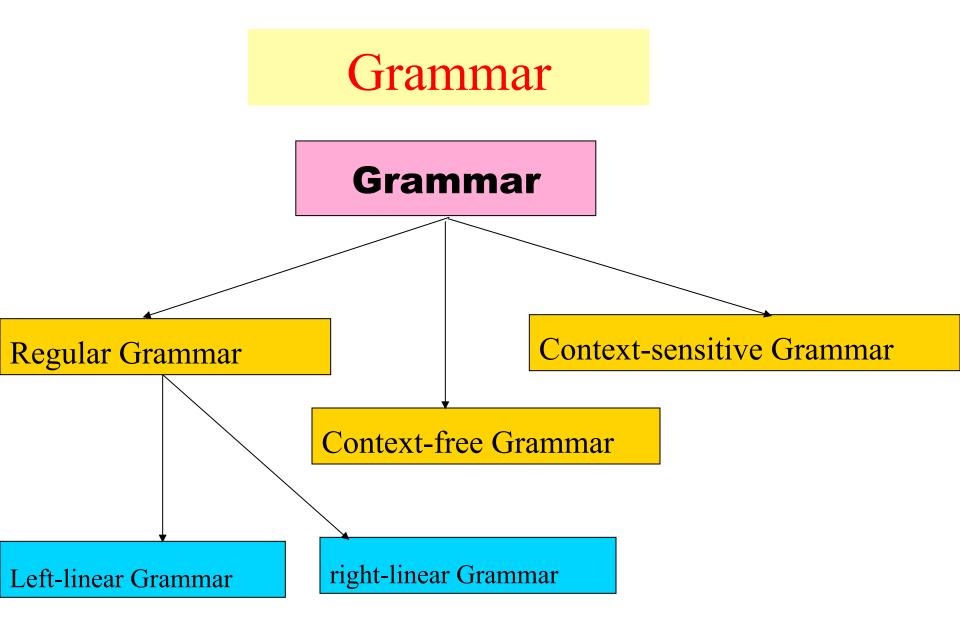
Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan



Today's Topics

- Grammars
- Right-Linear Grammars
- Left-Linear Grammars
- Regular Grammars
- Context-free Grammars
- Derivation: Leftmost & Rightmost
- Derivation Tree

Grammars

Definition

A grammar G is defined as G = (V, T, P, S) where:

- V : Finite set of variables/non-terminals (We use capital letters A,B,C,... for variables)
- T : Alphabet/Finite set of terminals (We use small letters a,b,c,... for terminals)
- P : Finite set of rules/productions
- S : Start symbol

 $S \in V$ $V \cap T = \phi$ Rule: $\alpha \rightarrow \beta$ $\alpha \in (V \cup T)^+, \quad \beta \in (V \cup T)^*$

Each grammar G defines a language L(G), which is the set of strings in T^{*} (= Σ ^{*}) that G can generate from S. *It is all about the production rules.*

Definition

Given a grammar G = (V, T, P, S)

For a string *w*=*uxv* we can apply the production rule

 $x \rightarrow y$ to w so we get a string z=uyv.

In this case we write $w \rightarrow z$, which reads w drives z.

If
$$w_1 \longrightarrow w_2 \longrightarrow \dots \longrightarrow w_n$$
,
we say that w_1 drives w_n and we write $w_1 \longrightarrow w_n$

Example

Given a grammar G = (V, T, P,S)

V={A, B, C} T={a, b, x} S= A And P is: $AaBx \rightarrow aBAaBb$ $CaBx \rightarrow aBAaCb$

ABC→λ

Definition

Let G=(V, T, P, S) be a grammar.

- $w \in (V \cup T)^*$ is a sentential form, if $S \Rightarrow_G^* w$
- $w \in T^*$ is a sentence, if $S \Rightarrow^*_G w$
- The language of G, $L(G) = \{w \in T^* | S \Rightarrow^*_G w\}$

Some Remarks

The language L(G) = { $w \in T^* : S \Rightarrow^* w$ } contains only strings of terminals, not variables.

Notation: We summarize several rules for one variable: $A \rightarrow B$

- $A \rightarrow 01$ by $A \rightarrow B \mid 01 \mid AA$
- $A \rightarrow AA$

Example

Given the grammar:

$$G = \{\{S\}, \{a, b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S\}$$

The language generated by this grammar is:

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

Right-Linear Grammars

Definition

A Grammar G= (V, T, P,S) is called *rightlinear grammar* if every production is of the form $A \rightarrow xB$, or $A \rightarrow x$ where $A,B \in V, x \in T^*$

Example: The grammar $x \rightarrow 0x \mid 1y$ $y \rightarrow 0x \mid 1z$ $z \rightarrow 0x \mid 1z \mid \lambda$ Is a right-linear grammar.

