Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Today’s Topics

» Context Free Grammar
 Parsing

» Grammar Ambiguity

» Simple Grammar

* Normal Forms definition

CFG: Parsing

Recognition of strings in a
language

CFG: Parsing

*Generative aspect of CFG: By now it should be clear how,
from a CFG G, you can derive strings welL(G).

*Analytical aspect: Given a CFG G and a string w, how do
you decide if welL(G) and —if so— how do you determine
the derivation tree or the sequence of production rules
that produce w? This is called the problem of parsing.

CFG: Parsing

« Parser
Is a program that determines if a string® €L(G)
by constructing a derivation. Equivalently,
it searches the graph of G.

— Top-down parsers

* Constructs the derivation tree from root to
leaves.

* L eftmost derivation.

— Bottom-up parsers

* Constructs the derivation tree from leaves to
root.

» Rightmost derivation in reverse.

CFG: Parsing

Parse trees (=Derivation Tree)

A parse tree is a graphical representation
of a derivation sequence of a sentential form.

Tree nodes represent symbols of the
grammar (nonterminals or terminals) and
tree edges represent derivation steps.

CFG: Parsing

Parse Tree: Example

Given the following grammar:

E-E+E|E*E|(E)|-E]|id

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following derivation:

E=-E=-(E)=-(E+E)=-(id + id)

CFG: Parsing

Parse Tree: Example 1

ESE+E|E*E|(E)|-E]|id

Lets examine this derivation:
E=-E=-(E)=-(E+E)=-(id + id)

E = E —> —> —
_/ \E / \ / \ / \
/|\ /|\ /|\
/|\ /|\
E o+ E E o+ E
This is a top-down derivation | |

because we start building the id id
parse tree at the top parse tree

8

CFG: Parsing

Parse Tree: Example 2

S—SS|a|b
abe L(S)
< S S
s 5 Vs S AVANAVAN
Derivation | \ Sl S Sl lS
Trees S S . . v

Leftmost

derivation S — SS — aS = ab

Parse Tree: Example 2

s o

Derivation
Trees

Rightmost
Derivation
in Reverse

CFG: Parsing

Rightmost
derivation

S=585= Sb= ab

S

;)

N

= A B 9

S S

10

Example 3

A

ij

=)
£

CFG: Parsing

Consider the CFG grammar G

5)
;

\

S — A4

A—T|A+T
I —=b|(4)

S
|
N
T

/
T

ad

A/\

A
A
47 47

+ ()t

T

/
T

A\

) S

l
i
T

)+

Show that (b)+b € L(G)?

=]

AN

(b)t

CFG: Parsing

Practical Parsers

Language/Grammar designed to enable deterministic (directed
and backtrack-free) searches.

— Top-down parsers : LL(k) languages
* E.g., Pascal, Ada, etc.
» Better error diagnosis and recovery.
— Bottom-up parsers : LALR(1), LR(k) languages
 E.g., C/C++, Java, etc.
* Handles left recursion in the grammar.
— Backtracking parsers
« E.g., Prolog interpreter.

12

CFG: Parsing

Top-down Exhaustive Parsing

Exhaustive parsing is a form of top-down parsing where
you start with S and systematically go through all possible (say
leftmost) derivations until you produce the string w.

(You can remove sentential forms that will not work.)

Example: Can the CFG S — SS | aSb | bSa | A produce the
string w = aabb, and how?

After one step: S = SS or aSb or bSa or A.

After two steps: S = SSS or aSbS or bSaS or S,
or S = aSSb or aaSbb or abSab or ab.

After three steps we see that: S = aSb = aaSbb = aabb.

13

CFG: Parsing

Flaws of Top-down Exhaustive Parsing

Obvious flaw: it will take a long time and a lot of memory
for moderately long strings w: It is inefficient.

For cases w&&L(G) exhaustive parsing may never end.
This will especially happen if we have rules like A—A that make the
sentential forms ‘shrink’ so that we will never know if we went ‘too
far’ with our parsing attempts.

Similar problems occur if the parsing can get in a loop according
to A= B = A= B...

Fortunately, it is always possible to remove problematic rules like
A—) and A—B from a CFG G.

14

Grammar Ambiguity

Definition

Definition: a string is derived ambiguously
in a context-free grammar if it has two or
more different parse trees

Definition: a grammar is ambiguous if it
generates some string ambiguously

15

Grammar Ambiguity

A string wel (G) is derived ambiguously if it has
more than one derivation tree (or equivalently: if it has
more than one leftmost derivation (or rightmost)).

A grammar is ambiguous if some strings are derived
ambiguously.

Typical example: rule S = 0] 1| S+S | SxS

S = S+S = SxS+S = 0xS+S = 0x1+S = 0x1+1
versus
S = SxS = 0xS = 0xS+S = 0x1+S = 0x1+1

16

Grammar Ambiguity

The ambiguity of 0x1+1 is shown by the two
different parse trees: 3

S/Jlr\s f/’l‘\s
S/XRS £ ’ T/Jhs
;| P

17

Grammar Ambiguity

Note that the two different derivations:

S = S+S = 0+S = 0+1 S

and

S = S+S = S+1 = 0+1 /I\
do not constitute an ambiguous string

0+1 as have the same parse tree: 0 T 1

Ambiguity causes troubles when trying to interpret strings
like: “She likes men who love women who don't smoke.”

