

Pumping Lemma (PL)

Motivation

Consider the language $L_1 = 01^* = \{0, 01, 011, 0111, ...\}$

The string 011 is said to be **pumpable** in L_1

because can take the underlined portion, and pump it up (i.e. repeat) as much as desired while *always* getting elements in L_1 .

19

Now consider an accepted string *u*. By assumption *L* is regular so let *M* be the FA accepting it.

Let p = |Q| = no. of states in M.

The path labeled by u visits p+1 states in its first p letters.

Thus (by pigeonhole principle) *u* must visit some state twice.

The sub-path of *u* connecting the first and second visit of the vertex is a loop, and gives the claimed string *y* that can be pumped within the first *p* letters.

Explanation of Step 3: How to get a contradiction		
1. Let <i>m</i> be the pumping number		
2. Choose a particular string $w \in L$ which satisfies the length condition $ w \ge m$	s	
3. Write $w = xyz$		
4. Show that $w' = xy^i z \notin L$ for some $i \neq 1$		
5. This gives a contradiction, since from pumping lemma $w' = xy^i z \in L$		
33		

Example

```
Show that the language L = \{a^n b^n : n \ge 0\} is not regular
Answer: Use the Pumping Lemma
```

Example

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction
that *L* is a regular language
Since *L* is infinite
we can apply the Pumping Lemma

Example
$$L = \{a^n b^n : n \ge 0\}$$

Let *m* be the Pumping number
Pick a string *w* such that: $w \in L$
and length $|w| \ge m$
We pick $w = a^m b^m$

Example From the Pumping Lemma:	
we can write $W = a^m b^m = X$)	/ Z
with lengths $ x y \le m, y \ge$	<u>•</u> 1
$w = xyz = a^m b^m = \underbrace{aaaab.}_{x y z}$	n b
Thus: $y = a^k$, $1 \le k \le m$	37

Example

$$x \ y \ z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$
From the Pumping Lemma: $x \ y^i \ z \ \in L$
 $i = 0, 1, 2, ...$
Thus: $x \ y^2 \ z \ \in L$
³⁸

Example

$$x \ y \ z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$
From the Pumping Lemma: $x \ y^2 \ z \in L$
 $x \ y^2 \ z = a...aa...aa...aa...ab...b \in L$
 $x \ y \ y \ z$
Thus: $a^{m+k} b^m \in L$ 39

Example

$$a^{m+k}b^m \in L \qquad k \ge 1$$
BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$\downarrow$$

$$a^{m+k}b^m \notin L$$
CONTRADICTION!!!