Left-Linear Grammars

Definition

A Grammar G= (V, T, P,S) is called *leftlinear grammar* if every production is of the form $A \rightarrow Bx$, or $A \rightarrow x$ where $A,B \in V, x \in T^*$

Example: The grammar $x \rightarrow x0 | y1$ $y \rightarrow x0 | z1$ $z \rightarrow x0 | z1 | \lambda$ Is a left-linear grammar.

Regular Grammars

Definition

A Grammar G= (V, T, P,S) is called *regular grammar* if its is left- or right-linear

Example: The grammar $x \rightarrow x0 | y1$ $y \rightarrow x0 | z1$ $z \rightarrow x0 | z1 | \lambda$ Is a left-linear grammar, hence is Regular Grammar Example: The grammar $x \rightarrow 0x \mid 1y$ $y \rightarrow 0x \mid 1z$ $z \rightarrow 0x \mid 1z \mid \lambda$ Is a right-linear grammar, Hence is Regular Grammar

Example 1

Write a grammar that generate the language:

$$L = \{w \in \{a, b\}^* | \text{ length}(w) \text{ is EVEN} \}$$

$$E \rightarrow \lambda \qquad E - \\ | aaE | abE \\ | baE | bbE \qquad O -$$

$$E \rightarrow \lambda \mid aO \mid bO$$
$$O \rightarrow aE \mid bE$$

Example 2

Write a grammar that generate the language:

$$|L = \{w \in \{a, b\}^* | w \text{ has EVEN number of } b's\}$$

$$E \rightarrow \lambda \mid aE \mid bO$$
$$O \rightarrow aO \mid bE$$

Example 3

Write a grammar that generate the language:

$$L = \{w \in \{a, b, c\}^* \mid w \text{ does not contain } abc\}$$

$$\begin{array}{l} \langle reset \rangle \rightarrow b \langle reset \rangle | c \langle reset \rangle \\ & | a \langle seenA \rangle | \lambda \\ \langle seenA \rangle \rightarrow a \langle seenA \rangle | c \langle reset \rangle \\ & | b \langle seenAB \rangle | \lambda \\ \langle seenAB \rangle \rightarrow a \langle seenA \rangle \\ & | b \langle reset \rangle | \lambda \end{array}$$

14

Definition

CFG = (V, T, P, S)

- V : Finite set of variables/non-terminals
- T : Alphabet/Finite set of terminals
- P : Finite set of rules/productions
- S : Start symbol

$$S \in V$$
$$V \cap T = \phi$$
$$Rule: A \rightarrow \omega$$
$$A \in V \quad \omega \in (V \cup T)$$

*

Definition

Context-freeness: An A-rule can be applied whenever A occurs in a string, irrespective of the context (that is, non-terminals and terminals around A).

Derivation

- One-step Derivation $uAv \Longrightarrow_{A \to \omega} u\omega v$
- w is derivable from v in CFG, if there is a finite sequence of rule applications such that:

$$v \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n = w$$

In this case we can write this derivation as $v \rightarrow w$

Derivation

The derivation as $v \rightarrow w$ is called:

Leftmost derivation: if in every step the leftmost variable is selected for reduction

Rightmost derivation: if in every step the rightmost variable is selected for reduction

Example 1

- Let $G = ({S}, {a,b}, S, P)$ with for P:
- •S \rightarrow aSa, and S \rightarrow bSb, and S \rightarrow λ .
- •Some *derivations* from this grammar:
- S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa
- S \Rightarrow bSb \Rightarrow baSab \Rightarrow baab, and so on.
- •In general $S \Rightarrow ... \Rightarrow ww^R$ for $w \in \{a, b\}^*$.

Example 2

2

$$G = (\{S, A, B\}, \{a, b\}, \{a, b\}, \{S \rightarrow AB, A \rightarrow aA \mid \lambda, B \rightarrow Bb \mid \lambda\}, S)$$

$$L(G) = L(a * b *)$$
Leftmost Derivation :

$$S \Rightarrow AB \Rightarrow aAB \Rightarrow aB \Rightarrow aBb \Rightarrow ab$$

Rightmost Derivation :

 $S \Rightarrow AB \Rightarrow AB \Rightarrow Ab \Rightarrow ab \Rightarrow ab$

21

Example 3

Take the CFG S \rightarrow 0 | 1 | \neg (S) | (S) \vee (S) | (S) \wedge (S), which generates all proper Boolean formulas that use "0", "1", " \neg ", " \vee ", " \wedge ", "(" and ")".

