Automata and Languages

Prof. Mohamed Hamada

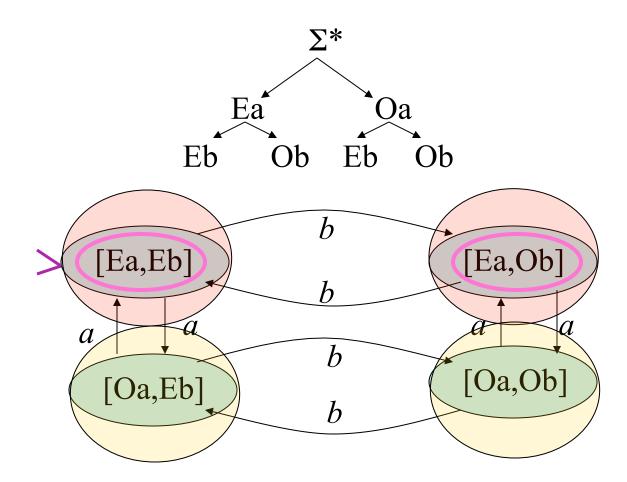
Software Engineering Lab. The University of Aizu Japan

Today's Topics

- DFA Minimization
- Examples
- Minimization Algorithms

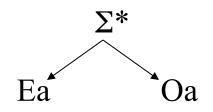
Example

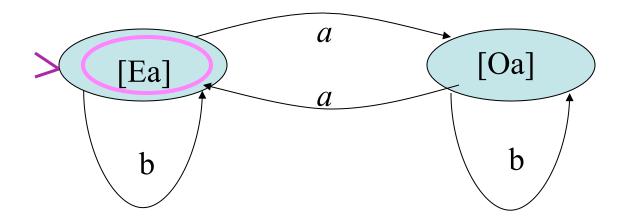
Strings over {*a*,*b*} with even number of *a*'s



Example

Strings over {*a*,*b*} with even number of *a*'s





- The states among the state sets {[Ea,Eb], [Ea,Ob]} and {[Oa,Eb], [Oa,Ob]} differ on aspect immaterial for the problem at hand.
- Why not collapse these state sets into one state each, to get a smaller DFA?

Definition

Equivalent or Indistinguishable States

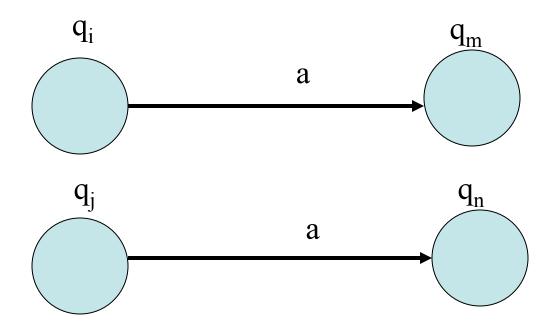
- Recall that a DFA state summarizes the substring consumed so far (that is, the past history).
- Two states q_i and q_j are *equivalent* or (*indistinguishable*), if, when started in these states, every string causes the machine to either end up in a final state for both or end up in a non-accepting state for both.

Two states q_i and q_k are *equivalent* (or *indistinguishable*), if for all strings $w \in \Sigma^*$

$\delta(\mathbf{q}_{\mathsf{i}}, \mathsf{w}) \in \mathsf{F} \Leftrightarrow \delta(\mathbf{q}_{\mathsf{k}}, \mathsf{w}) \in \mathsf{F}$

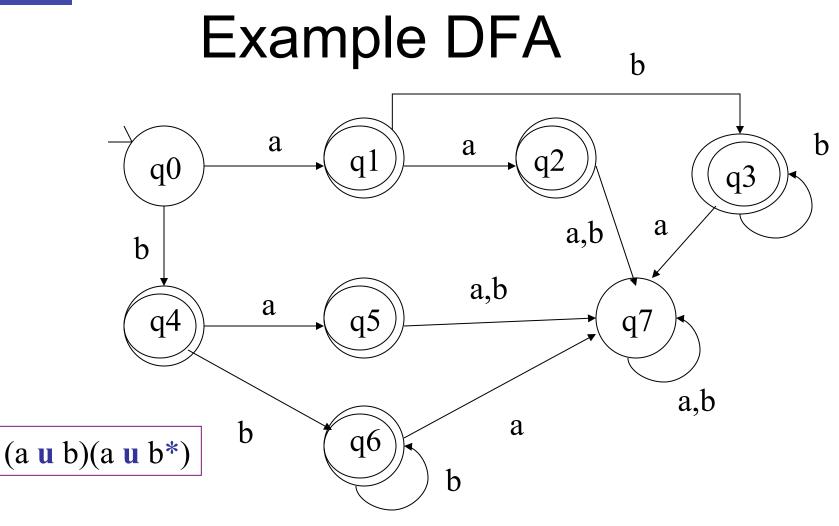
Two states q_i and q_k are *distinguishable*, if for some string $w \in \Sigma^*$ $\delta(q_i, w) \in F \iff \delta(q_k, w) \notin F$

Main Idea



If q_m and q_n are distinguishable, then so are q_i and q_j

Example



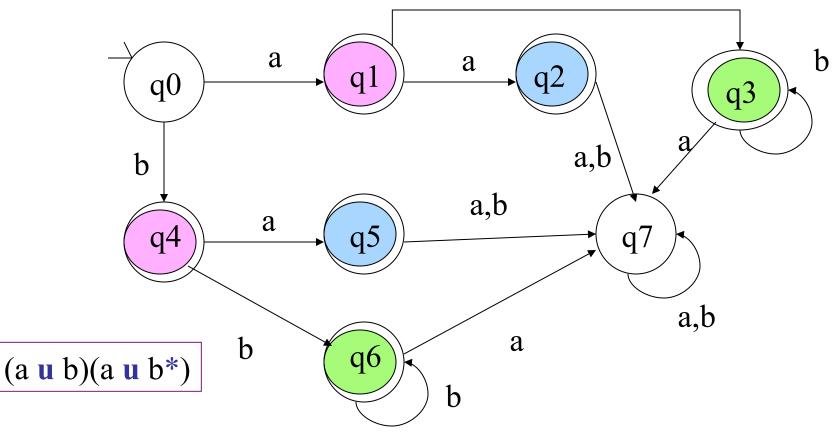
9

Example

Refinement of State Partitions

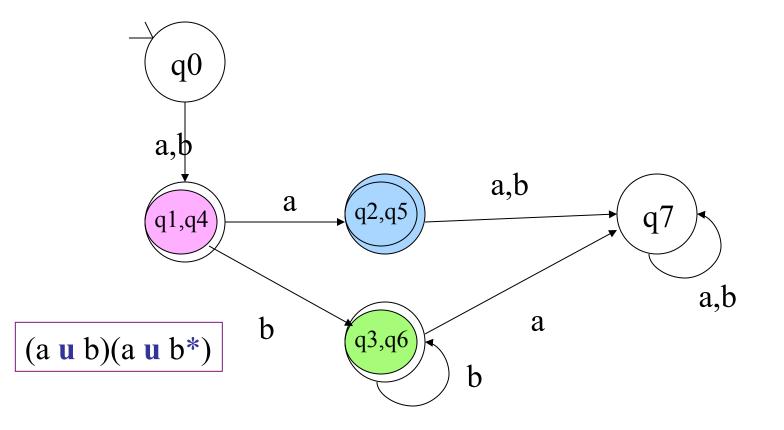
- { {q0,q7} , {q1,q2,q3,q4,q5,q6} }
- { {q0},{q7}, {q1,q2,q3,q4,q5,q6} }
 - On any transition
- { {q0},{q7}, {q1,q2,q3,q4,q5,q6} }
- { {q0},{q7}, {q1,q4}, {q2,q3,q5,q6} }
 - On "a" transition
- { {q0},{q7}, {q1,q4}, {q2,q5},{q3,q6} }
 - On "b" transition

Example



Example

Minimum DFA



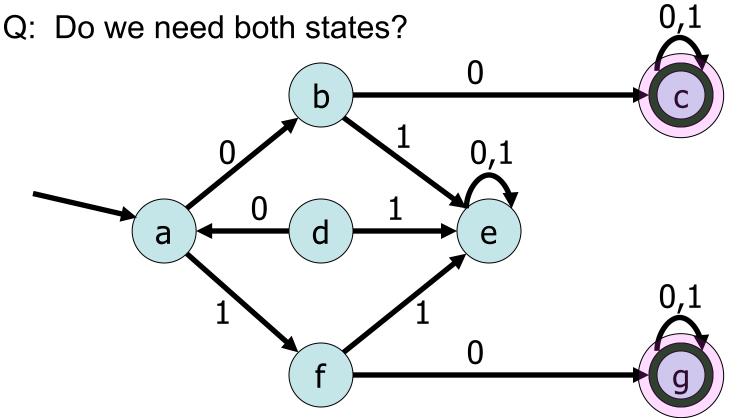
12

Example

DFA Minimization

Equivalent States

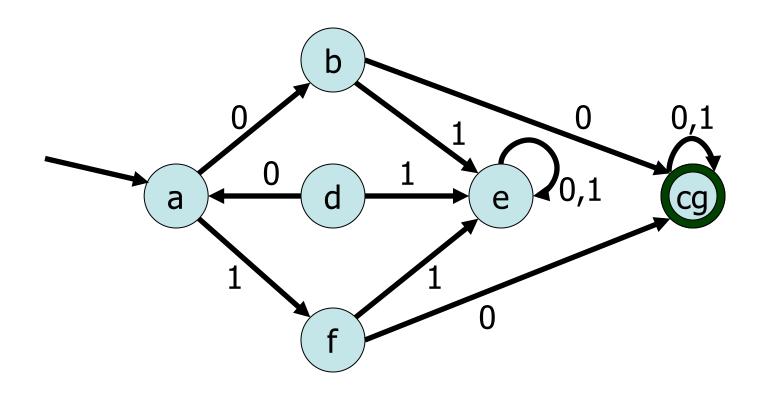
Consider the accept states c and g. They are both sinks meaning that any string which ever reaches them is guaranteed to be accepted later.



