
Automata and Languages

 Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu

Japan

•  Context Free Grammar
•  Parsing
•  Grammar Ambiguity
•  Simple Grammar
•  Normal Forms definition

Today’s Topics

2

	

 Recognition of strings in a
language

CFG: Parsing

3

4

• Generative aspect of CFG: By now it should be clear how,
from a CFG G, you can derive strings w∈L(G).

• Analytical aspect: Given a CFG G and a string w, how do
you decide if w∈L(G) and –if so– how do you determine
the derivation tree or the sequence of production rules
that produce w? This is called the problem of parsing.

CFG: Parsing

5

•  Parser
Is a program that determines if a string
by constructing a derivation. Equivalently,
it searches the graph of G.

– Top-down parsers
•  Constructs the derivation tree from root to

leaves.
•  Leftmost derivation.

– Bottom-up parsers
•  Constructs the derivation tree from leaves to

root.
•  Rightmost derivation in reverse.

)(GL∈ω

CFG: Parsing

6

Tree nodes represent symbols of the
grammar (nonterminals or terminals) and
tree edges represent derivation steps.

Parse trees (=Derivation Tree)
A parse tree is a graphical representation

of a derivation sequence of a sentential form.

CFG: Parsing

7

E → E + E | E * E | (E) | - E | id

Given the following grammar:

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following derivation:

E ⇒ -E ⇒ -(E) ⇒ -(E + E) ⇒ -(id + id)

Parse Tree: Example

CFG: Parsing

8

E → E + E | E * E | (E) | - E | id

Lets examine this derivation:
E ⇒ -E ⇒ -(E) ⇒ -(E + E) ⇒ -(id + id)

E E

E -

E

E -

E ()

E

E -

E ()

+ E E

E

E -

E ()

+ E E

id id
This is a top-down derivation
because we start building the
parse tree at the top parse tree

Parse Tree: Example 1

CFG: Parsing

9

)(
||

SLab
baSSS

∈

→

S

S S

S
S

S S
a

S

S S
a b

Leftmost
derivation abaSSSS ⇒⇒⇒

Derivation
Trees

CFG: Parsing

Parse Tree: Example 2

10

S

S S

S S

S S
b

S

S S

S

S

S S

a

a b

b
Rightmost
Derivation
in Reverse

abSbSSS ⇒⇒⇒Rightmost
derivation

Derivation
Trees

S S

CFG: Parsing

Parse Tree: Example 2

11

)(|
|
AbT
TATA

AS

→

+→

→

CFG: Parsing

Example 3 Consider the CFG grammar G

Show that (b)+b ∈ L(G)?

S S

A

S

A T

+

A

S

A T

+

A

T

S

A T

+

A

T

A

()

S

A T

+

A

T

A

()
T

S

A T

+

A

T

A

()
T
b b

S

A T

+

A

T

A

()
T
b

12

Practical Parsers
•  Language/Grammar designed to enable deterministic (directed

and backtrack-free) searches.

–  Top-down parsers : LL(k) languages
•  E.g., Pascal, Ada, etc.
•  Better error diagnosis and recovery.

–  Bottom-up parsers : LALR(1), LR(k) languages
•  E.g., C/C++, Java, etc.
•  Handles left recursion in the grammar.

–  Backtracking parsers
•  E.g., Prolog interpreter.

CFG: Parsing

13

n Exhaustive parsing is a form of top-down parsing where
you start with S and systematically go through all possible (say
leftmost) derivations until you produce the string w.
n (You can remove sentential forms that will not work.)

n Example: Can the CFG S → SS | aSb | bSa | λ produce the
string w = aabb, and how?
n After one step: S ⇒ SS or aSb or bSa or λ.
n After two steps: S ⇒ SSS or aSbS or bSaS or S,
or S ⇒ aSSb or aaSbb or abSab or ab.
n After three steps we see that: S ⇒ aSb ⇒ aaSbb ⇒ aabb.

CFG: Parsing

Top-down Exhaustive Parsing

14

n Obvious flaw: it will take a long time and a lot of memory
for moderately long strings w: It is inefficient.

n For cases w∉L(G) exhaustive parsing may never end.
This will especially happen if we have rules like A→λ that make the
sentential forms ‘shrink’ so that we will never know if we went ‘too
far’ with our parsing attempts.
n Similar problems occur if the parsing can get in a loop according
to A ⇒ B ⇒ A ⇒ B…
n Fortunately, it is always possible to remove problematic rules like
A→λ and A→B from a CFG G.

CFG: Parsing

Flaws of Top-down Exhaustive Parsing

15

Definition: a string is derived ambiguously
in a context-free grammar if it has two or
more different parse trees

Definition: a grammar is ambiguous if it
generates some string ambiguously

Grammar Ambiguity

Definition

16

A string w∈L(G) is derived ambiguously if it has
more than one derivation tree (or equivalently: if it has
more than one leftmost derivation (or rightmost)).

A grammar is ambiguous if some strings are derived
ambiguously.