Then "(0)∨((0)∧(1))" can be derived in the following ways…

[leftmost]
$$S \Rightarrow (S) \lor (S) \Rightarrow (0) \lor (S) \Rightarrow (0) \lor ((S) \land (S))$$

 $\Rightarrow (0) \lor ((0) \land (S)) \Rightarrow (0) \lor ((0) \land (1))$

[rightmost] $S \Rightarrow (S) \lor (S) \Rightarrow (S) \lor ((S) \land (S)) \Rightarrow (S) \lor ((S) \land (1))$ $\Rightarrow (S) \lor ((0) \land (1)) \Rightarrow (0) \lor ((0) \land (1))$

[something else] $S \Rightarrow (S) \lor (S) \Rightarrow (0) \lor (S) \Rightarrow (0) \lor ((S) \land (S))$ $\Rightarrow (0) \lor ((S) \land (1)) \Rightarrow (0) \lor ((0) \land (0))$

Example 4

Consider the CFG:

$$G = \{\{S\}, \{a, b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S\}$$

• Derivation of *aabb* is $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Example 5

Consider the CFG G:

$$S \rightarrow aSa \mid aBa$$
$$B \rightarrow bB \mid b$$

$$L(B) = \{b^{m} \mid m > 0\}$$
$$L(S) = \{a^{n}b^{m}a^{n} \mid n > 0 \land m > 0\}$$

Example 6

Consider the CFG G₁:

$$S \rightarrow aSa \mid B$$
$$B \rightarrow bB \mid \lambda$$

The language generated by G₁ is:

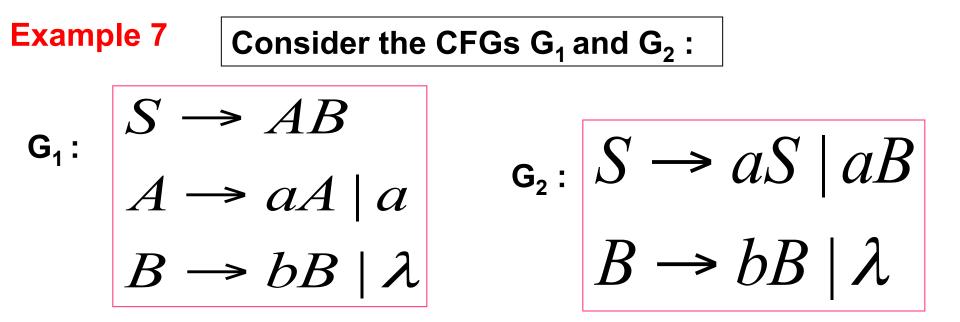
$$L(G_1) = \{a^n b^m a^n \mid n \ge 0 \land m \ge 0\}$$

Consider the CFG G₂:

$$S \rightarrow abSc \mid \lambda$$

The language generated by G₂ is:

$$L(G_2) = \{(ab)^n c^n \mid n \ge 0\}$$



The language generated by G₁ and G₂ is:

$$L(G_1) = L(G_2) = L(S)$$
$$L(S) = \{a^n b^m \mid m \ge 0 \land n > 0\}$$
$$L(S) = L(a^+ b^*)$$

26

Example 8

Write a CFG to generate the language: |a * ba * ba * ba *

$$S \rightarrow AbAbA$$
$$A \rightarrow aA \mid \lambda$$

$$S \rightarrow aS \mid B$$
$$B \rightarrow bA$$
$$A \rightarrow aA \mid bC$$
$$C \rightarrow aC \mid \lambda$$

Left to right generation of string.

Exercise 1

WRITE A CFG FOR THE EMPTY SET $G = \{ \{S\}, \Sigma, \emptyset, S \}$

Exercise 2

What is the CFG ({S},{(,)}, P, S) that produces the language of correct parentheses like (), (()), or ()(())?

 $S{\rightarrow}(S)|SS|\lambda$

Example

Consider the CFG G=({S,Z},{0,1}, P, S) with P: S \rightarrow 0S1 | 0Z1 Z \rightarrow 0Z | λ What is the language generated by G?

Answer: $L(G) = \{0^{i}1^{j} | i \ge j\}$

Specifically, S yields the $0^{j+k}1^j$ according to: $S \Rightarrow 0S1 \Rightarrow ... \Rightarrow 0^jS1^j \Rightarrow$ $0^jZ1^j \Rightarrow 0^j0Z1^j \Rightarrow ... \Rightarrow 0^{j+k}Z1^j \Rightarrow 0^{j+k}\epsilon 1^j = 0^{j+k}1^j$

Exercise

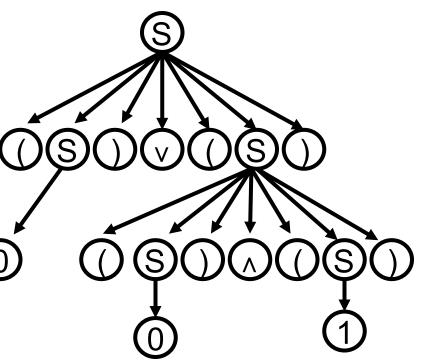
- Can you make Context Free Grammars for the following?
- a) { $0^{n}1^{n} : n \ge 0$ }
- b) { $0^{n}1^{m} : n,m \ge 0$ }
- c) Arithmetic a,b,c formulas like a+b×c+a (without ())
- Answers:
- a) $S \rightarrow 0S1 \mid \lambda$
- b) S \rightarrow 0S | R and R \rightarrow 1R | λ
- c) $S \rightarrow a \mid b \mid c \mid S+S \mid S \times S$

