Automata and Languages

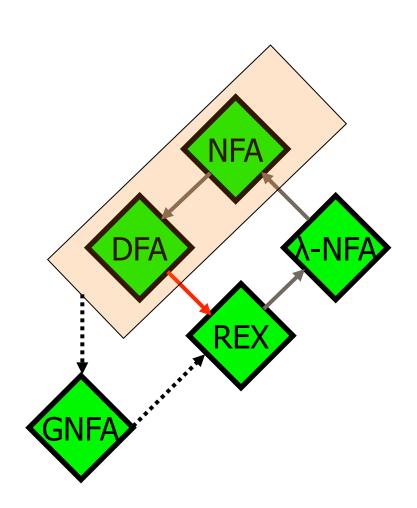
Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Today's Topics

- DFA to Regular Expression
- GFNA
- DFA→GNFA
- GNFA → RE
- DFA → RE
- Examples

DFA -> RE



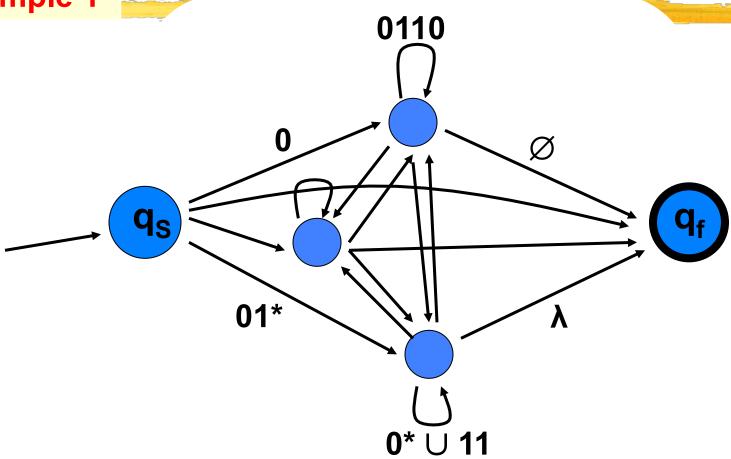
Definition

A *generalized nondeterministic finite automaton* (**GNFA**) is a graph whose edges are labeled by regular expressions, with a unique start state with in-degree 0, and a unique final state with out-degree 0.

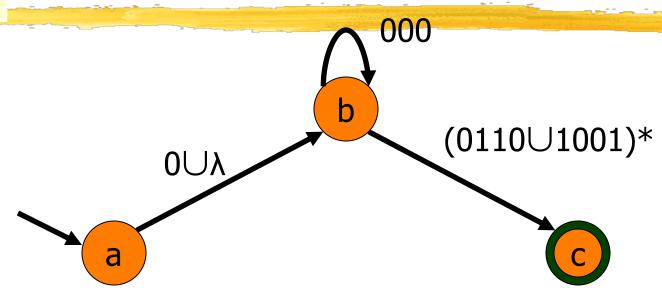
A string *u* is said to *label* a path in a GNFA, if it is an element of the language generated by the regular expression which is gotten by concatenating all labels of edges traversed in the path.

The *language accepted* by a GNFA consists of all the accepted strings of the GNFA.

Example 1



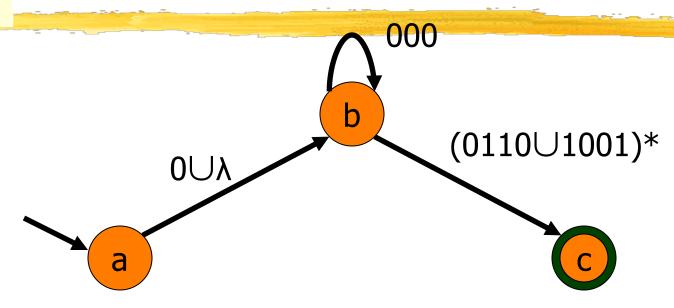
Example 2



This is a GNFA because edges are labeled by REX's, start state has no in-edges, and the *unique final* state has no out-edges.

Q: Is 000000100101100110 accepted?

Example 2



A: 0000001001100110 is accepted. The path given by $a \rightarrow b \rightarrow b \rightarrow b \rightarrow c$ λ 000 000 100101100110

proves this fact.