Typical example: rule S → 0 | 1 | S+S | S×S

S ⇒ S+S ⇒ S×S+S ⇒ 0×S+S ⇒ 0×1+S ⇒ 0×1+1
 versus
S ⇒ S×S ⇒ 0×S ⇒ 0×S+S ⇒ 0×1+S ⇒ 0×1+1

Grammar Ambiguity

17

The ambiguity of 0×1+1 is shown by the two
different parse trees:

S

+ S

×	 S

1

S

0

S

1

S

×	 S

+ S

1

S

1

S

0

Grammar Ambiguity

18

Note that the two different derivations:
 S ⇒ S+S ⇒ 0+S ⇒ 0+1
and
 S ⇒ S+S ⇒ S+1 ⇒ 0+1
do not constitute an ambiguous string
0+1 as have the same parse tree:

S

+ 0 1

Ambiguity causes troubles when trying to interpret strings
like: “She likes men who love women who don't smoke.”

Solutions: Use parentheses, or use precedence rules
such as a+(b×c) = a+b×c ≠ (a+b)×c.

Grammar Ambiguity

19

<EXPR> → <EXPR> + <EXPR>
<EXPR> → <EXPR> * <EXPR>
<EXPR> → (<EXPR>)
<EXPR> → a

Build a parse tree for a + a * a
<EXPR>

a *	+ a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a + *	a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

Example

Grammar Ambiguity

20

Inherently Ambiguous
u Languages that can only be generated by

ambiguous grammars are inherently
ambiguous.

u Example: L = {anbncm} ∪ {anbmcm}.

u The way to make a CFG for this L somehow has
to involve the step S → S1|S2 where S1 produces
the strings anbncm and S2 the strings anbmcm.

u This will be ambiguous on strings anbncn.

L = { aib jck | i = j ∨ j = k}

Grammar Ambiguity

21
Which derivation tree is correct?

Find a derivation for the expression: id + id * id
E E

+ E E

E

+ E E

*	E E

E

+ E E

*	E E

id id

id

E E

*	E E

E

*	E E

+ E E

E

*	E E

+ E E

id id

id

E → E + E | E * E | (E) | - E | id Example

Grammar Ambiguity

22

According to the grammar, both are correct.

Find a derivation for the expression: id + id * id
E

+ E E

*	E E

id id

id

E

+ E E

*	E E

id id

id

A grammar that produces more than one
parse tree for any input sentence is said
to be an ambiguous grammar.

E → E + E | E * E | (E) | - E | id

Grammar Ambiguity

Example

23

•  * has precedence over +
1 + 2 * 3 = 1 + (2 * 3)
1 + 2 * 3 ≠ (1 + 2)*3

•  Associativity and precedence information is typically
used to disambiguate non-fully parenthesized
expressions containing unary prefix/postfix operators
or binary infix operators.

Grammar Ambiguity

One way to resolve ambiguity is to associate
precedence to the operators.

Example

24

stmelse

stmthenif

stmthenifstm

 expr |

 expr →

if B1 then if B2 then S1 else S2
vs

if B1 then if B2 then S1 else S2

Grammar:

Ambiguity:

Grammar Ambiguity

Example

25

λ

λ

λ

λ

|
|
|
|
|

aAA
bQcQ
cCC
aPbP

AQPCS

→

→

→

→

→

Yes: consider the string abc

Grammar Ambiguity

Quiz 1

Is the following grammar ambiguous?

26

Yes: consider ab

Grammar Ambiguity

Quiz 2

Is the following grammar ambiguous?

λ||| abSbaSS→

27

λ|SSS→

(Illustrates ambiguous grammar with cycles.)

Cyclic structure

S

SS

SSS

λ

Grammar Ambiguity

Quiz

Is the following grammar ambiguous?

Yes

28

A CFG (V,T,S,P) is a simple grammar
(s-grammar) if and only if all its productions are of the form
 A → ax with
A∈V, a∈T, x∈V* and any pair (A,a) occurs at most once.

• Note, for simple grammars a left most derivation of a
string w∈L(G) is straightforward and requires time |w|.

• Example: Take the s-grammar S → aS|bSS|c with aabcc:
S ⇒ aS ⇒ aaS ⇒ aabSS ⇒ aabcS ⇒ aabcc.

Quiz: is the grammar S → aS|bSS|aSS|c s-grammar ?

Simple Grammar
Definition

NO Why? The pair (S,a) occurs twice

Normal Forms

	

Chomsky Normal Form
Griebach Normal Form

29

30

A CFG is said to be in Chomsky Normal Form if every rule in the
grammar has one of the following forms:

 (dyadic variable productions)

 (unit terminal productions)

 (λ for empty string sake only)

Where S is the start variable, A,B,C are variables and a is a terminal.

Thus empty string λ may only appear on the right hand side of the
start symbol and other RHS are either 2 variables or a single
terminal.

Chomsky Normal Form CNF

A→ BC
A→ a
S→ λ

where B,C ∈V −{S}

31

	

•  Theorem: There is an algorithm to
construct a grammar G’ in CNF that is
equivalent to a CFG G.

Chomsky Normal Form CNF
CFGè CNF

32

•  A CFG is in Griebach Normal Form
if each rule is of the form

}{ where

...21

SVA
S

aA
AAaAA

i

n

−∈

→

→

→

λ

Griebach Normal Form GNF

33

•  Theorem: There is an algorithm to
construct a grammar G’ in GNF that is
equivalent to a CFG G.

Griebach Normal Form GNF
CFGè GNF

Beauty of Mathematics

	
1 x 8 + 1 = 9

12 x 8 + 2 = 98
123 x 8 + 3 = 987

1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765

123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543

12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

	Absolutely	amazing!	