Example

Joining Equivalent States

- A: No, they can be unified as illustrated below.
- Q: Can any other states be unified because any subsequent string suffixes produce identical results?



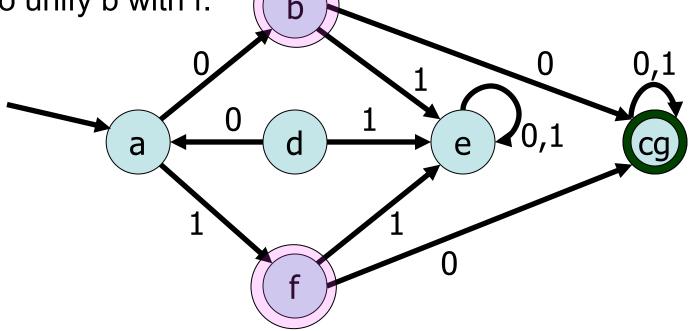
Example

Equivalent States

A: Yes, b and f. Notice that if you' re in b or f then:

- 1. if string ends, reject in both cases
- 2. if next character is 0, forever accept in both cases
- 3. if next character is 1, forever reject in both cases

So unify b with f.

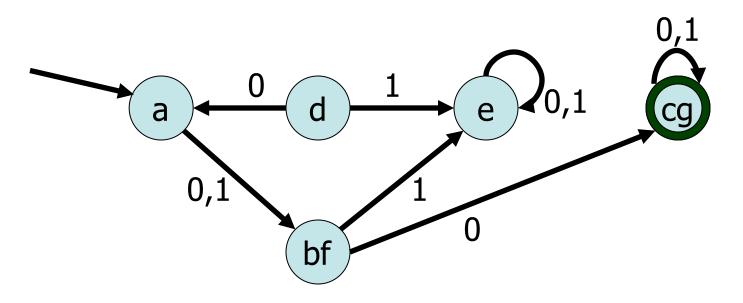


Example

Joining Equivalent States

Intuitively two states are equivalent if all subsequent behavior from those states is the same.

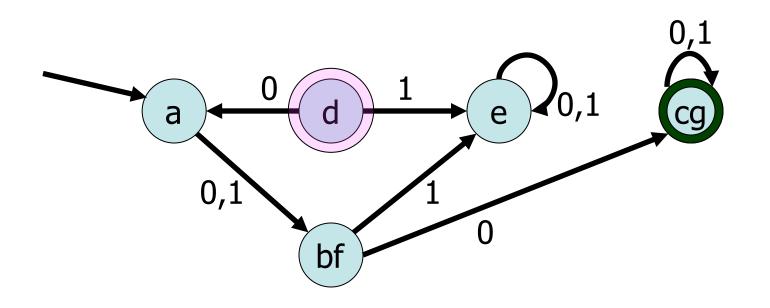
Q: Come up with a formal characterization of state equivalence.



Example

Finishing the Example

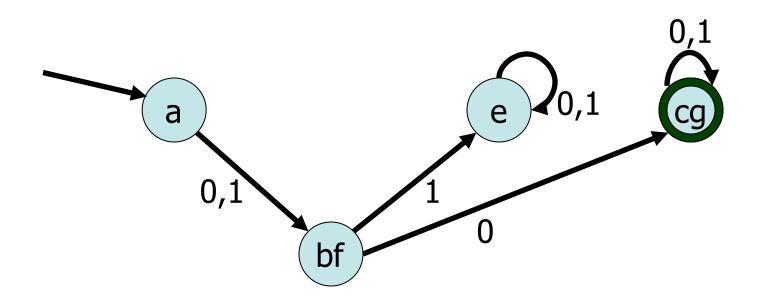
Q: Any other ways to simplify the automaton?



Useless States

A: Get rid of d.

Getting rid of unreachable *useless states* doesn't affect the accepted language.



Definition

An automaton is *irreducible* if

- it contains no useless states, and
- no two distinct states are equivalent.

Goals of the Minimization Algorithm

•The goal of minimization algorithm is to create irreducible automata from arbitrary ones.

•The algorithm actually produces smallest possible DFA for the given language, hence the name "minimization".

First Part: Partition

DFA minimize(DFA ($Q, \Sigma, \delta, q_0, F$)) remove any state q unreachable from q_0 Partition $P = \{F, Q - F\}$ boolean Consistent = false while(Consistent == false) Consistent = true for (every Set $S \in P$, symbol $a \in \Sigma$, Set $T \in P$) Set temp = { $q \in T \mid \delta(q,a) \in S$ } if (temp $!= \emptyset$ && temp != T) Consistent = false $P = (P - T) \cup \{\text{temp}, T - \text{temp}\}$ return defineMinimizor(($Q, \Sigma, \delta, q_0, F$), P)

Second Part: Minimization

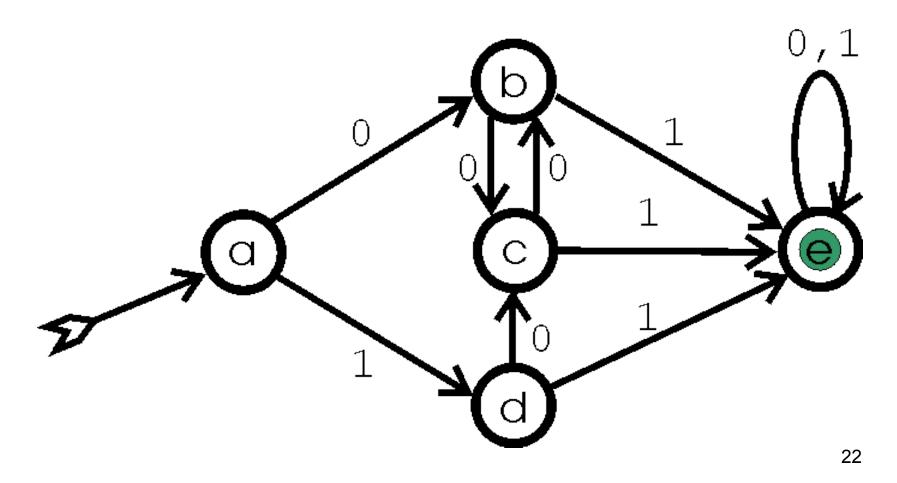
- DFA define Minimizor (DFA ($Q, \Sigma, \delta, q_0, F$), Partition P) Set Q' = P
 - State q'_0 = the set in P which contains q_0
 - $F' = \{ S \in P \mid S \subseteq F \}$
 - for (each $S \in P$, $a \in \Sigma$)
 - define $\delta'(S,a)$ = the set $T \in P$ which contains the states $\delta'(S,a)$

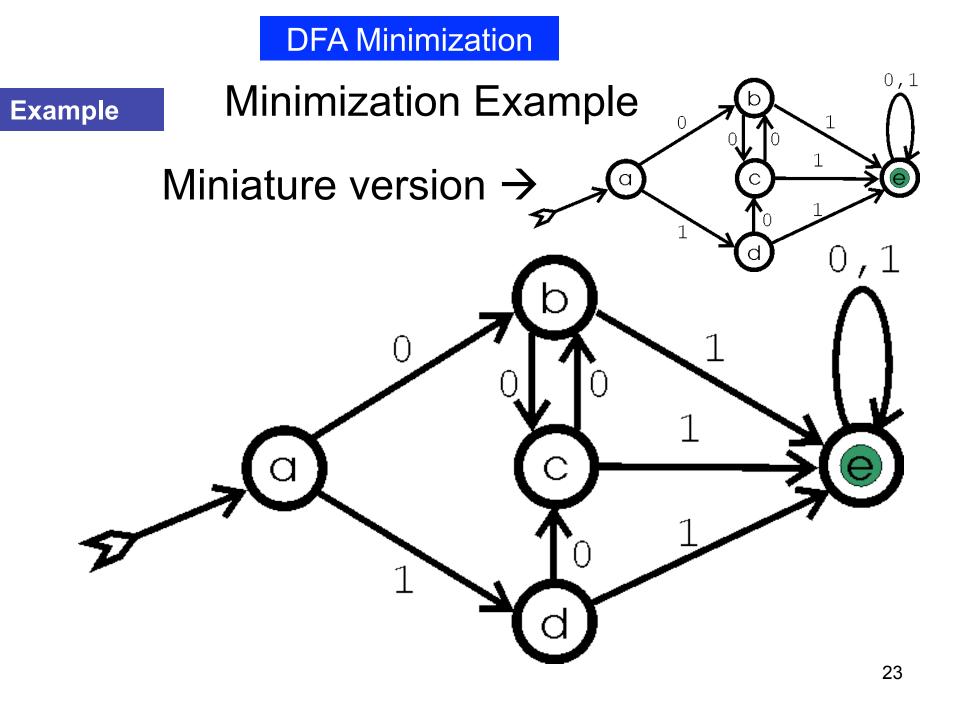
return (Q', Σ , δ' , q'_0 , F')

