Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Today's Topics

- Context Free Grammar
- Parsing
- Grammar Ambiguity
- Simple Grammar
- Normal Forms definition

Recognition of strings in a language

•Generative aspect of CFG: By now it should be clear how, from a CFG G, you can derive strings $w \in L(G)$.

•Analytical aspect: Given a CFG G and a string w, how do you decide if $w \in L(G)$ and -if so- how do you determine the derivation tree or the sequence of production rules that produce w? This is called the problem of **parsing**.

• Parser

Is a program that determines if a string $\mathcal{O} \in L(G)$ by constructing a derivation. Equivalently, it searches the graph of *G*.

- Top-down parsers
 - Constructs the derivation tree from root to leaves.
 - Leftmost derivation.
- Bottom-up parsers
 - Constructs the derivation tree from leaves to root.
 - Rightmost derivation in reverse.

Parse trees (=Derivation Tree)

A parse tree is a graphical representation of a derivation sequence of a sentential form.

Tree nodes represent symbols of the grammar (nonterminals or terminals) and tree edges represent derivation steps.

Parse Tree: Example

Given the following grammar:

$$\mathsf{E} \rightarrow \mathsf{E} + \mathsf{E} \mid \mathsf{E} * \mathsf{E} \mid (\mathsf{E}) \mid - \mathsf{E} \mid \mathsf{id}$$

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following derivation:

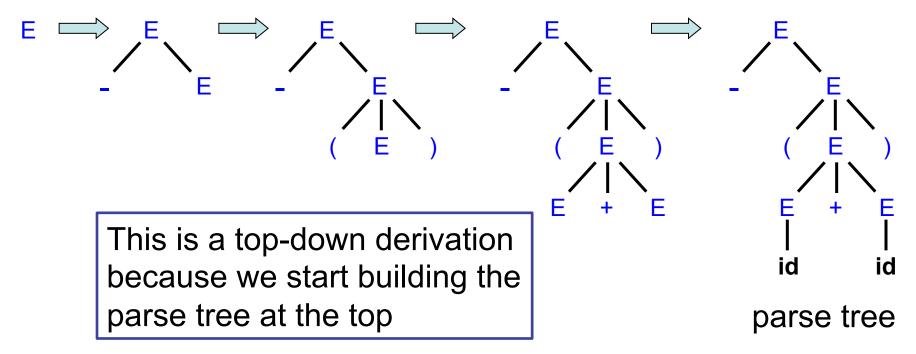
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -(id + id)$$

