
Automata and Languages

 Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu

Japan

•  Chomsky Normal Form (CNF)
•  Context free grammar to CNF
•  Griebach Normal Form (GNF)
•  Context free grammar to GNF
•  Context Sensitive Grammar
•  Relationship between Grammars
•  Grammar Applications

2

Today’s Topics

3

Normal Forms

	

Chomsky Normal Form
Griebach Normal Form

4

Even though we can’t get every grammar
into right-linear form, or in general even
get rid of ambiguity, there is an especially
simple form that general CFG’s can be
converted into:

Chomsky Normal Form CNF

Chomsky Normal Form CNF

5

Chomsky Normal Form

Definition: A CFG is in Chomsky normal form
if and only if all production rules are of the form

 A → BC
or A → x
with variables A,B,C∈V and x∈T.
(Sometimes rule S→λ is also allowed.)
CFGs in CNF can be parsed in time O(|w|3).

Named after Noam Chomsky who in
the 60s made seminal contributions
to the field of theoretical linguistics.
(cf. Chomsky hierarchy of languages).

6

Noam Chomsky came up with an especially simple
type of context free grammars which is able to
capture all context free languages.

Chomsky's grammatical form is particularly useful
when one wants to prove certain facts about
context free languages. This is because
assuming a much more restrictive kind of
grammar can often make it easier to prove that
the generated language has whatever property
you are interested in.

Chomsky Normal Form CNF

7

•  Length of derivation of a string of length
n in CNF = (2n-1)
(Cf. Number of nodes of a strictly binary tree with n-leaves)

•  Maximum depth of a parse tree = n
•  Minimum depth of a parse tree =

⎡ ⎤ 1log2 +n

Significance of CNF

Chomsky Normal Form CNF

8

A CFG is said to be in Chomsky Normal Form if every rule in the
grammar has one of the following forms:

 (dyadic variable productions)

 (unit terminal productions)

 (λ for empty string sake only)

Where S is the start variable, A,B,C are variables and a is a terminal.

Thus empty string λ may only appear on the right hand side of the
start symbol and other RHS are either 2 variables or a single
terminal.

Chomsky Normal Form CNF

A→ BC
A→ a
S→ λ

where B,C ∈V −{S}

9

	

•  Theorem: There is an algorithm to
construct a grammar G’ in CNF that is
equivalent to a CFG G.

Chomsky Normal Form CNF
CFGè CNF

10

•  Obtain an equivalent grammar that
does not contain λ-rules, chain rules,
and useless variables.

•  Apply following conversion on rules of
the form: bBcCA→

cW
WCRBRQ
bPPQA

→

→→

→→

Chomsky Normal Form CNF
CFGè CNF: Construction

11

Converting a general grammar into Chomsky
Normal Form works in four steps:

1.  Ensure that the start variable doesn't
appear on the right hand side of any rule.

2.  Remove all λ-rules productions, except from
start variable.

3.  Remove unit variable productions of the
form A à B where A and B are variables.

4.  Add variables and dyadic variable rules to
replace any longer non-dyadic or non-
variable productions

Chomsky Normal Form CNF
CFGè CNF: Construction

12

Let’s see how this works on the following
example grammar:

Chomsky Normal Form CNF
CFGè CNF: Example 1

Sàλ | a | b | aSa | bSb

13

Ensure that start variable doesn't appear
on the right hand side of any rule.

1. Start Variable

Chomsky Normal Form CNF
CFGè CNF: Example 1

S’àS

Sàλ | a | b | aSa | bSb

14

Remove all λ productions, except from
start variable.

2. Remove λ-rules

Chomsky Normal Form CNF
CFGè CNF: Example 1

S’àS | λ

Sàλ | a | b | aSa | bSb | aa | bb

15

Remove unit variable productions of the
form A à B.

3. Remove variable units

S’àS | λ | a | b | aSa | bSb | aa | bb

Sàλ | a | b | aSa | bSb | aa | bb

Chomsky Normal Form CNF
CFGè CNF: Example 1

16

Add variables and dyadic variable rules to
replace any longer productions.

4. Longer production rules

S’à λ | a | b | aSa | bSb | aa | bb AB|CD|AA|CC

Sàa | b | aSa | bSb | aa | bb AB|CD|AA|CC

Aà a

Bà SA

Cà b

DàSC

Chomsky Normal Form CNF
CFGè CNF: Example 1

17

5. Result

S’à λ | a | b | AB | CD | AA | CC

Sà a | b | AB | CD | AA | CC

Aà a

Bà SA

Cà b

DàSC

Sàλ | a | b | aSa | bSb

CFG

CNF

Chomsky Normal Form CNF
CFGè CNF: Example 1

18

• Write into Chomsky Normal Form the CFG:

S → aA|aBB
A → aaA|λ
B → bC|bbC
C → B

Chomsky Normal Form CNF
Exercise

19

S → aA|aBB
A → aaA|λ
B → bC|bbC
C → B
• (1): First you remove the λ-productions (A⇒λ):
S → aA|aBB|a
A → aaA|aa
B → bC|bbC
C → B

