4

Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Today's Topics

- Context Free Grammar
- Parsing
- Grammar Ambiguity
- Simple Grammar
- Normal Forms definition

CFG: Parsing

Recognition of strings in a language

3

CFG: Parsing

•Generative aspect of CFG: By now it should be clear how, from a CFG G, you can derive strings $w \in L(G)$.

•Analytical aspect: Given a CFG G and a string w, how do you decide if w \in L(G) and –if so– how do you determine the derivation tree or the sequence of production rules that produce w? This is called the problem of **parsing**.

CFG: Parsing

Is a program that determines if a string $\mathcal{CL}(G)$ by constructing a derivation. Equivalently, it searches the graph of *G*.

- Top-down parsers

Parser

- Constructs the derivation tree from root to leaves.
- · Leftmost derivation.
- Bottom-up parsers
 - Constructs the derivation tree from leaves to root.
 - Rightmost derivation in reverse.

CFG: Parsing

Parse trees (=Derivation Tree)

A parse tree is a graphical representation of a derivation sequence of a sentential form.

Tree nodes represent symbols of the grammar (nonterminals or terminals) and tree edges represent derivation steps.

CFG: Parsing

Parse Tree: Example

Given the following grammar:

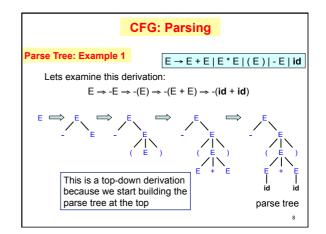
$\mathsf{E} \rightarrow \mathsf{E} + \mathsf{E} \mid \mathsf{E} * \mathsf{E} \mid (\mathsf{E}) \mid - \mathsf{E} \mid \mathsf{id}$

Is the string -(id + id) a sentence in this grammar?

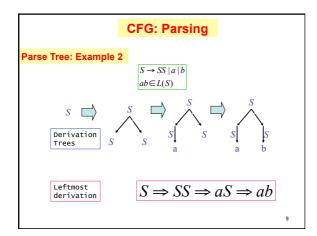
Yes because there is the following derivation:

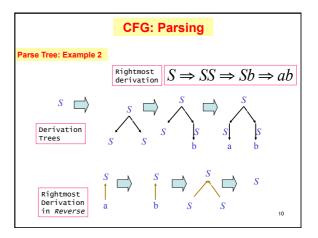
 $\mathsf{E} \Rightarrow \mathsf{-E} \Rightarrow \mathsf{-(E)} \Rightarrow \mathsf{-(E+E)} \Rightarrow \mathsf{-(id+id)}$

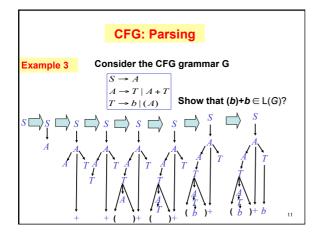
7

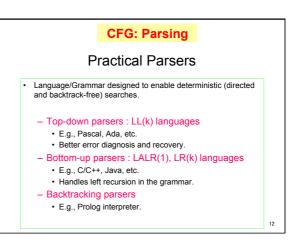


2









16

CFG: Parsing

Top-down Exhaustive Parsing

Exhaustive parsing is a form of top-down parsing where you start with S and systematically go through all possible (say leftmost) derivations until you produce the string w. (You can remove sentential forms that will not work.)

Example: Can the CFG S \rightarrow SS | aSb | bSa | λ produce the string w = aabb, and how? After one step: S \rightarrow SS or aSb or bSa or λ .

After two steps: $S \Rightarrow SSS$ or aSbS or bSaS or S, or $S \Rightarrow aSSb$ or aaSbb or abSab or ab.

After three steps we see that: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$.

CFG: Parsing

Flaws of Top-down Exhaustive Parsing

Obvious flaw: it will take a long time and a lot of memory for moderately long strings w: It is inefficient.

=For cases w \notin L(G) exhaustive parsing may never end. This will especially happen if we have rules like $A \rightarrow \lambda$ that make the sentential forms 'shrink' so that we will never know if we went 'too far' with our parsing attempts.

Similar problems occur if the parsing can get in a loop according to $A \Rightarrow B \Rightarrow A \Rightarrow B...$

Fortunately, it is always possible to remove problematic rules like $A{\to}\lambda$ and $A{\to}B$ from a CFG G.

Grammar Ambiguity

Definition

Definition: a string is derived ambiguously in a context-free grammar if it has two or more different parse trees

Definition: a grammar is ambiguous if it generates some string ambiguously

15

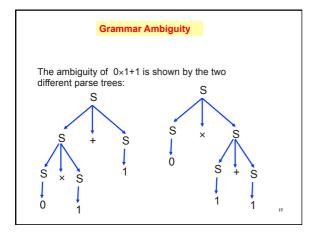
Grammar Ambiguity

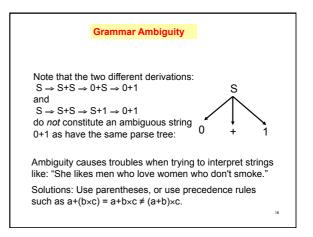
A string $w \in L(G)$ is derived **ambiguously** if it has more than one derivation tree (or equivalently: if it has more than one leftmost derivation (or rightmost)).