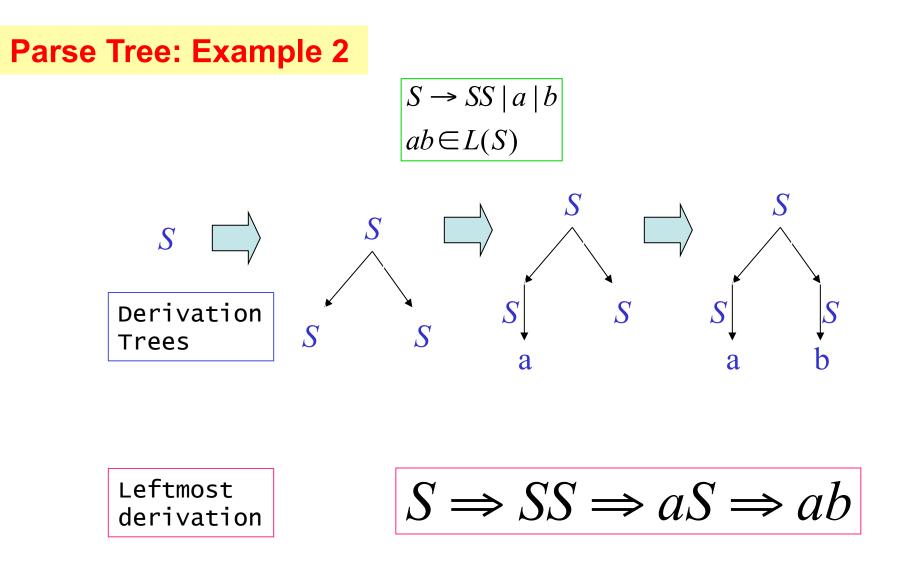
Parse Tree: Example 1

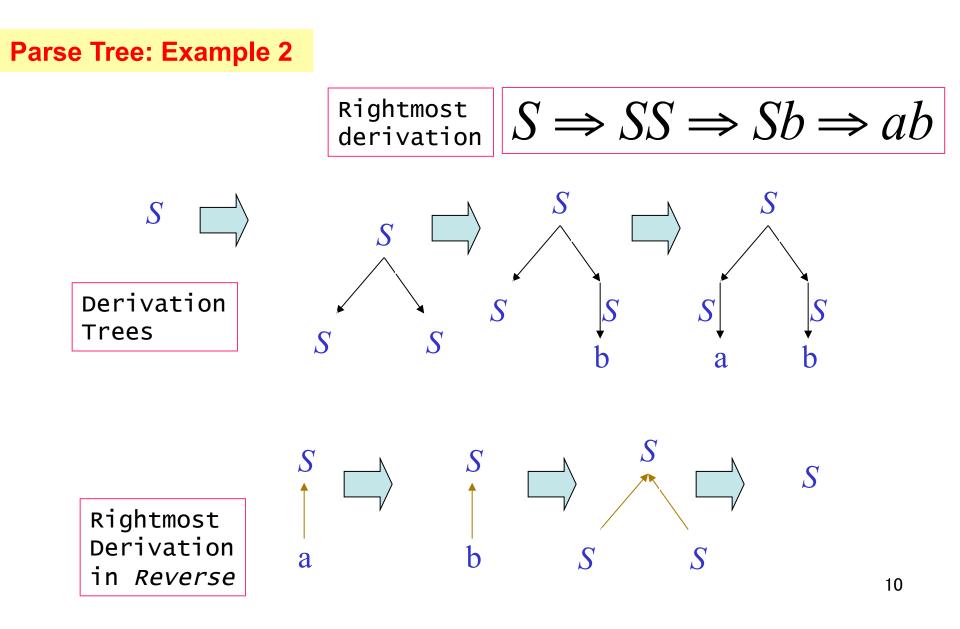
 $\mathsf{E} \rightarrow \mathsf{E} + \mathsf{E} \mid \mathsf{E} * \mathsf{E} \mid (\mathsf{E}) \mid - \mathsf{E} \mid \mathsf{id}$

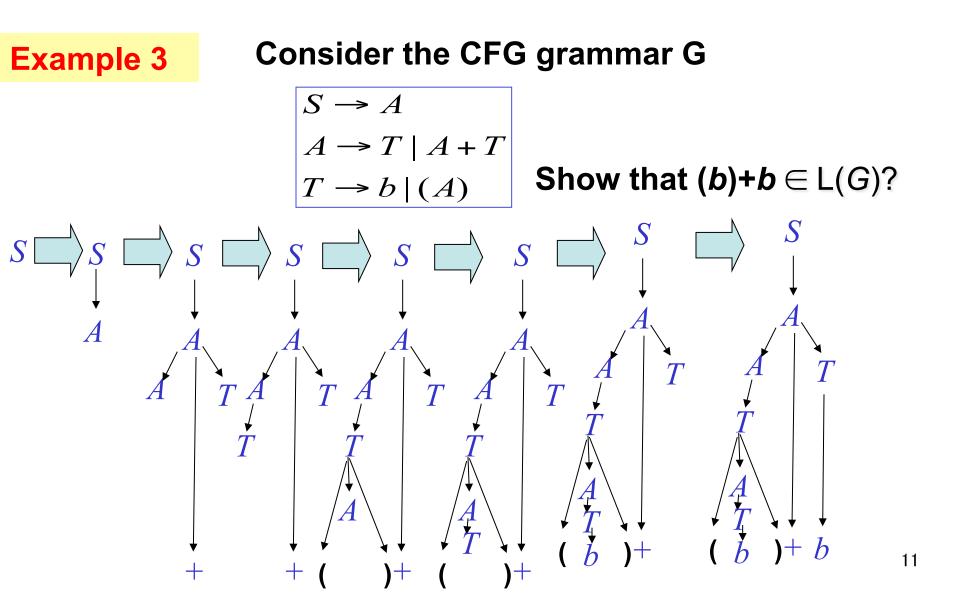
Lets examine this derivation:

$$\mathsf{E} \Rightarrow \mathsf{-E} \Rightarrow \mathsf{-(E)} \Rightarrow \mathsf{-(E + E)} \Rightarrow \mathsf{-(id + id)}$$









Practical Parsers

 Language/Grammar designed to enable deterministic (directed and backtrack-free) searches.

- Top-down parsers : LL(k) languages

- E.g., Pascal, Ada, etc.
- Better error diagnosis and recovery.
- Bottom-up parsers : LALR(1), LR(k) languages
 - E.g., C/C++, Java, etc.
 - Handles left recursion in the grammar.
- Backtracking parsers
 - E.g., Prolog interpreter.

Top-down Exhaustive Parsing

Exhaustive parsing is a form of **top-down** parsing where you start with S and systematically go through all possible (say leftmost) derivations until you produce the string w.