(The last label results from $100101100110 \in (0110 \cup 1001)^*$)

Definition

A Generalized nondeterministic finite automaton (GNFA) is defined by M=(Q, Σ , δ , q_{start}, q_{final}) with

- Q finite set of states
- Σ the input alphabet
- q_{start} the start state with 0 in-degree
- q_{final} the accept state with 0 out-degree
- $\delta:(Q\setminus\{q_{final}\})\times(Q\setminus\{q_{start}\})\to R$ the transition function
- (R is the set of regular expressions over Σ)

Theorem

For every DFA M, there exist an equivalent GNFA M'

DFA->GNFA

Remove Internal state of GNFA

If the GNFA M has more than 2 states, 'rip' internal q_{rip} to get equivalent GNFA M' by:

- Removing state q_{rip}: Q' =Q\{q_{rip}}
- Changing the transition function δ by

$$\delta'(q_i,q_j) = \delta(q_i,q_j) \cup (\delta(q_i,q_{rip})(\delta(q_{rip},q_{rip}))^*\delta(q_{rip},q_j))$$

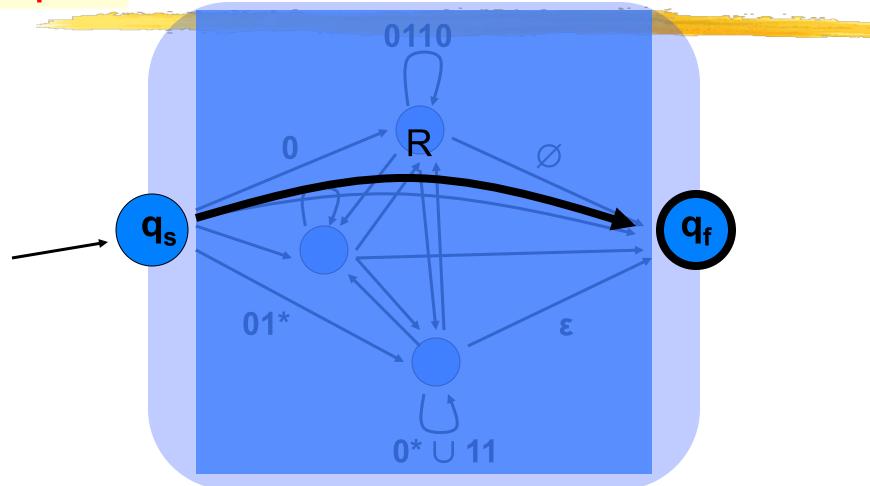
for every $q_i \in Q' \setminus \{q_{finalt}\}\$ and $q_j \in Q' \setminus \{q_{start}\}\$

$$\begin{array}{c|c}
R_1 & q_{rip} & R_2 \\
\hline
q_i & R_4 & q_j
\end{array}$$

$$= Q_i & R_4 \cup (R_1 R_2 * R_3) & q_j \\
\hline
10$$

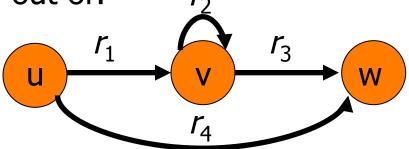
GNFA-RE

Example



Ripping out

Ripping out is done as follows. If you want to rip the middle state v out of: r_2



then you'll need to recreate all the lost possibilities from u to w. I.e., to the current REX label r_4 of the edge (u,w) you should add the concatenation of the (u,v) label r_1 followed by the (v,v)-loop label r_2 repeated arbitrarily, followed by the (v,w) label r_3 . The new (u,w) substitute would therefore be:

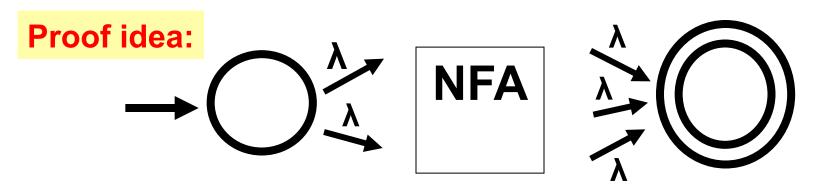
$$\begin{array}{c|c} & r_4 \cup r_1(r_2) * r_3 \\ \hline \end{array}$$

Theorem

For every (NFA) DFA M, there exist an equivalent RE R, with L(M)=L(R)

Proof idea:

- 1. Transform an NFA into an equivalent GNFA
- 2. Transform the GNFA into a regular expression by removing states and relabeling the arrows with regular expressions



1. NFA→GNFA

Add unique and distinct start state with 0 in-degree and a final state with 0 out-degree, then connect them to the NFA with λ

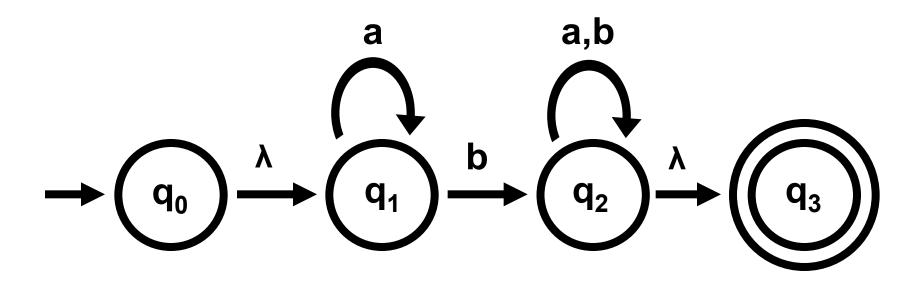
2. GNFA→RE

While machine has more than 2 states:

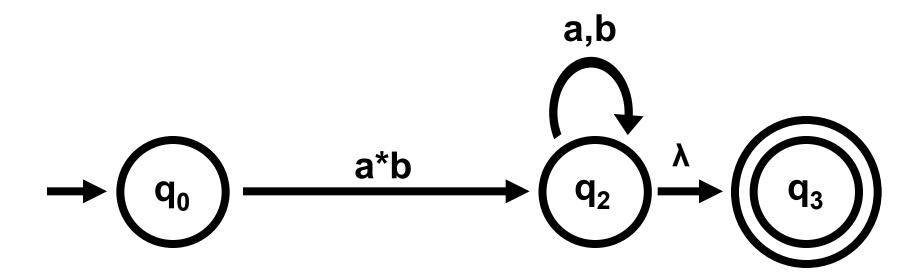
Pick an internal state, rip it out and re-label the arrows with regular expressions to account for the missing state

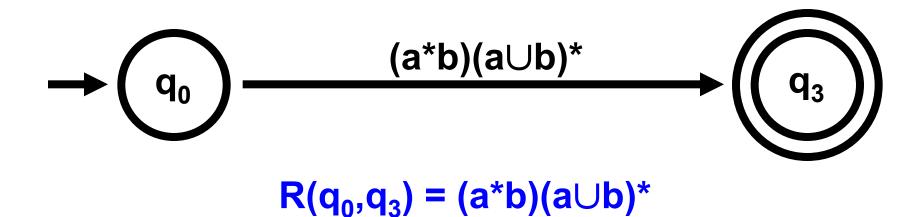
For Example:

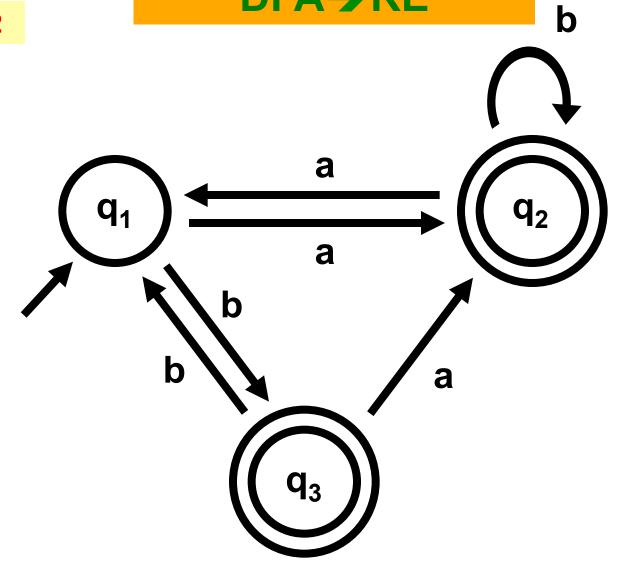
$$O \xrightarrow{0} O \xrightarrow{0} O \xrightarrow{01*0} O$$
14