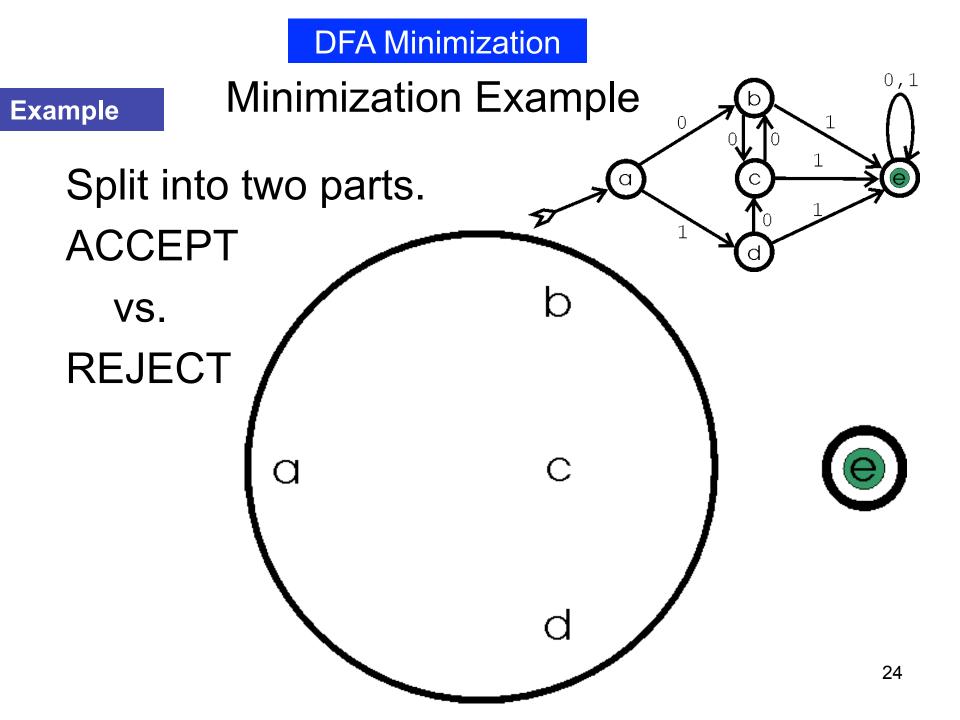
Example

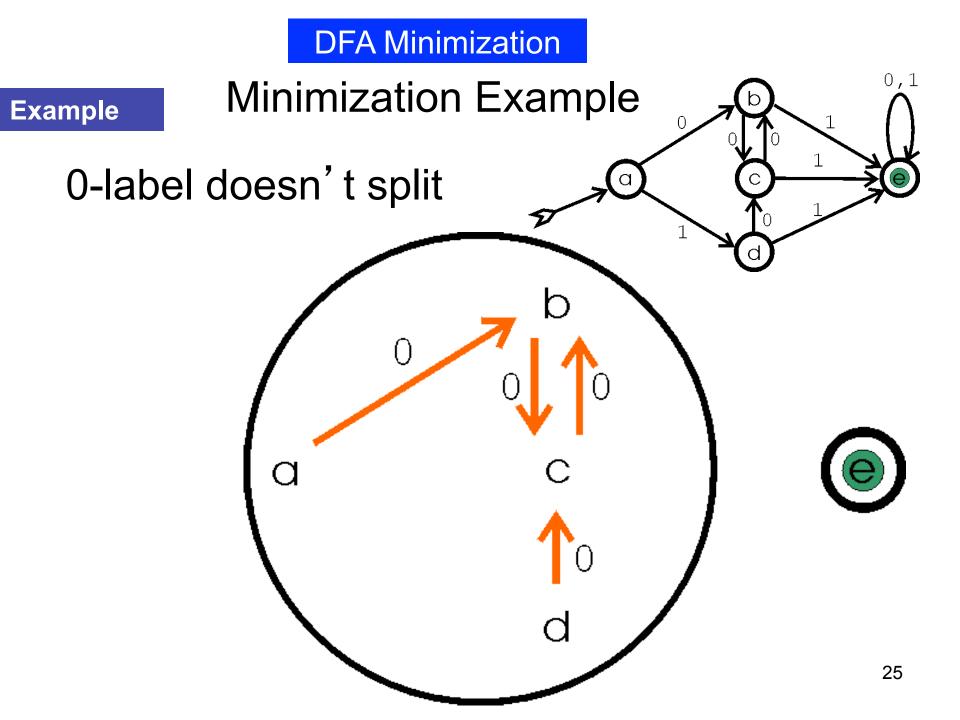
Minimization Example

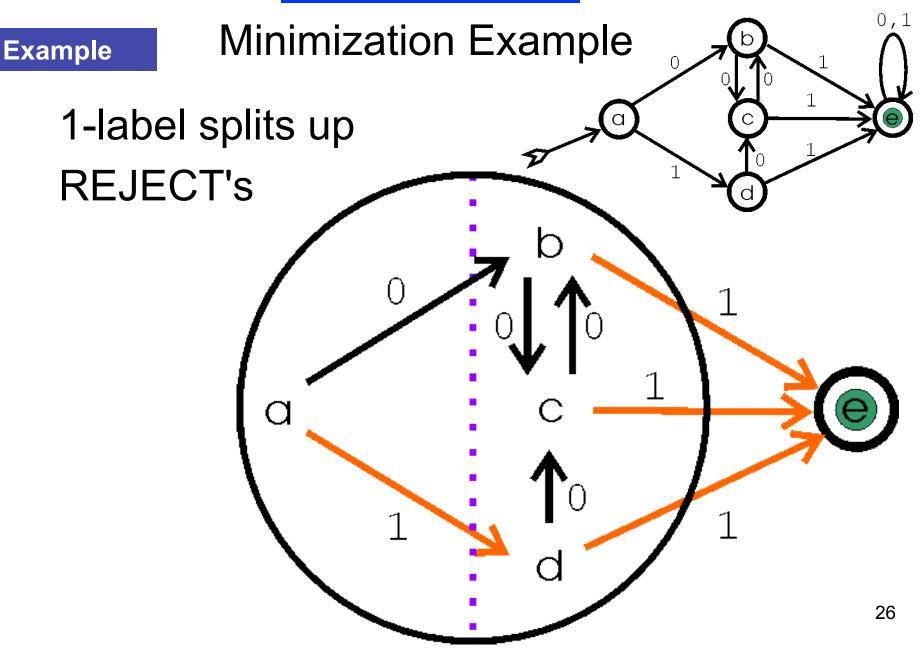
Start with a DFA

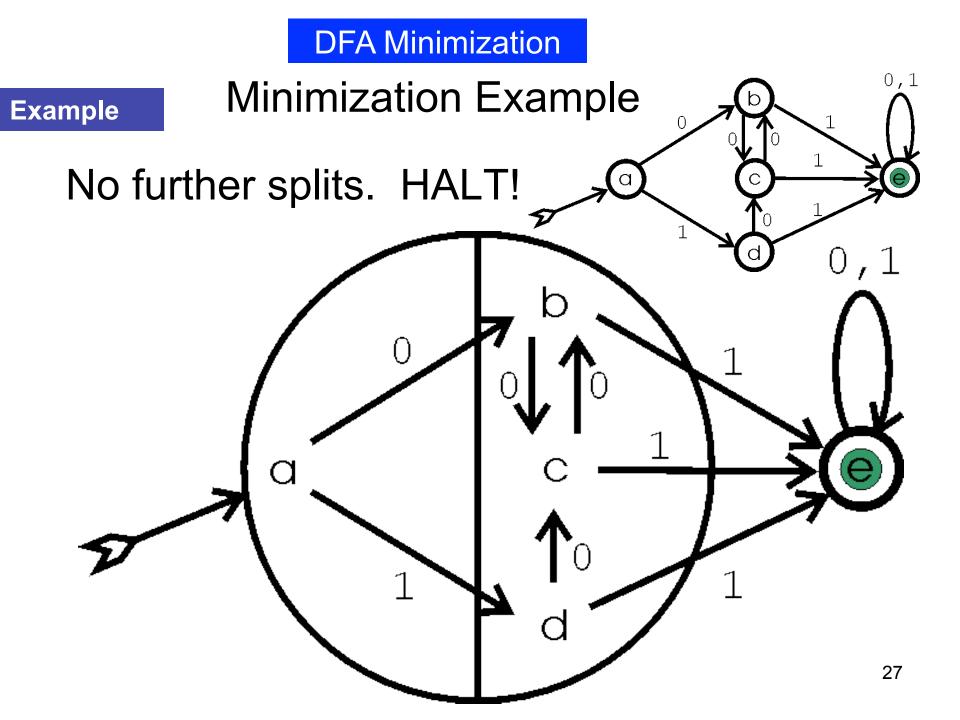


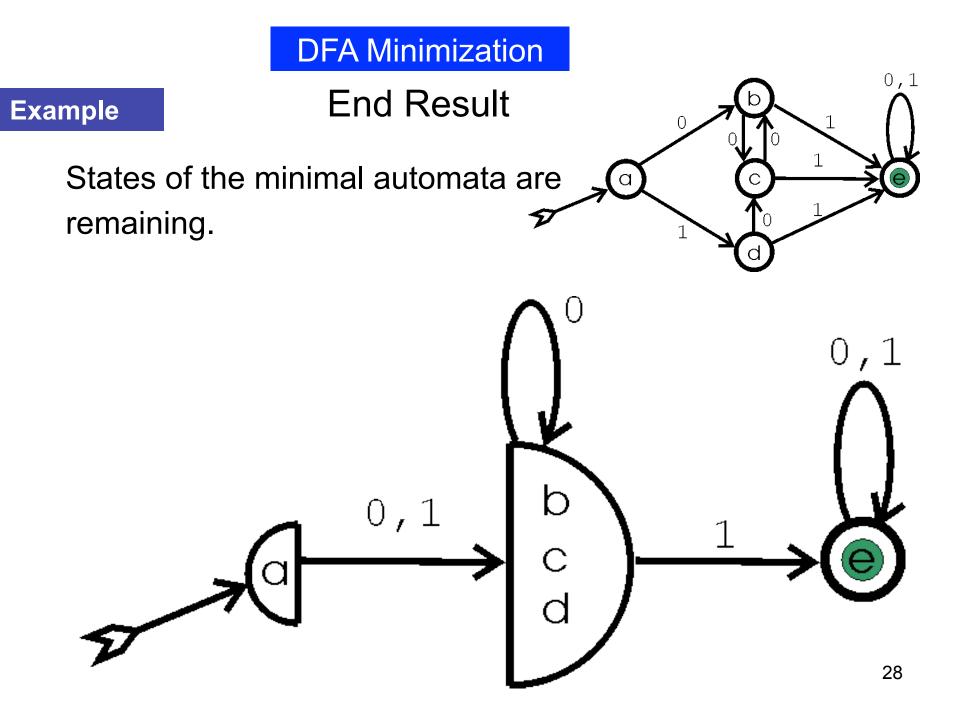


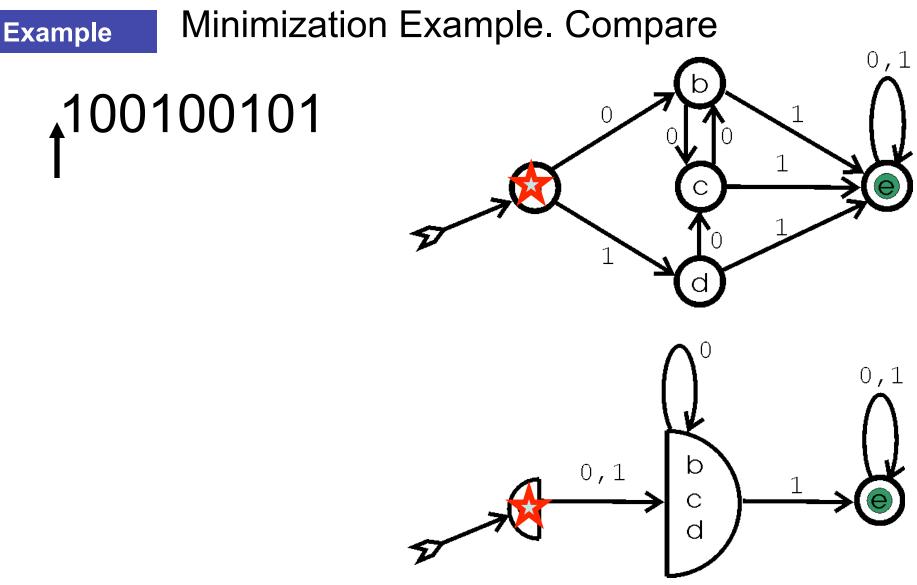


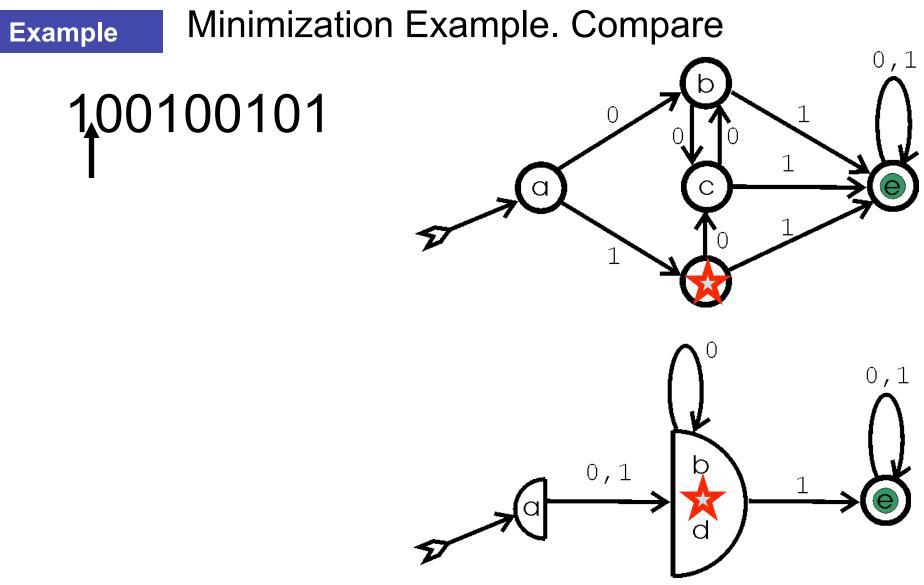


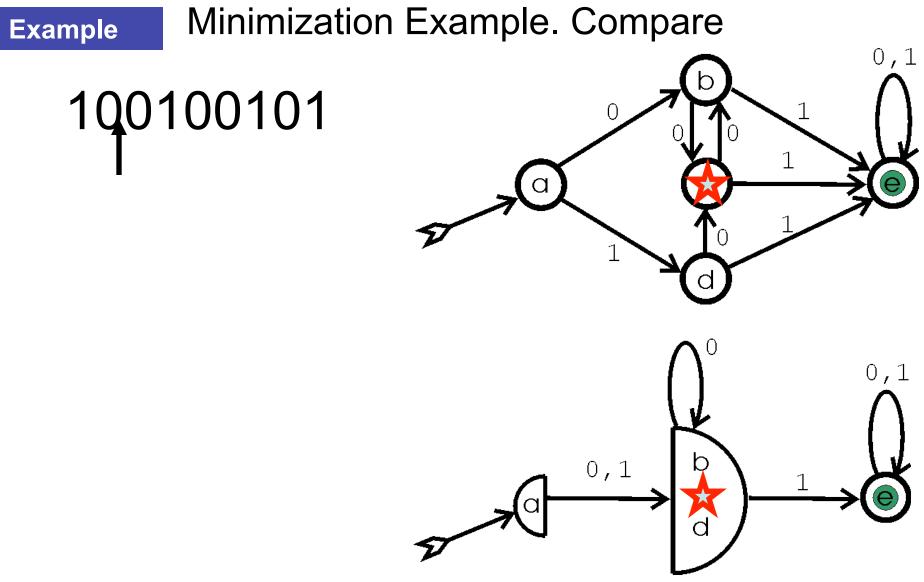


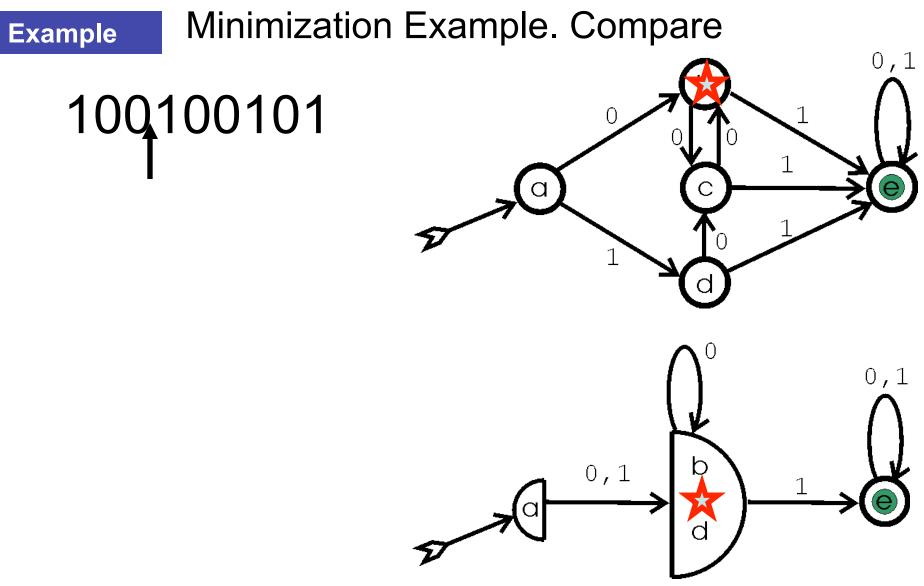


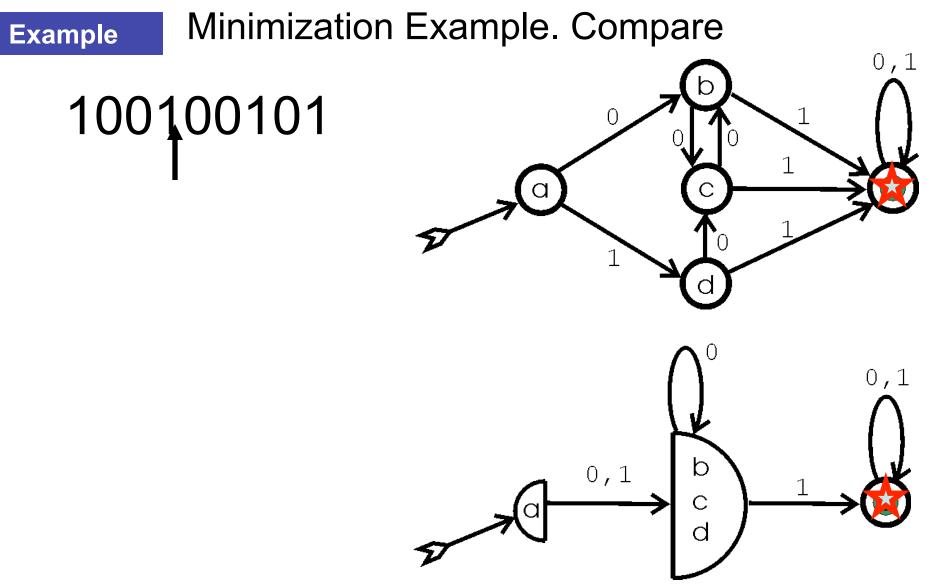


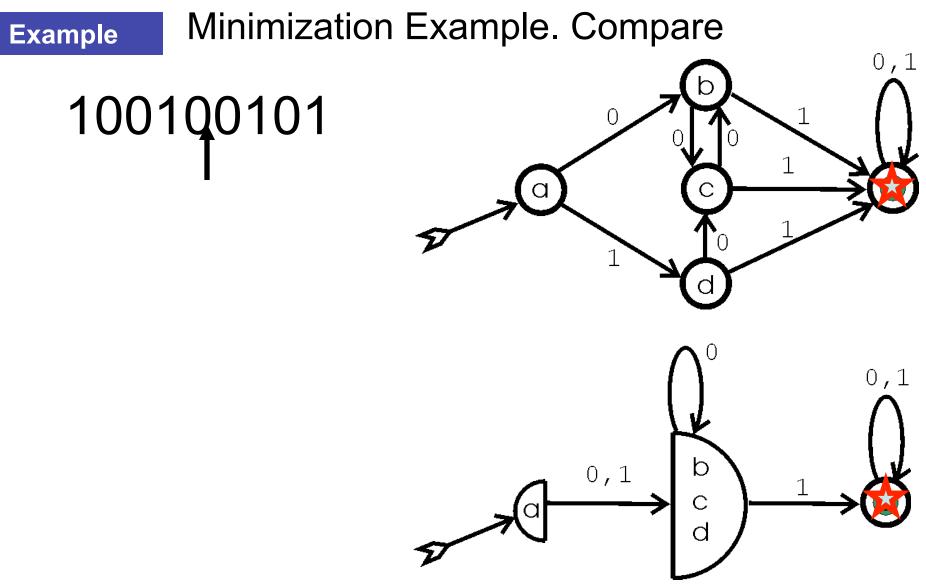