(You can remove sentential forms that will not work.)

Example: Can the CFG S \rightarrow SS | aSb | bSa | λ produce the string w = aabb, and how?

After one step: $S \Rightarrow SS$ or aSb or bSa or λ .

•After two steps: $S \Rightarrow SSS$ or aSbS or bSaS or S,

or $S \Rightarrow aSSb$ or aaSbb or abSab or ab.

After three steps we see that: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$.

Flaws of Top-down Exhaustive Parsing

Obvious flaw: it will take a long time and a lot of memory for moderately long strings w: It is inefficient.

• For cases w \notin L(G) exhaustive parsing may never end. This will especially happen if we have rules like $A \rightarrow \lambda$ that make the sentential forms 'shrink' so that we will never know if we went 'too far' with our parsing attempts.

Similar problems occur if the parsing can get in a loop according to A ⇒ B ⇒ A ⇒ B...

Fortunately, it is always possible to remove problematic rules like $A \rightarrow \lambda$ and $A \rightarrow B$ from a CFG G.

Definition: a string is derived **ambiguously** in a context-free grammar if it has two or more different parse trees

Definition: a grammar is ambiguous if it generates some string ambiguously

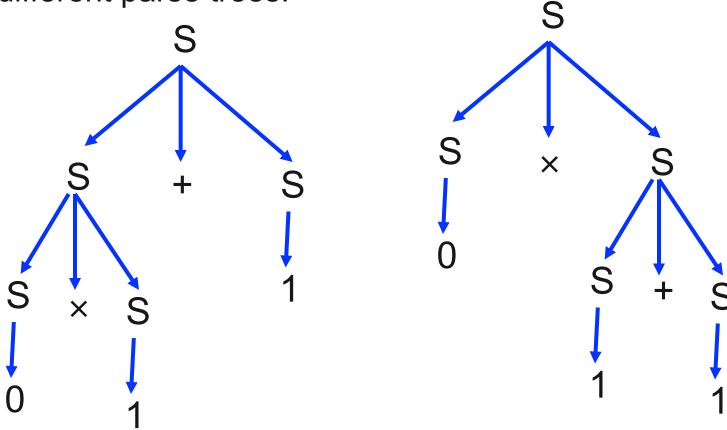
A string $w \in L(G)$ is derived **ambiguously** if it has more than one derivation tree (or equivalently: if it has more than one leftmost derivation (or rightmost)).

A grammar is **ambiguous** if some strings are derived ambiguously.

Typical example: rule $S \rightarrow 0 | 1 | S+S | S\times S$

 $S \Rightarrow S+S \Rightarrow S\times S+S \Rightarrow 0\times S+S \Rightarrow 0\times 1+S \Rightarrow 0\times 1+1$ versus $S \Rightarrow S\times S \Rightarrow 0\times S \Rightarrow 0\times S+S \Rightarrow 0\times 1+S \Rightarrow 0\times 1+1$

The ambiguity of $0 \times 1+1$ is shown by the two different parse trees:



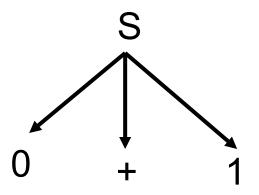
Note that the two different derivations:

 $S \Rightarrow S + S \Rightarrow 0 + S \Rightarrow 0 + 1$

and

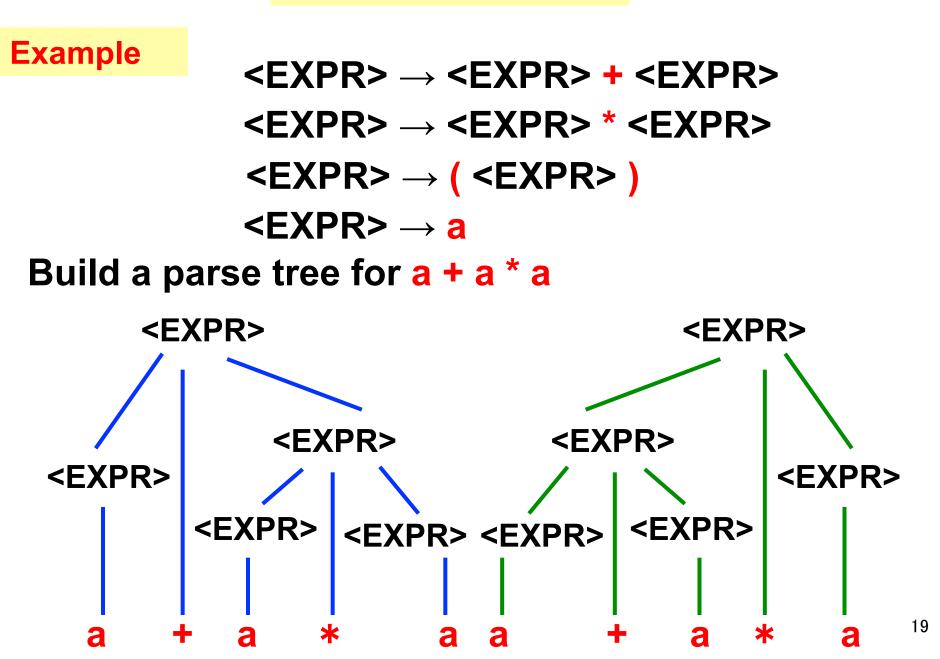
 $S \Rightarrow S + S \Rightarrow S + 1 \Rightarrow 0 + 1$