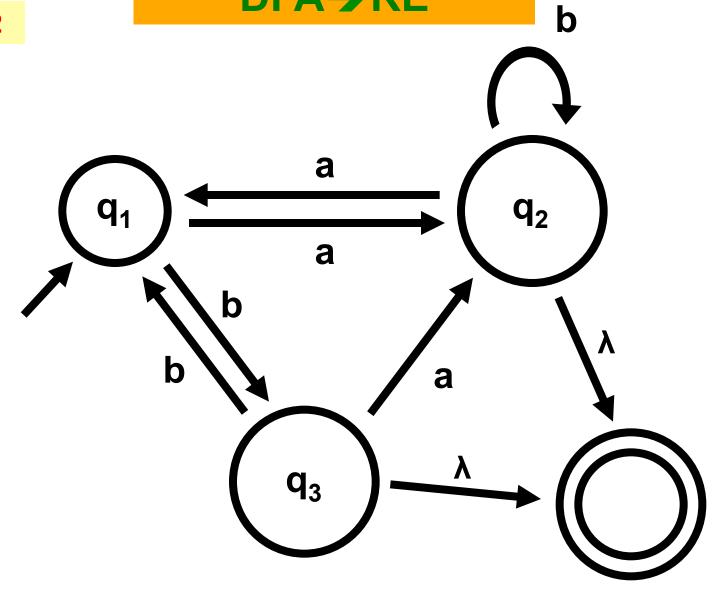


Example 1

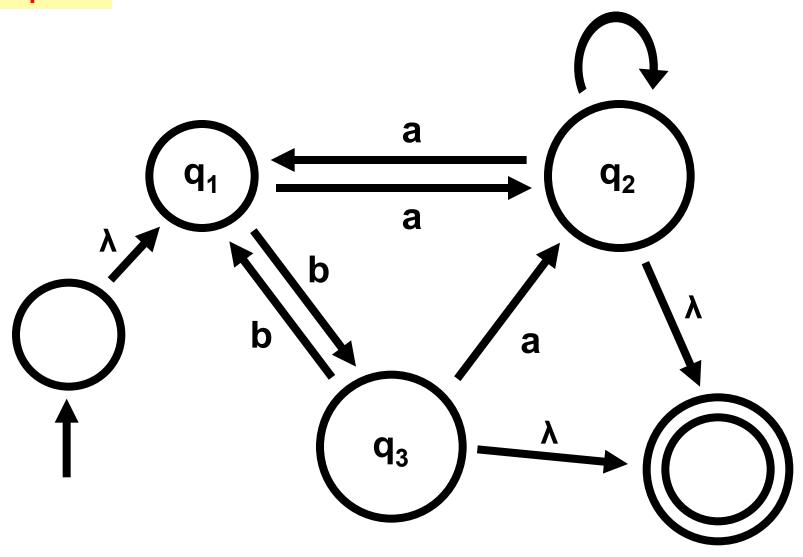


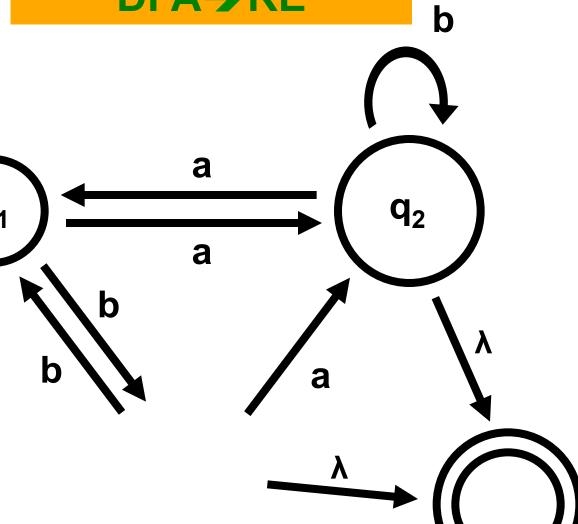




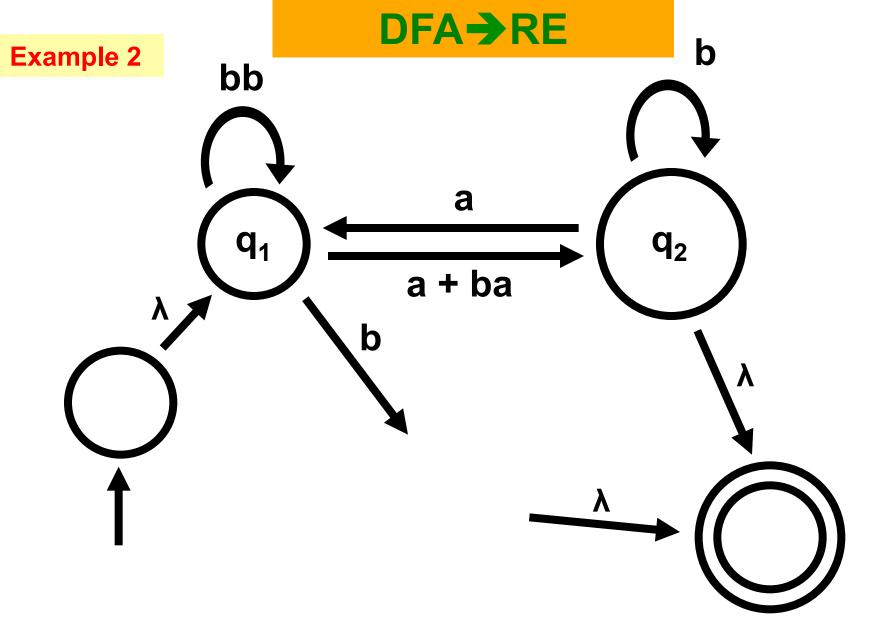


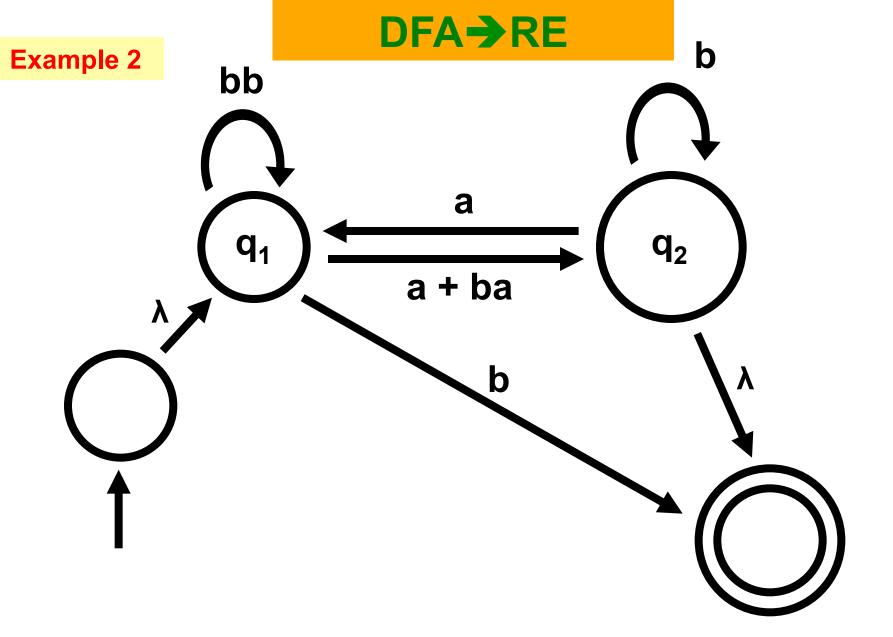
DFA→RE