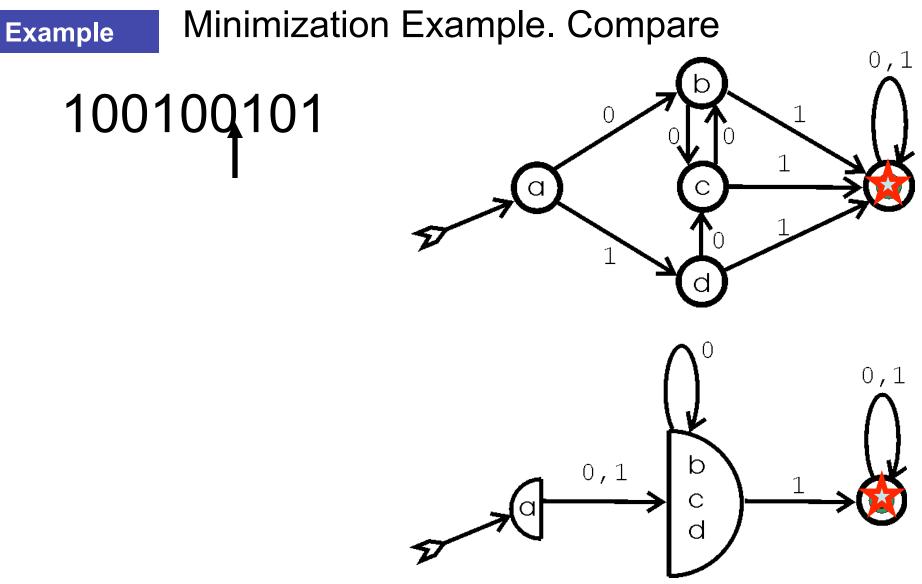


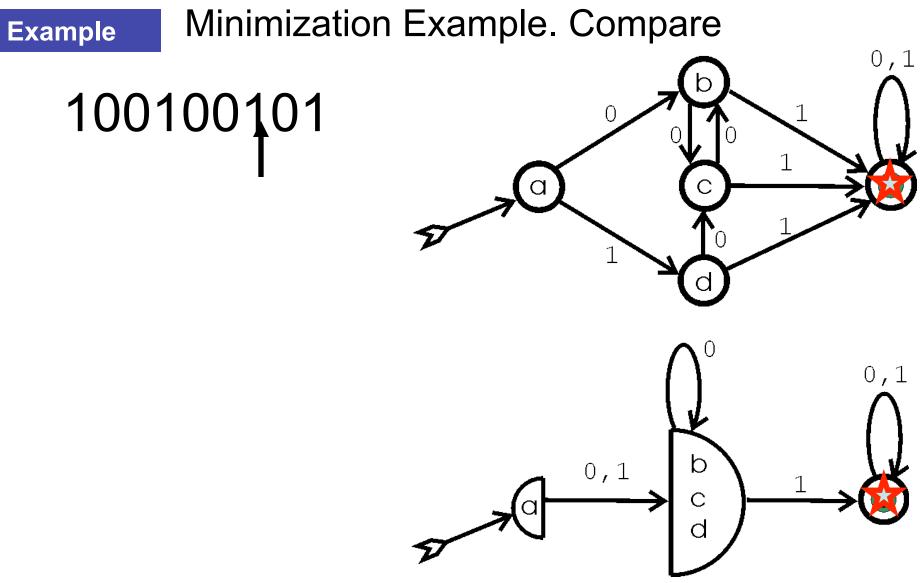


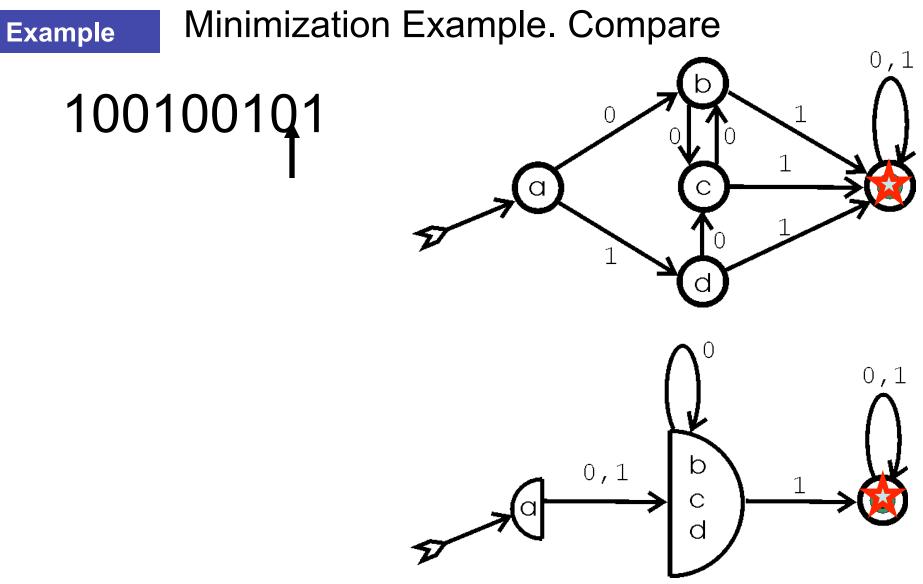


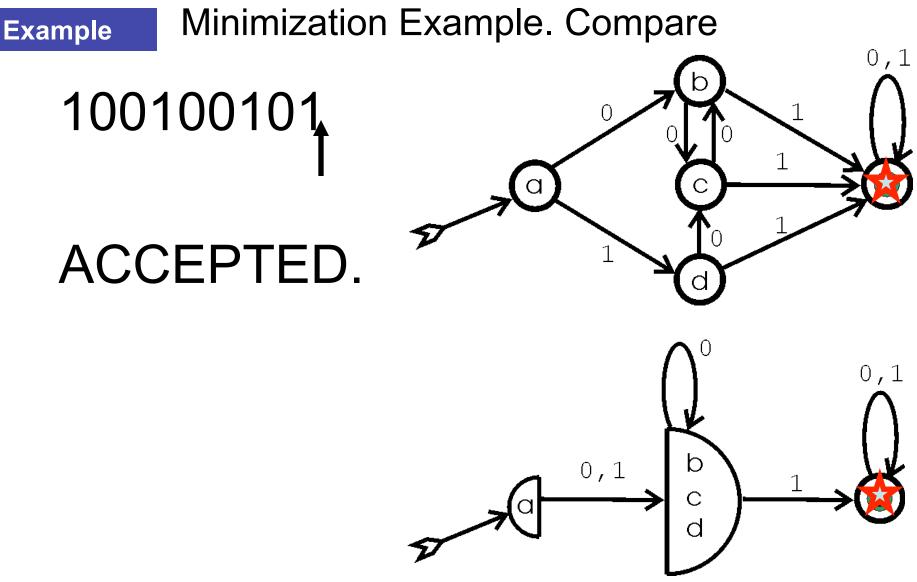


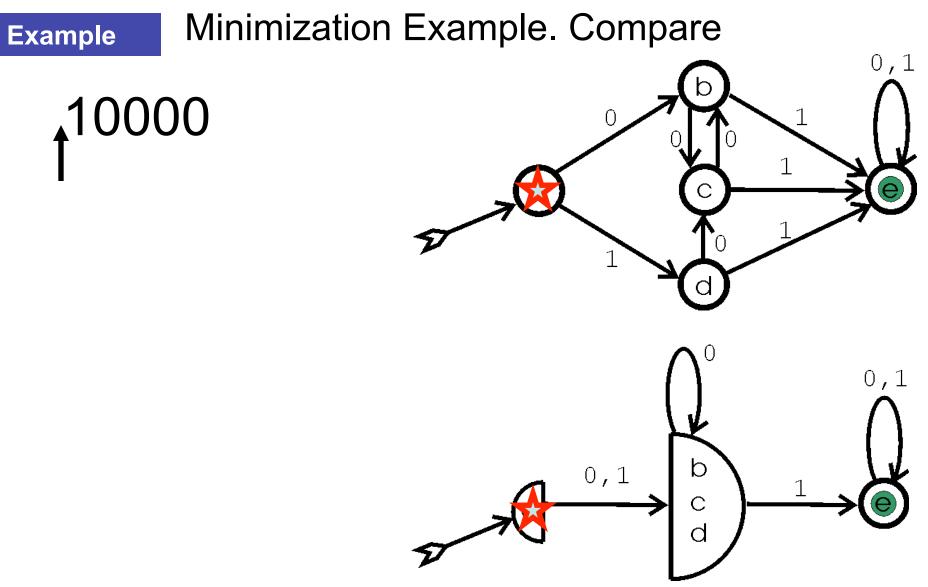


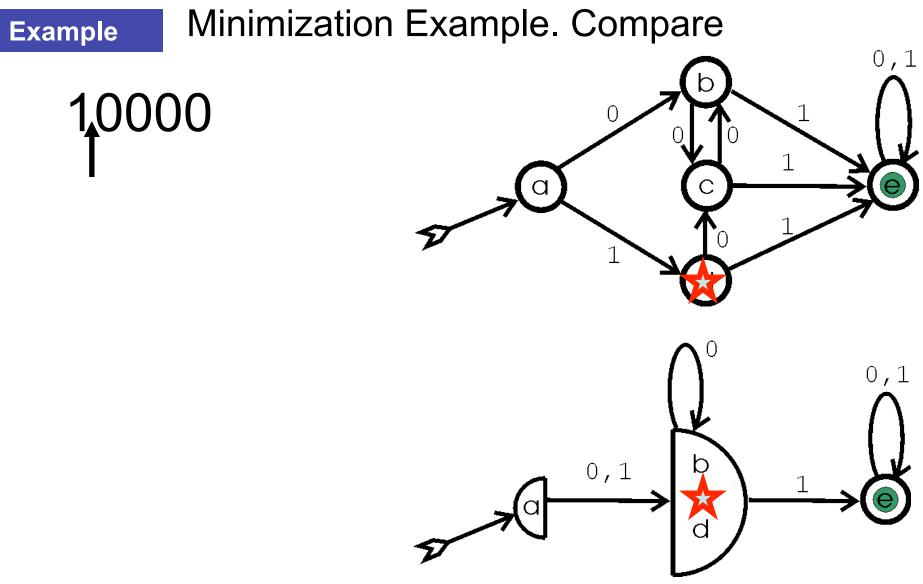


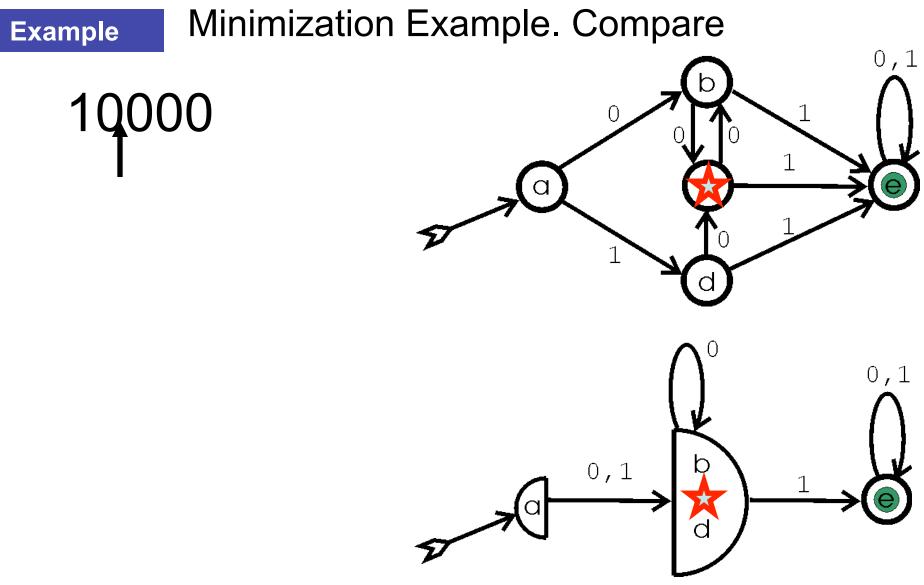


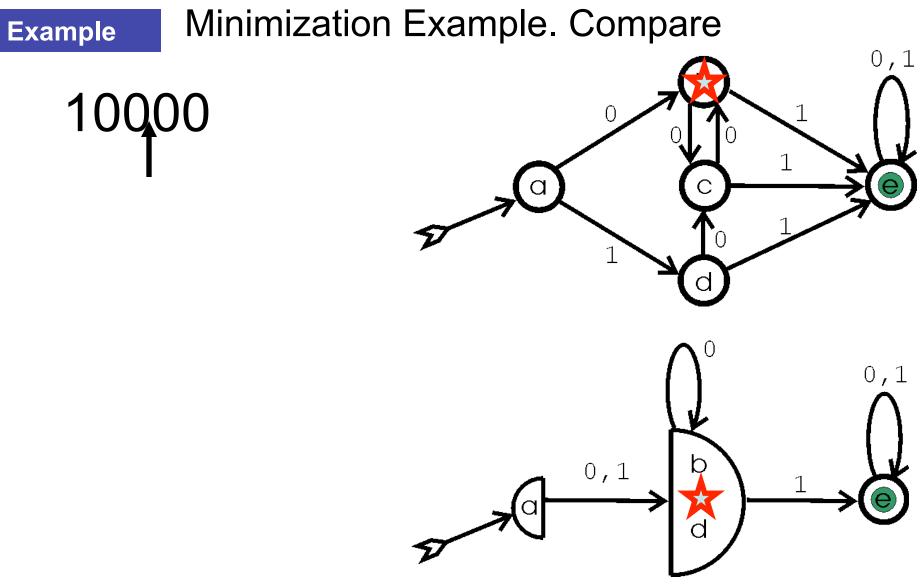


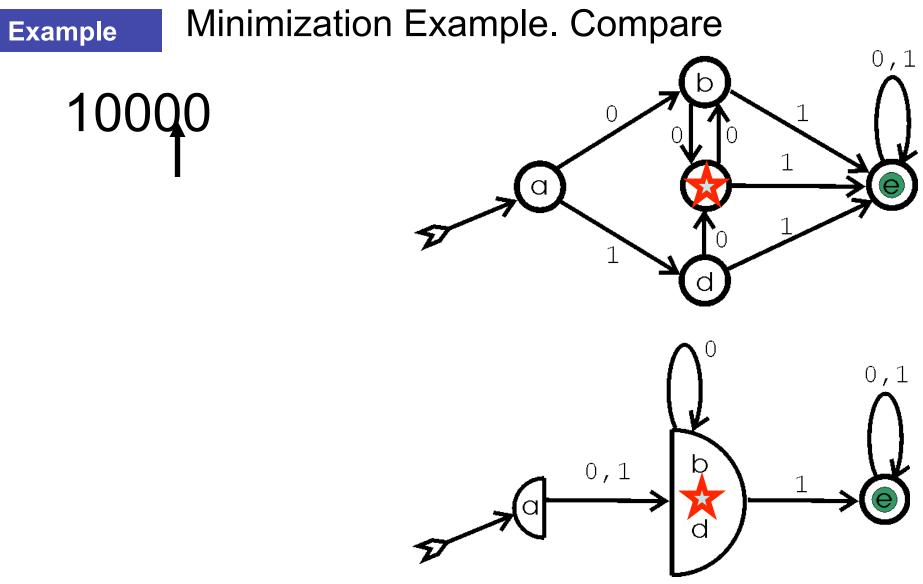


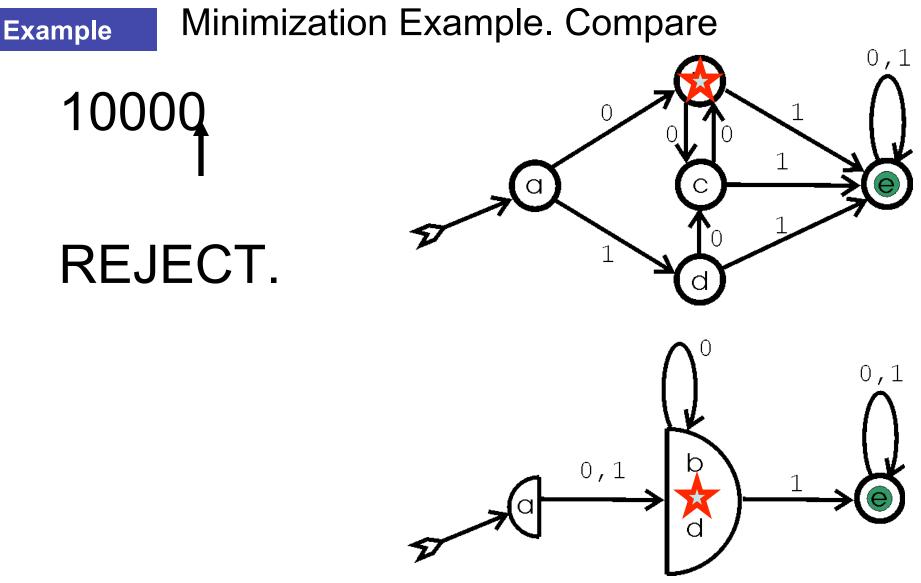












Minimal Automaton