do *not* constitute an ambiguous string 0+1 as have the same parse tree:



Ambiguity causes troubles when trying to interpret strings like: "She likes men who love women who don't smoke."

Solutions: Use parentheses, or use precedence rules such as $a+(b\times c) = a+b\times c \neq (a+b)\times c$.



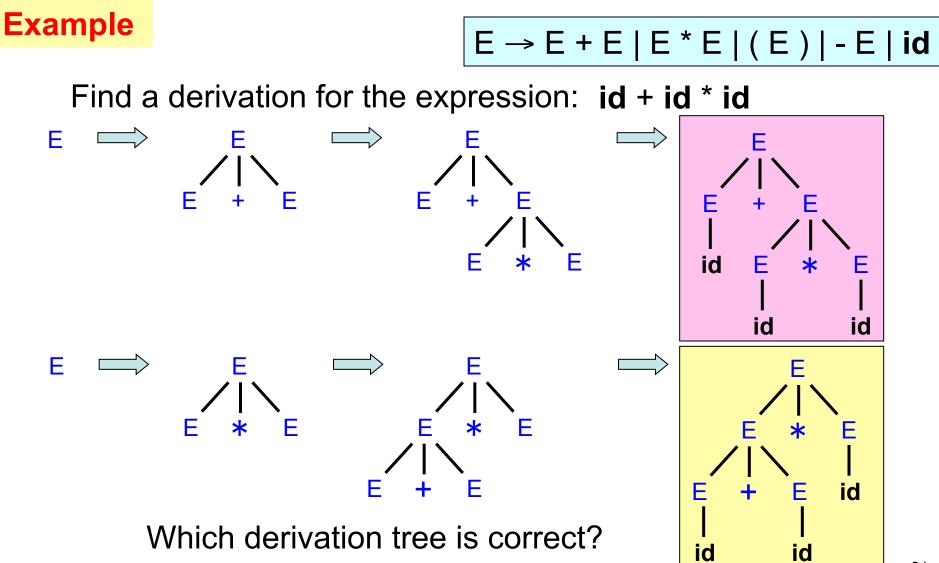
Inherently Ambiguous

Languages that can only be generated by ambiguous grammars are inherently ambiguous.

♦ Example: L =
$$\{a^nb^nc^m\} \cup \{a^nb^mc^m\}$$
.

$$L = \{ a^i b^j c^k \mid i = j \lor j = k \}$$

The way to make a CFG for this L somehow has to involve the step S → S₁|S₂ where S1 produces the strings aⁿbⁿc^m and S₂ the strings aⁿb^mc^m.
This will be ambiguous on strings aⁿbⁿcⁿ.

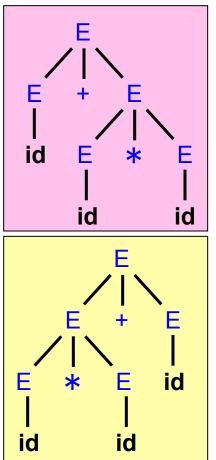


Example

Find a derivation for the expression: **id** + **id** * **id**

According to the grammar, both are correct.

A grammar that produces more than one parse tree for any input sentence is said to be an **ambiguous** grammar.



One way to resolve ambiguity is to associate precedence to the operators.