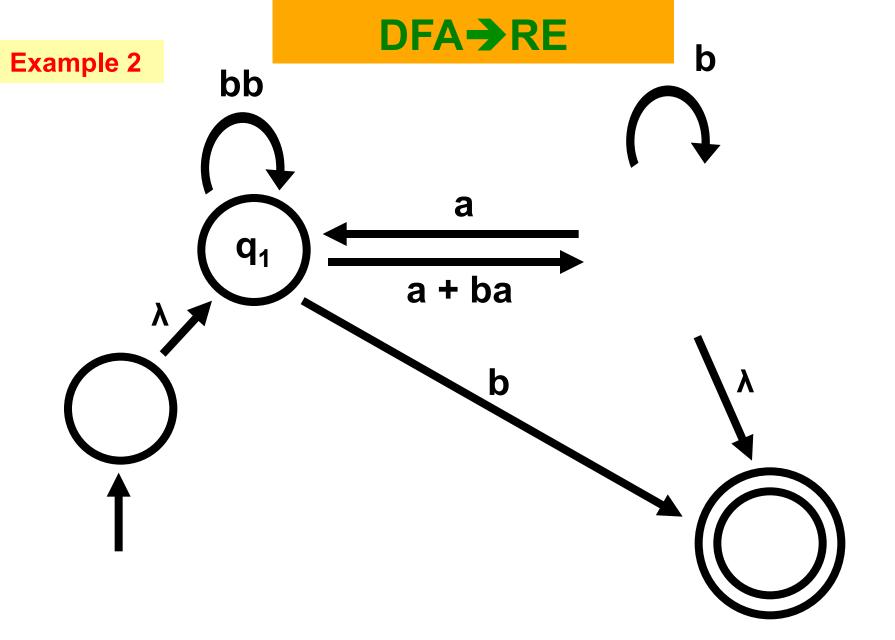


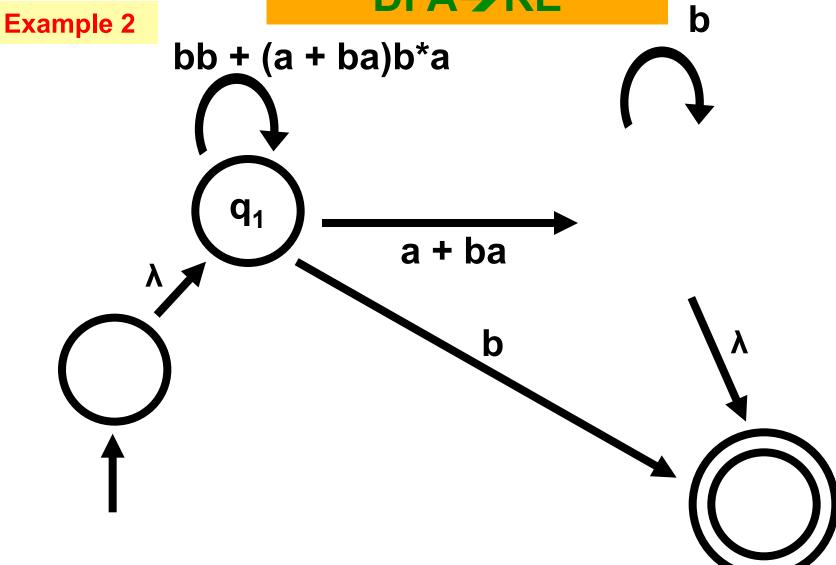


DFA-RE b Example 2 bb a q_1 $\mathbf{q_2}$ a



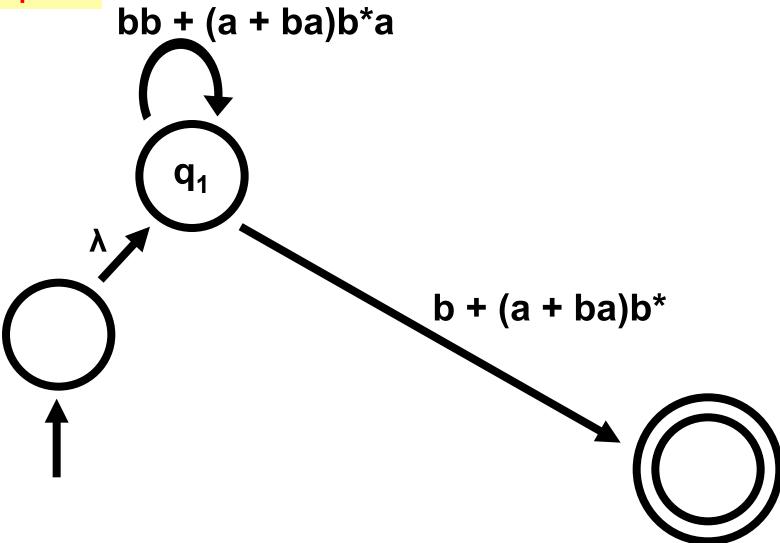






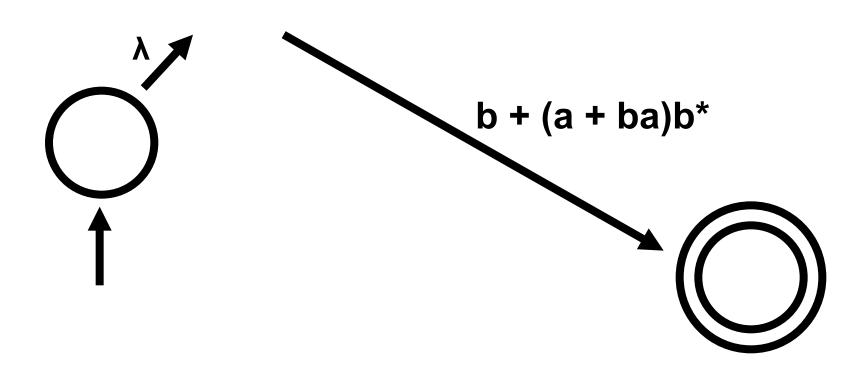
DFA→RE

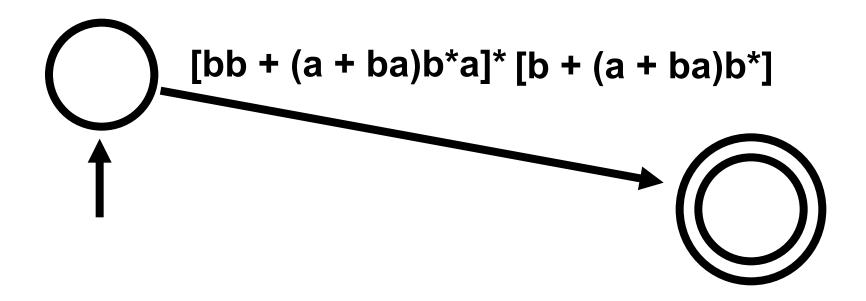
Example 2



DFA→RE

Example 2



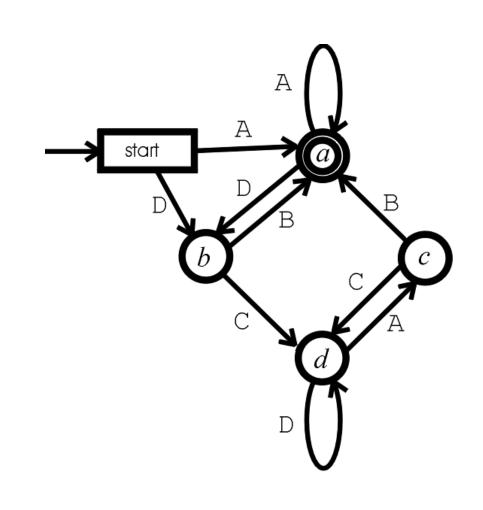


Example 3

Start with:

This is not a GNFA because final state, though unique, has nonzero out-degree.

First we need to convert this into a GNFA.