Previous algorithm guaranteed to produce an irreducible FA. Why should that FA be the smallest possible FA for its accepted language?

Minimal Automaton

Theorem (Myhill-Nerode): The minimization algorithm produces the smallest possible automaton for its accepted language.

Proof

Show that any irreducible automaton is the smallest for its accepted language *L*:

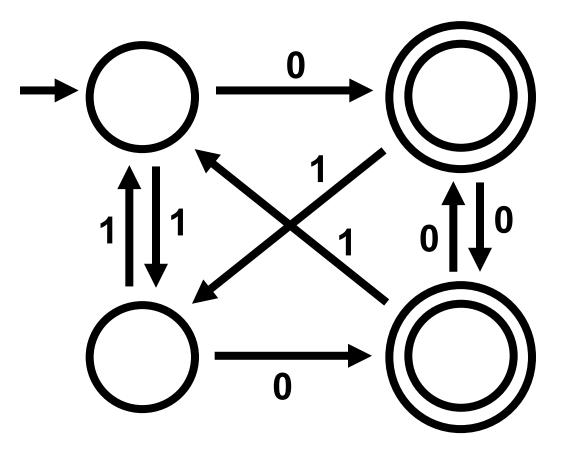
- We say that two strings $u, v \in \Sigma^*$ are *indistinguishable* if for all suffixes *x*, *ux* is in *L* exactly when *vx* is.