Solutions: Use parentheses, or use precedence rules
such as a+(bxc) = a+bxc # (a+b)xc.

18

Grammar Ambiguity

\

<EXPR>

Example _EXPR> —» <EXPR> + <EXPR>
<EXPR> — <EXPR> * <EXPR>
<EXPR> — (<EXPR>)
<EXPR> — a

Build a parse treefora+a *a
<EXPR> <EXPR>
\ /
/ <EXPR> <EXPR>
<EXPR> / \ / \
<EXPR> | <EXPR> <EXPR> | <EXPR>
ik

d

19

Grammar Ambiguity

Inherently Ambiguous

€ Languages that can only be generated by
ambiguous grammars are inherently
ambiguous.

€ Example: L = {a"b"c™} U {a"b™c™}.
L={ablc" | i=j vj=k}

€ The way to make a CFG for this L somehow has
to involve the step S — S,|S, where S1 produces
the strings a"b"c™ and S, the strings a"b™c™.

€ This will be ambiguous on strings a"b"c".

20

Grammar Ambiguity

Example

ESE+E|E*E|(E)|-E]|id

Find a derivation for the expression: id + id * id

E —> E —> E —> E
/ I\ / I\ /7 I\
E + E E + E E + E
/ I\ | /1IN
E % E id EI * I|E
id id
E —> E —> — =
/ I\ /I\ /7 I\
E % E E % E
/I\ /1IN |
E + E id
Which derivation tree is correct? Il iL
21

Example

Grammar Ambiguity

ESE+E|E*E|(E)|-E]|id

Find a derivation for the expression: id + id * id

E
According to the grammar, both are correct. E/ | \E
+
| /1IN
id E %
A grammar that produces more than one ild iL
parse tree for any input sentence is said =
to be an ambiguous grammar. / 1\
E + E
/1IN
* E i
| |
id id -

Grammar Ambiguity

One way to resolve ambiguity is to associate
precedence to the operators.

Example

* * has precedence over +
1 + 2
1 + 2

« Associativity and precedence information is typically
used to disambiguate non-fully parenthesized

expressions containing unary prefix/postfix operators
or binary infix operators.

23

Example

Grammar:

Ambiguity:

Grammar Ambiguity

<Sl‘m> — if <eXpr> then <Stm>
| if <expr> then <Stm>

else <Stm>

if Bl then if B2 then S1 else S2

AV
if Bl then if B2 then S1 else S2

24

Grammar Ambiguity

Quiz 1

S — PC|AQ
P—aPb|A
C—=cC|A

QO — bQc| A
A—ad| A

Is the following grammar ambiguous?

Yes: consider the string abc

25

Grammar Ambiguity

Quiz 2

Is the following grammar ambiguous?

S—aS|Sb|lab|A

Yes: consider ab

26

Quiz

Grammar Ambiguity

Is the following grammar ambiguous?

Yes

S—SS|A

Cyclic structure

(Illustrates ambiguous grammar with cycles.)

27

Simple Grammar

Definition

A CFG (V,T,S,P) is a simple grammar

(s-grammar) if and only if all its productions are of the form
A — ax with

A€V, acT, x&V* and any pair (A,a) occurs at most once.

*Note, for simple grammars a left most derivation of a
string welL(G) is straightforward and requires time |w]|.

*Example: Take the s-grammar S — aS|bSS|c with aabcc:
S = aS = aaS = aabSS = aabcS = aabcc.

Quiz: is the grammar S — aS|bSS|aSS|c s-grammar ?

NO Why? The pair (S,a) occurs twice

28

Normal Forms

Chomsky Normal Form
Griebach Normal Form

29

Chomsky Normal Form CNF

A CFG is said to be in Chomsky Normal Form if every rule in the
grammar has one of the following forms:

A — BC (dyadic variable productions)
A—a (unit terminal productions)
S—=A

(A for empty string sake only)
where B,C €V -{S}

Where S is the start variable, A,B,C are variables and a is a terminal.
Thus empty string A may only appear on the right hand side of the
start symbol and other RHS are either 2 variables or a single
terminal.

30

Chomsky Normal Form CNF

CFG=> CNF

 Theorem: There is an algorithm to
construct a grammar G’ in CNF that is
equivalent to a CFG G.

31

Griebach Normal Form GNF

 ACFG s in Griebach Normal Form
If each rule is of the form

A—aAdA,..4
A—a

S—=A

where 4 €V —{S}

32

Griebach Normal Form GNF

CFG=> GNF

 Theorem: There is an algorithm to
construct a grammar G’ in GNF that is
equivalent to a CFG G.

33

Beauty of Mathematics

Absolutely amazing!

1x8+1=9
12x8+2=098
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