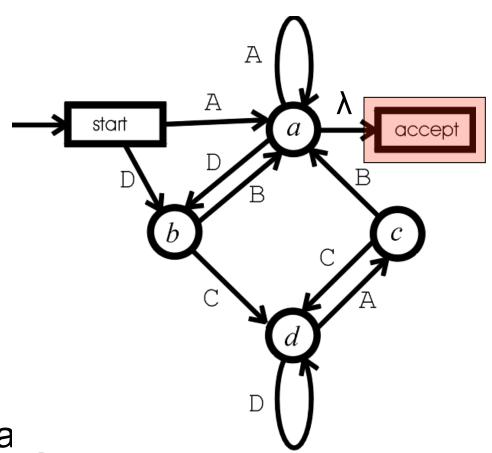


Start state has zero in-degree, so is okay.

DFA→RE

Just added an accept state by connecting via λ from the old accept state.

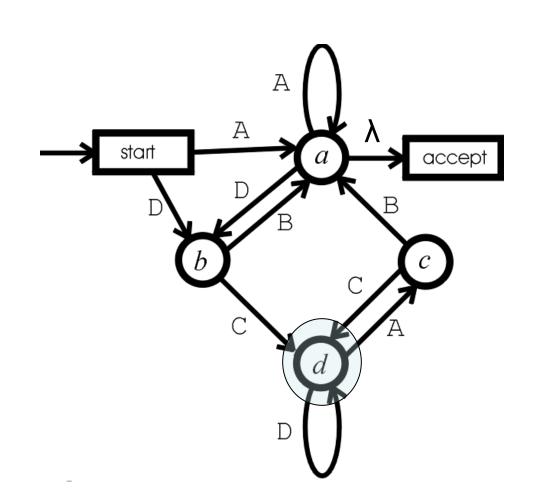
Since the labels are single letters, they are automatically regular expressions so this is a GNFA And we are ready to start ripping out interior states.



Now, let's rip out *d*.

Q1: What will be the label of (b,c)?

Q2: What will be the label of (c,c)?

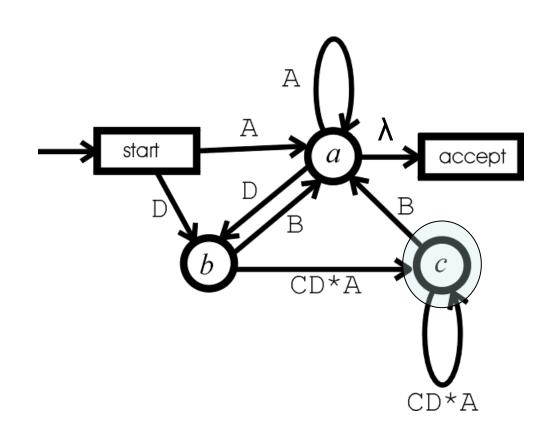


A1: (b,c): cd*A

A2: (c,c): cd*A

Next, rip out c.

Q: What will be the label of (*b*,*a*)?



A:

BU (CD*A) (CD*A) *B

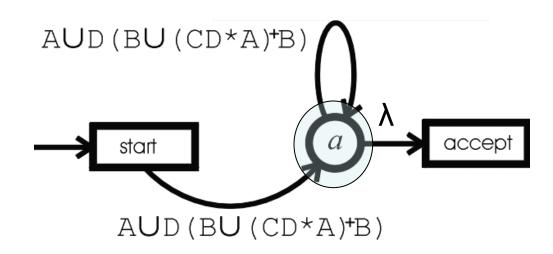
which simplifies to

BU (CD*A) *B

BU (CD*A) *B

BU (CD*A) *B

Next, rip out b.