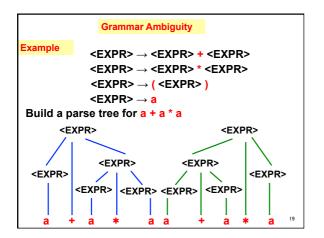
A grammar is **ambiguous** if some strings are derived ambiguously.

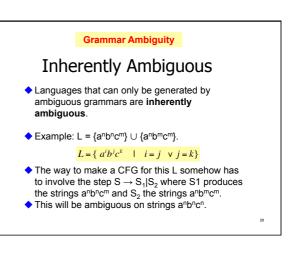
Typical example: rule $S \rightarrow 0 \mid 1 \mid S+S \mid S \times S$

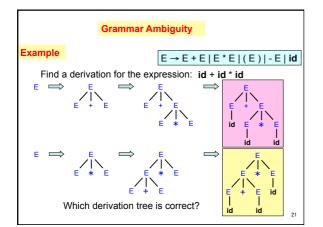
$$\begin{split} S &\Rightarrow S+S \Rightarrow S \times S+S \Rightarrow 0 \times S+S \Rightarrow 0 \times 1+S \Rightarrow 0 \times 1+1 \\ \text{versus} \\ S &\Rightarrow S \times S \Rightarrow 0 \times S \Rightarrow 0 \times S+S \Rightarrow 0 \times 1+S \Rightarrow 0 \times 1+1 \end{split}$$

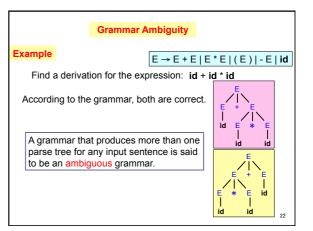






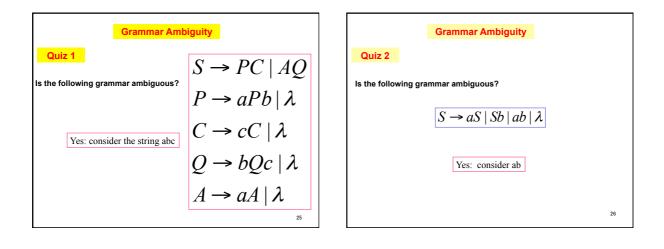


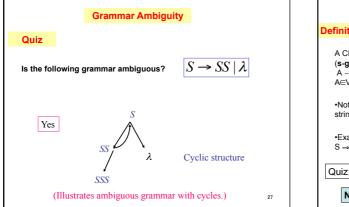


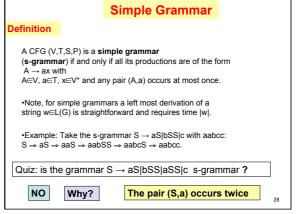


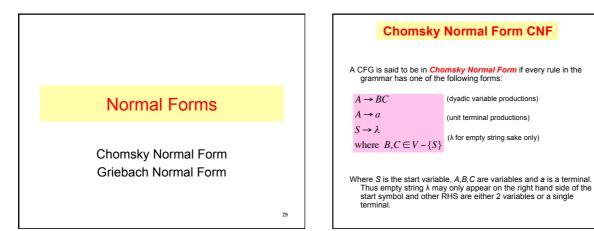
	Grammar Ambiguity				
	One way to resolve ambiguity is to associate precedence to the operators.				
Exam	ble				
•	* has precedence over +				
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
•	Associativity and precedence information is typically used to disambiguate non-fully parenthesized expressions containing unary prefix/postfix operators or binary infix operators.				

	Grammar Ambiguity	
Example		
Grammar:	$ \begin{array}{ccc} \langle stm \rangle & \rightarrow & if \langle expr \rangle then \ \langle stm \rangle \\ & if \langle expr \rangle then \ \langle stm \rangle \\ & else \ \langle stm \rangle \end{array} $	
Ambiguity:	if B1 then <u>if B2 then S1 else S2</u> vs if B1 then <u>if B2 then S1</u> else S2	
		24

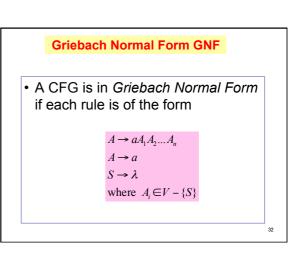








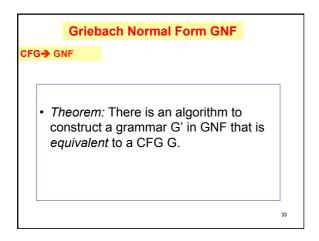
• <i>Theorem:</i> There is an algorithm to construct a grammar G' in CNF that is <i>equivalent</i> to a CFG G.	FG)	Chomsky Normal Form CNF	
		construct a grammar G' in CNF that is	



Chomsky Normal Form CNF

(dyadic variable productions)

(unit terminal productions)



Beauty of Mathematics	
Absolutely amazing!	

1 x 8 + 1 = 9 12 x 8 + 2 = 98 123 x 8 + 3 = 987 1234 x 8 + 4 = 9876 12345 x 8 + 5 = 98765 123456 x 8 + 6 = 987654 1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432123456789 x 8 + 9 = 987654321