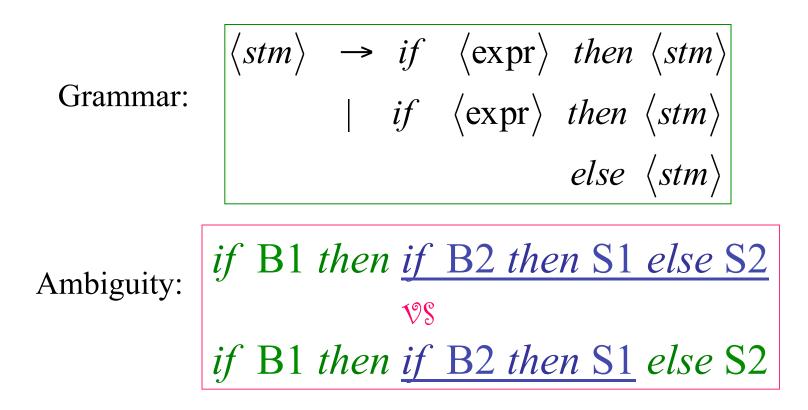
Example

* has precedence over +
1 + 2 * 3 = 1 + (2 * 3)

```
1 + 2 * 3 \neq (1 + 2) * 3
```

 Associativity and precedence information is typically used to disambiguate non-fully parenthesized expressions containing unary prefix/postfix operators or binary infix operators.

Example



Quiz 1

Is the following grammar ambiguous?

Yes: consider the string abc

 $S \rightarrow PC \mid AQ$ $P \rightarrow aPb \mid \lambda$ $C \rightarrow cC \mid \lambda$ $Q \rightarrow bQc \mid \lambda$ $A \rightarrow aA \mid \lambda$

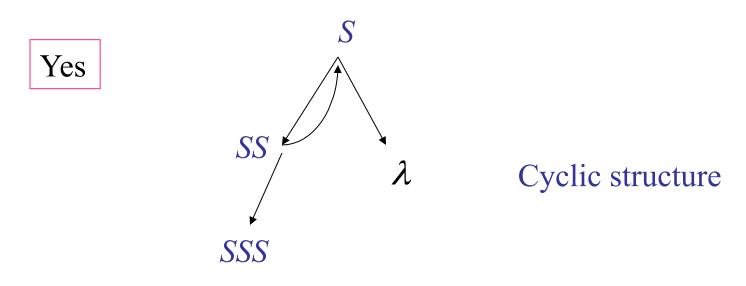
Is the following grammar ambiguous?

$$S \rightarrow aS \mid Sb \mid ab \mid \lambda$$

Yes: consider ab

Quiz

Is the following grammar ambiguous?



(Illustrates ambiguous grammar with cycles.)

Simple Grammar

Definition

A CFG (V,T,S,P) is a **simple grammar** (**s-grammar**) if and only if all its productions are of the form $A \rightarrow ax$ with $A \in V$, $a \in T$, $x \in V^*$ and any pair (A,a) occurs at most once.

•Note, for simple grammars a left most derivation of a string $w \in L(G)$ is straightforward and requires time |w|.

•Example: Take the s-grammar $S \rightarrow aS|bSS|c$ with aabcc: $S \Rightarrow aS \Rightarrow aaS \Rightarrow aabSS \Rightarrow aabcS \Rightarrow aabcc$.

Quiz: is the grammar $S \rightarrow aS|bSS|aSS|c$ s-grammar ?

Normal Forms

Chomsky Normal Form Griebach Normal Form

Chomsky Normal Form CNF

A CFG is said to be in *Chomsky Normal Form* if every rule in the grammar has one of the following forms:

 $A \rightarrow BC$ $A \rightarrow a$ $S \rightarrow \lambda$ where $B, C \in V - \{S\}$

(dyadic variable productions)

(unit terminal productions)

(λ for empty string sake only)

Where S is the start variable, A,B,C are variables and a is a terminal. Thus empty string λ may only appear on the right hand side of the start symbol and other RHS are either 2 variables or a single terminal.

Chomsky Normal Form CNF

CFG→ CNF

Theorem: There is an algorithm to construct a grammar G' in CNF that is equivalent to a CFG G.

Griebach Normal Form GNF

• A CFG is in *Griebach Normal Form* if each rule is of the form

$$A \rightarrow aA_1A_2...A_n$$
$$A \rightarrow a$$
$$S \rightarrow \lambda$$
where $A_i \in V - \{S\}$

Griebach Normal Form GNF

CFG→ GNF

 Theorem: There is an algorithm to construct a grammar G' in GNF that is equivalent to a CFG G.

Beauty of Mathematics

Absolutely amazing!

 $1 \ge 8 + 1 = 9$ $12 \ge 8 + 2 = 98$ $123 \ge 8 + 3 = 987$ $1234 \ge 8 + 4 = 9876$ $12345 \ge 8 + 5 = 98765$ $123456 \ge 8 + 6 = 987654$ $1234567 \ge 8 + 7 = 9876543$ $12345678 \ge 8 + 8 = 98765432$ $123456789 \ge 8 + 9 = 987654321$