCEPT! 

x à 0x | 1y 

y à 0x | 1z 

z à 0x | 1z | λ
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If G =(V,T,S,P) is a right-linear grammar 
then L(G) is a regular language. 
 
Proof.  : Define a FA M = (Q, Σ, δ, q0, F ) as follows  

–  Start state  q0 correspond to start symbol S 
–  A non-final state qi corresponds to a variable symbol   Vi 

–  Same alphabet of terminals Σ = Τ
–  For every rule Viàa1…amVj, define a transition δ(qi , a1…am)=qj 
–  For every rule Viàa1…am, define a transition δ(qi , a1…am)=qf final state

 
Terminating derivations give rise to accepted paths and vice 

versa. So  L(M)=L(G). Hence (by def.) L(G) is a regular 
language.    � 

Equivalence between Regular Grammars and Regular Languages 

Theorem 2 
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S A qf 

S à aA 

A à abS 

Aà b

Construct an FA that is 
equivalent to the right-linear 
grammar: 

a b

ab

Answer: 

Equivalence between Regular Grammars and Regular Languages 

Theorem 2 
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•  THEOREM 1 and THEOREM 2 show that 
right-linear grammars and regular languages 
are equivalent. 

 
•  Similarly we can show that left-linear 

grammars and regular languages are 
equivalent. 

 
•  Hence we conclude that Regular Grammars 

and Regular Languages are equivalent. 
 

Equivalence between Regular Grammars and Regular Languages 

Comments 
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Can every CFG be converted into a right 
linear grammar? 

Regular Languages 

NO!  This would mean that all context free 
languages are regular. 

Q: 

A: 

For example:  
S à λ | aSb  

cannot be converted because {anbn} is not regular. 
18 

How we can identify non-regular 
languages? 

Regular Languages 

By using a technique called  
     “Pumping Lemma” 

Q: 

A: 
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Consider the language  
L1 = 01* = {0, 01, 011, 0111, … } 

 
The string 011 is said to be pumpable in L1  
 
because can take the underlined portion, and 
pump it up (i.e. repeat) as much as desired while  
always getting elements in L1. 

Pumping Lemma (PL) 
Motivation 
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Consider the language  
L1 = 01* = {0, 01, 011, 0111, … } 

Which of the following are pumpable? 
1.  01111 
2.  01 
3.  0 

Q: 

1.  Pumpable:  01111, 01111, 01111, 01111, etc. 

2.  Pumpable: 01 

3.  0 not pumpable because most of 0* not in L1 

A: 

Pumping Lemma (PL) 
Motivation 
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Define L2 by the following automaton: 

 

 

Is 01010 pumpable? 

0 0 

1 

0 

Q: 

A: Pumpable: 01010, 01010.  Underlined substrings 
correspond to cycles in the FA! 

Cycles in the FA can be repeated arbitrarily often, 
hence pumpable. 

Pumping Lemma (PL) 
Motivation 
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Let L3 = {011,11010,000, λ} 

Which strings are pumpable? 
Q: 

None!  When pumping any string non-trivially, always 
result in infinitely many possible strings.  So no 
pumping can go on inside a finite set. 

A: 

Pumping Lemma give a criterion for when strings 
can be pumped. 

Pumping Lemma (PL) 
Motivation 
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q0 

b a 

a 

a,b 

b 
b 

a 

q2 q3 

q1 

)(MLababbaaab∈

3102312310 qqqqqqqqqq
baaabbaba
→→→→→→→→→

We have: 

Because: 

Pumping Lemma (PL) 
Motivation 
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3102312310 qqqqqqqqqq
baaabbaba
→→→→→→→→→Note, 

)(MLababb∈So, 

)(MLabaaab∈
3102312310 qqqqqqqqqq

baaabbaba
→→→→→→→→→

)()()(    :, MLaaababbabji ji ∈Ν∈∀

Also, 

So, 

We note that: 

Pumping Lemma (PL) 
Motivation 
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•  Given an (infinite) regular language L, there is a 
number p (called the pumping number)  such 
that any string in L of length ≥ p is pumpable 
within its first p letters.   

•  In other words, for all u ∈ L with  
   |u | ≥ p we can write: 

–  u = xyz  (x is a prefix, z is a suffix) 
–  |y | ≥ 1   (mid-portion y is non-empty) 
–  |xy| ≤ p  (pumping occurs in first p letters) 
–  xyiz ∈ L  for all i ≥ 0  (can pump y-portion) 

To prove the Pumping Lemma we need to know the Pigeonhole Principle 

Pumping Lemma (PL) 
Theorem 

26 

•  The pigeonhole principle is very simple, 
yet powerful method for identifying non-
regular languages. 

•  It states that: “given n objects and m 
boxes, if n>m then at least one box must 
have more than one object”. 