- Notice that if *u* and *v* are distinguishable, the path from their paths from the start state must have different endpoints.

Proof (cont.)

- Consequently, the number of states in any DFA for *L* must be as great as the number of mutually distinguishable strings for *L*.
- But an irreducible DFA has the property that every state gives rise to another mutually distinguishable string!
- Therefore, any other DFA must have at least as many states as the irreducible DFA

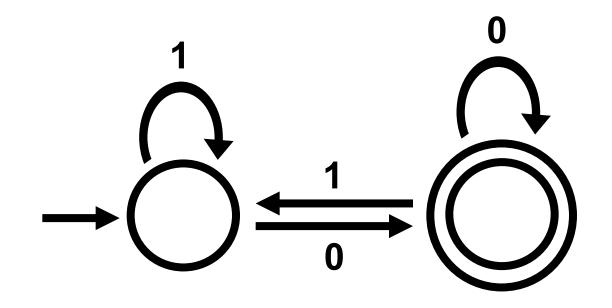
Quiz 1

IS THIS DFA MINIMAL?

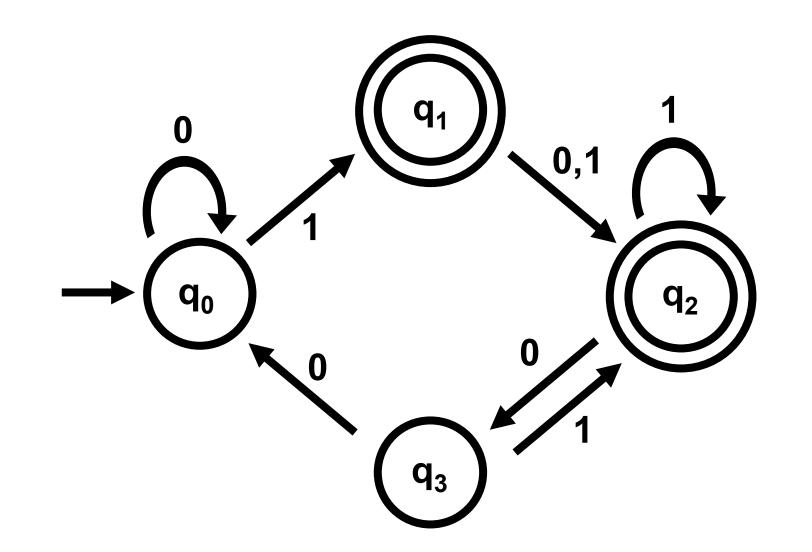


Quiz 1

ITS MINIMAL DFA IS



IS THIS DFA MINIMAL?



50

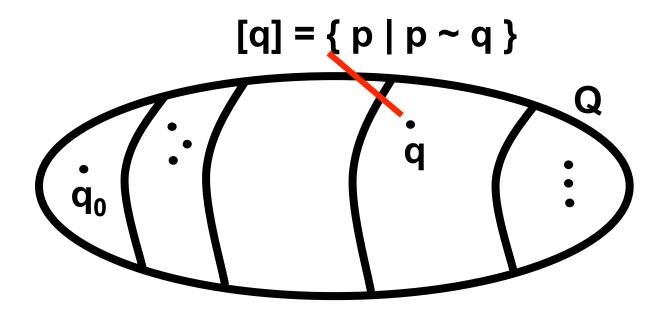
Definition

- For a DFA M = (Q, Σ , δ , q_0 , F), let p, q, r \in Q **Definition:** $\mathbf{p} \sim \mathbf{q}$ iff p is indistinguishable (equivalent) from q $p \neq q$ iff p is distinguishable from q **Proposition:** ~ is an equivalence relation $p \sim p$ (reflexive)
 - $p \sim q \Rightarrow q \sim p$ (symmetric)
 - $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