Derivation Tree

For a CFG G=(V,T,S,P) a derivation tree has the following properties:

1) The root is labeled S 2) Each leaf is from $T \cup \{\lambda\}$ 3) Each interior node is from V 4) If node has label A \in V and its children $a_1 \dots a_n$ (from L to R), then P must have the rule $A \rightarrow a_1 \dots a_n$ (with $a_j \in V \cup T \cup \{\lambda\}$) 5) A leaf labeled λ is a single child (has no siblings).

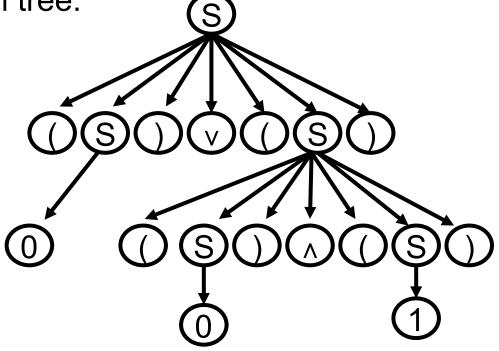
For **partial derivation trees** we have: 2a) Each leaf is from $V \cup T \cup \{\lambda\}$



Derivation Tree: Example

Take the CFG S \rightarrow 0 | 1 | \neg (S) | (S)v(S) | (S) \land (S), which generates all proper Boolean formulas that use "0", "1", " \neg ", "v", " \land ", "(" and ")".

The derivation $S \Rightarrow^* (0) \lor ((0) \land (1))$ can be expressed by the following derivation tree:

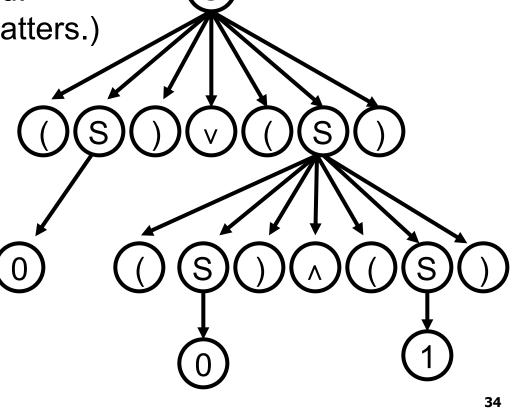


Derivation Tree: Notes

Application of a production rule $A \rightarrow x$ is represented by node A with children x. (Note that the tree is ordered: the ordering of the nodes matters.)

The root has variable S.

The **yield** of S is expressed by the leaves of the tree.



Derivation Tree: Notes

•Looking at a tree you see the derivation without the unnecessary information about its order.

•**Theorem**: Let G be a CFG. We have $w \in L(G)$ if and only if there exists a derivation tree of G with yield w.

•Also, y is a sentential form of G if and only if there exists a partial derivation tree for G.

•Remember: the root always has to be S.

Example 1

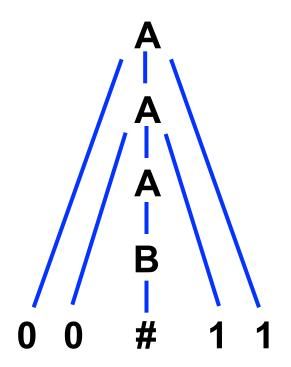
Consider the CFG G:

$$G = \{\{S\}, \{a, b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S\}$$

• The derivation of *aabb* is: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$ • Derivation tree is a a = b

Example 2

$\mathsf{A} \Rightarrow \mathsf{0A1} \Rightarrow \mathsf{00A11} \Rightarrow \mathsf{00B11} \Rightarrow \mathsf{00\#11}$



Example 3

 $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle$ $\langle EXPR \rangle \rightarrow \langle EXPR \rangle * \langle EXPR \rangle$ $\langle EXPR \rangle \rightarrow (\langle EXPR \rangle)$ $\langle EXPR \rangle \rightarrow a$ Build a parse tree for a + a * a <EXPR> <EXPR> <EXPR> <EXPR> <EXPR> a а

38

Exercise

WRITE A CFG FOR EVEN-LENGTH PALINDROMES over Σ ={a,b,c,d}?

$$\begin{split} & S \to aSa \text{ for all } a \in \Sigma \\ & S \to \lambda \end{split}$$