Pigeonhole principle 

……… 

……… n objects: 

m boxes: 

n > m 

This Box has more than 
one object 

Pumping Lemma (PL) 
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•  Given a “sufficiently” long string, the 
states of a DFA must repeat in an 
accepting computation. These cycles 
can then be used to predict (generate) 
infinitely many other strings in (of) the 
language. 

     
        Pigeon-Hole Principle 

Pigeonhole principle fundamental observation 

Pumping Lemma (PL) 
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Now consider an accepted string u.   
By assumption L is regular so let M be the FA accepting it.  
  
Let p = |Q | = no. of states in M.   
Suppose |u| ≥ p.   
 
The path labeled by u visits p+1 states in its first p letters.  
 
Thus (by pigeonhole principle) u must visit some state twice.  
  
The sub-path of u connecting the first and second visit of the 

vertex is a loop, and gives the claimed string y that can be 
pumped within the first p letters. 

Proof 

Pumping Lemma (PL) 
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•  It is a necessary condition. 
– Every regular language satisfies it. 
–  If a language violates it, it is not regular. 

•  RL => PL             not PL => not RL 

•  It is not a sufficient condition. 
– Not every non-regular language violates it. 

•  not RL =>?   PL or  not PL  (no conclusion) 

Notes: 

Pumping Lemma (PL) 
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)0 :(                 
1)  || (    )   |y| (                 

)yz(   :    
       ||   :

Lzxyii
ypx

uxx,y,z
kuLu

i ∈⇒≥∀∧

≥∧≤∧

=∃

⇒≥∈∀

For all sufficiently long strings (u) 
        There exists non-null prefix (xy) 
                                      and substring (y) 
               For all repetitions of the substring (y),  
                               we get strings in the language. 
 
 
 

Pumping Lemma (PL) 
Notes: 
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•  If there exists an arbitrarily long string u    L, and for 
each decomposition u = xyz, there exists an i such 
that                     , then L is non-regular.  

)0  :(                 
1)  || (    )   |y| (                 

)yz(   :    
       ||   :

Lzxyii
ypx

uxx,y,z
puLu

i ∉∧≥∃⇒

≥∧≤∧

=∀

∧≥∈∃

Negation of the necessary condition: 

∈

Lzxyi ∉

Proving non-regularity 

Pumping Lemma (PL) 
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In general, to prove that L isn’t regular: 
1.  Assume L were regular 
2.  Therefore it has a pumping no. p 
3.  Find a string pattern involving the length p in 

some clever way, and which cannot be 
pumped. This is the hard part. 

4.  (2)àß(3)  <contradiction>  Therefore our 
assumption (1) was wrong and conclude 
that L is not  a regular language 

Proving non-regularity 

Pumping Lemma (PL) 
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Explanation of Step 3:  How to get a contradiction 

2. Choose a particular string              which satisfies  
   the length condition 

Lw∈

3. Write   xyzw =
4. Show that Lzxyw i ∉=ʹ for some  1≠i

5. This gives a contradiction, since from 
     pumping lemma  Lzxyw i ∈=ʹ

|w |≥m

1.  Let    m     be the pumping number 

34 

Show that the language }0:{ ≥= nbaL nn

is not regular 

Answer: Use the Pumping Lemma 

Example 

35 

Assume for contradiction 
that    L   is a regular language 

Since    L    is infinite 
we can apply the Pumping Lemma  

}0:{ ≥= nbaL nnExample 

36 

Let    m    be the Pumping number 

Pick a string   w    such that:   Lw ∈

mw ≥||and length 

mmbaw =We pick 

}0:{ ≥= nbaL nnExample 
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with lengths 

From the Pumping Lemma:  

1||,|| ≥≤ ymyx

babaaaaabaxyz mm ............==

mkay k ≤≤= 1,

x y z

m m

we can write zyxbaw mm ==

Thus: 

=w

Example 
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From the Pumping Lemma: Lzyx i ∈

...,2,1,0=i

Thus: 

mmbazyx =

Lzyx ∈2

mkay k ≤≤= 1,
Example 
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From the Pumping Lemma:  

Lbabaaaaaaazxy ∈= ...............2

x y z

km + m

Thus: 

Lzyx ∈2

mmbazyx =

y

Lba mkm ∈+

mkay k ≤≤= 1,
Example 
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Lba mkm ∈+

}0:{ ≥= nbaL nnBUT: 

Lba mkm ∉+

CONTRADICTION!!! 

1≥k
Example 
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Our assumption that L 
is a regular language is not true 

Conclusion: L is not a regular language 

Therefore: 

Example 
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  }number prime a is |{ paL p
p =

  }number composite a is |{ caL c
c =

} in s'#   in '#  |  *},{{ ωωω bsabaL =∈=

Exercise 

Show that the following languages are not regular: 

Lpal={x∈∑*|x =xR} 

Pumping Lemma (PL) 