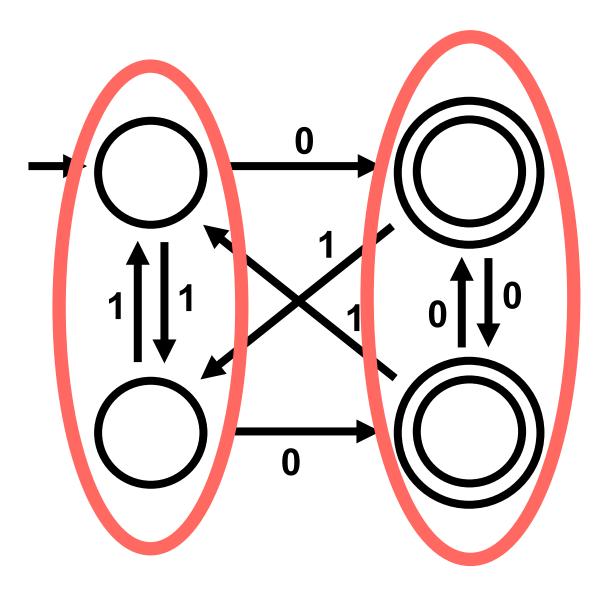
For a DFA M = (Q, Σ , δ , q_0 , F), let p, q, r \in Q **Definition:** p ~ q iff p is indistinguishable from q p **7** q iff p is distinguishable from q Proposition: ~ is an equivalence relation $p \sim p$ (reflexive) $p \sim q \Rightarrow q \sim p$ (symmetric) $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Because ~ is an equivalence relation

so ~ partitions the set of states of M into disjoint equivalence classes

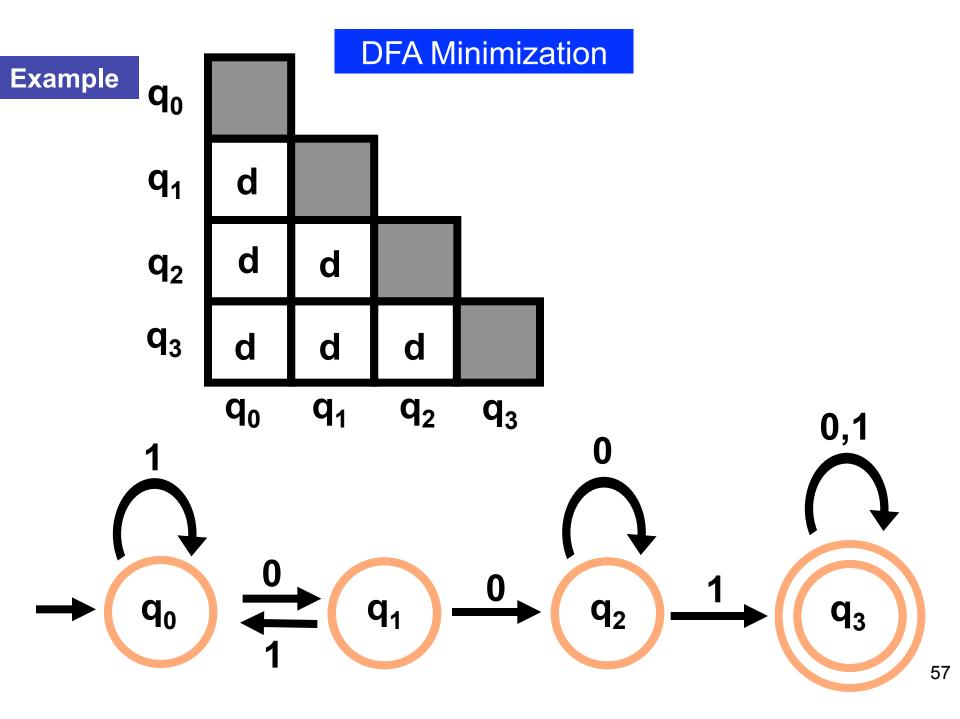


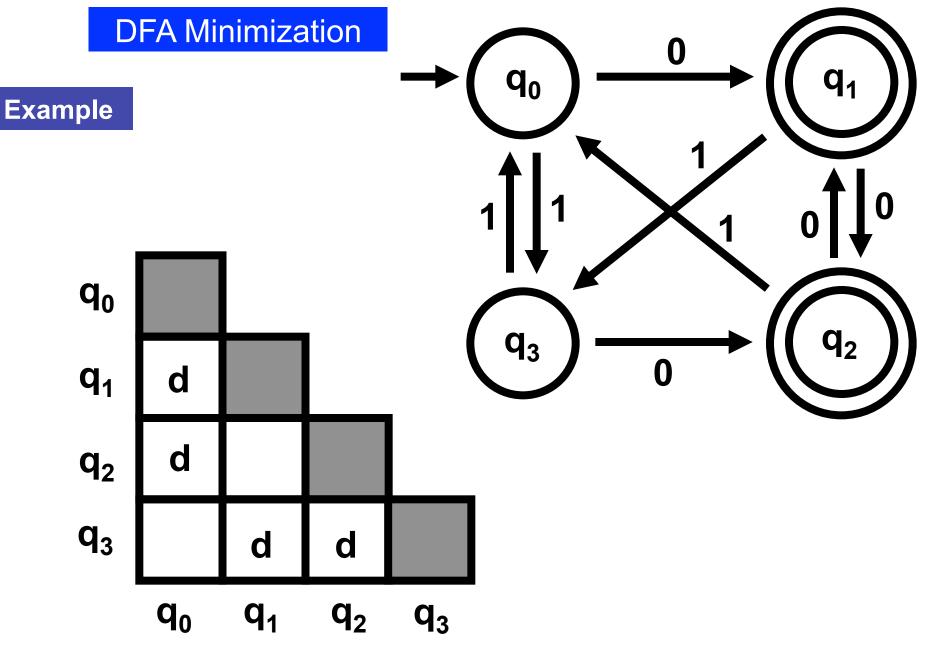
Example



Algorithm MINIMIZE Input: DFA M **Output: DFA M_{MIN} such that:** $\mathbf{M} \equiv \mathbf{M}_{MIN}$ **M**_{MIN} has no inaccessible states **M**_{MIN} is irreducible states of M_{MIN} are pairwise distinguishable Theorem: M_{MIN} is the unique minimum dea: States of M_{MIN} will be blocks of equivalent states of M

TABLE-FILLING ALGORITHM Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \neq q \}$ (2) $E_M = \{ [q] | q \in Q \}$ \mathbf{q}_0 **Base Case:** p accepts \mathbf{q}_1 and q rejects \Rightarrow p \neq q **Recursion:** q d d d d $p \xrightarrow{a} p'$ $\downarrow \Rightarrow p \neq q$ $q \xrightarrow{a} q'$ d d **q**_n d $\mathbf{q}_0 \mathbf{q}_1$ **q**_i q_n





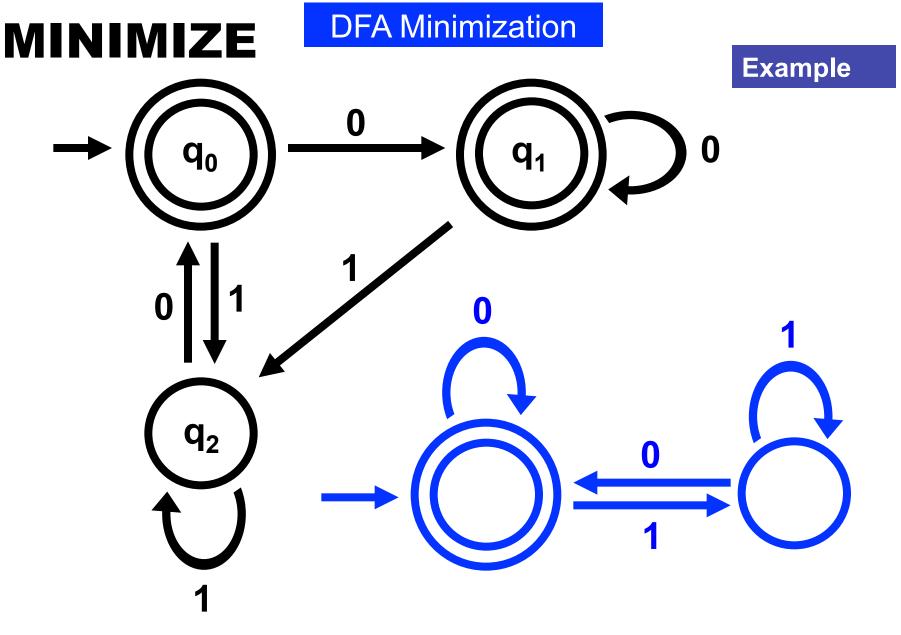
Algorithm MINIMIZE Input: DFA M Output: DFA M_{MIN} (1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get
E_M = { [q] | q is an accessible state of M }

$$M_{MIN}$$
 = (Q_{MIN} , Σ, δ_{MIN} , $q_{0 MIN}$, F_{MIN})

 $Q_{MIN} = E_M, q_{0 MIN} = [q_0], F_{MIN} = \{ [q] | q \in F \}$

 $\delta_{MIN}([q],\sigma) = [\delta(q,\sigma)]$



Exercise

Minimize the following DFA?