Chomsky Normal Form CNF
Answer

20

• (2): Next you remove the unit-productions from:
S → aA|aBB|a
A → aaA|aa
B → bC|bbC
C → B
• Removing C→B, we have to include the C⇒*B
possibility, which can be done by substitution and gives:
S → aA|aBB|a
A → aaA|aa
B → bC|bbC
C → bC|bbC

Chomsky Normal Form CNF
Answer

21

(3): Next, we determine the useless variables in
S → aA|aBB|a
A → aaA|aa
B → bC|bbC
C → bC|bbC

The variables B and C can not terminate and are
therefore useless. So, removing B and C gives:
S → aA|a
A → aaA|aa

Chomsky Normal Form CNF
Answer

22

(4): To make the CFG in Chomsky normal
form, we have to introduce terminal
producing variables for
S → aA|a
A → aaA|aa,

• which gives
S → XaA|a
A → XaXaA|XaXa
Xa → a.

Chomsky Normal Form CNF
Answer

23

(5): Finally, we have to ‘chain’ the variables
in
S → XaA|a
A → XaXaA|XaXa
Xa → a,
• which gives
S → XaA|a
A → XaA2 |XaXa
A2 → XaA

Xa → a.

Chomsky Normal Form CNF
Answer

24

•  A CFG is in Griebach Normal Form
if each rule is of the form

}{ where

...21

SVA
S

aA
AAaAA

i

n

−∈

→

→

→

λ

Griebach Normal Form GNF

25

•  The size of the equivalent GNF can be
large compared to the original grammar.

•  Next Example CFG has 5 rules, but the
corresponding GNF has 24 rules!!

•  Length of the derivation in GNF
 = Length of the string.
•  GNF is useful in relating CFGs

(“generators”) to pushdown automata
(“recognizers”/”acceptors”).

Griebach Normal Form GNF

26

•  Theorem: There is an algorithm to
construct a grammar G’ in GNF that is
equivalent to a CFG G.

Griebach Normal Form GNF
CFGè GNF

27

aABC
bCAB

BCA

|
|

→

→

→

aBBCC
bCAB

BCA

|
|

→

→

→

aBCbBCCAC ||→

CBARCBAR

a|bCB |
RabCBC

|

)|(

→

→

)|()|...|(

|||
|
|||

|
|||

CBCBRbCbCBRACR

bCaACbCBAC
aRACbcBRACA
baAbCBA

aRAbcBRAB
abCBaRbCBRC

→

→

→

→

Griebach Normal Form GNF
CFGè GNF: Example

28

An even more general form of grammars exists.
In general, a non-context free grammar is one
in which whole mixed variable/terminal
substrings are replaced at a time. For
example with Σ = {a,b,c} consider:

For technical reasons, when length of LHS

always ≤ length of RHS, these general
grammars are called context sensitive.

S à λ | ASBC
A à a
CB à BC

aB à ab
bB à bb
bC à bc
cC à cc

	

Context Sensitive Grammar

29

Find the language generated by the CSG:
S à λ | ASBC
A à a
CB à BC
aB à ab
bB à bb
bC à bc
cC à cc
	

Context Sensitive Grammar (CSG)
Example

30

	

Answer is {anbncn}.

In a future class we’ll see that this

language is not context free. Thus
perturbing context free-ness by allowing
context sensitive productions expands
the class.

Context Sensitive Grammar (CSG)
Example

31

Relations between Grammars

So far we studied 3 grammars:

1. Regular Grammars (RG)
2. Context Free Grammars (CFG)
2. Context Sensitive Grammars (CSG)

The relation between these 3 grammars is as follow:

RG

CFG
CSG

32

Programming languages are often defined as Context
Free Grammars in Backus-Naur Form (BNF).

Example:
 <if_statement> ::= IF <expression><then_clause><else_clause>
 <expression> ::= <term> | <expression>+<term>
 <term> ::= <factor>|<term>*<factor>

The variables as indicated by <a variable name>
The arrow → is replaces by ::=
Here, IF, + and * are terminals.

“Syntax Checking” is checking if a program is an
element of the CFG of the programming language.

Grammar Applications

Programming Languages

33

Grammar Applications

Compiler Syntax Analysis

Scanner
Parser

Semantic Analy.
Inter. Code Gen.

Optimizer
Code Generation

Source Program

Target Program

Compiler:
This part of
the compiler

use the
Grammar

34

Applications of CFG
Parsing is where we use the theory of CFGs.

The theory is especially relevant when dealing with
Extensible Markup Language (XML) files and their
corresponding Document Type Definitions (DTDs).

Document Type Definitions define the grammar that
the XML files have to adhere to. Validating XML files
equals parsing it against the grammar of the DTD.

The nondeterminism of NPDAs can make parsing slow.
What about deterministic PDAs?