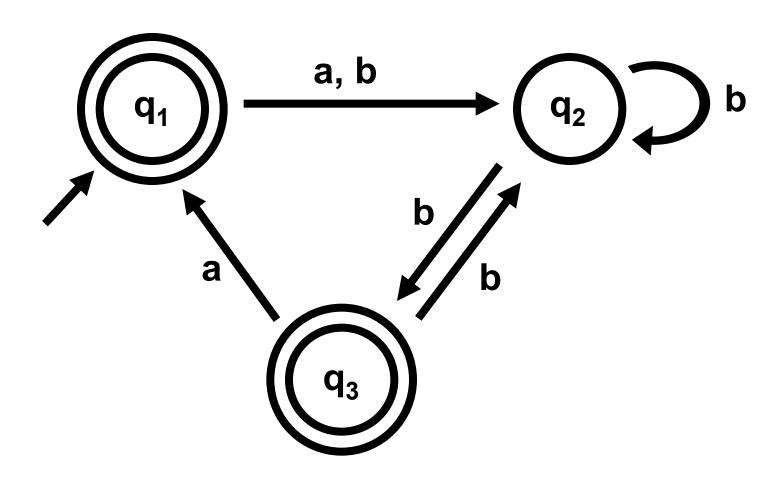


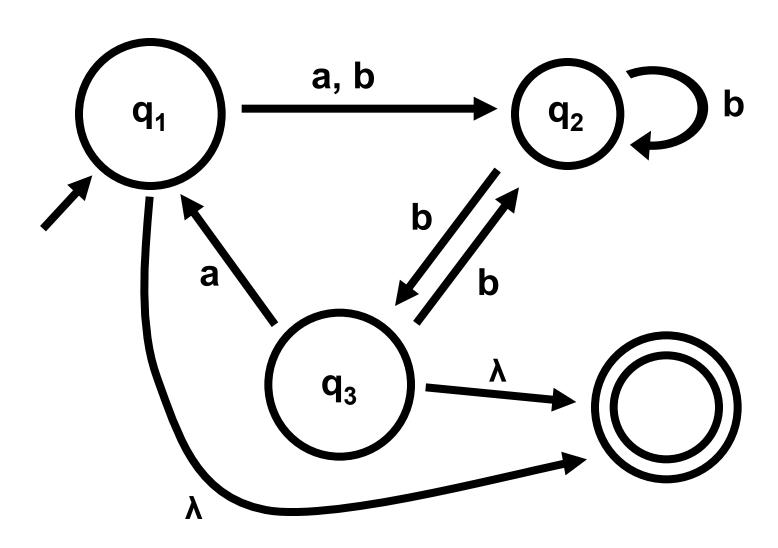
Finally, rip out a:

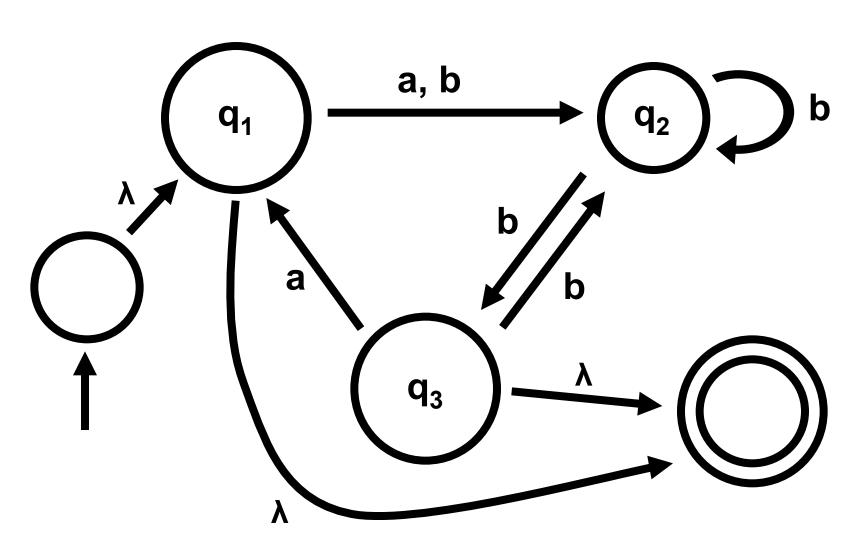
The resulting REX

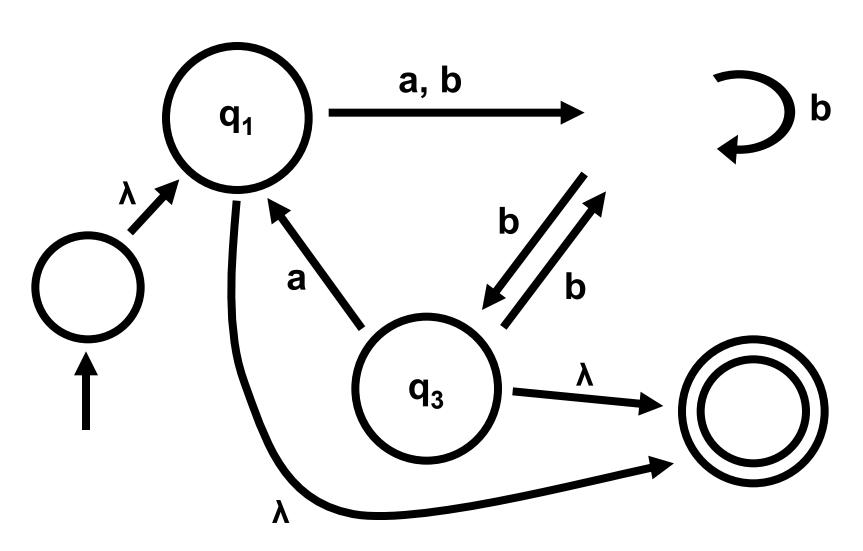
Is the unique
label

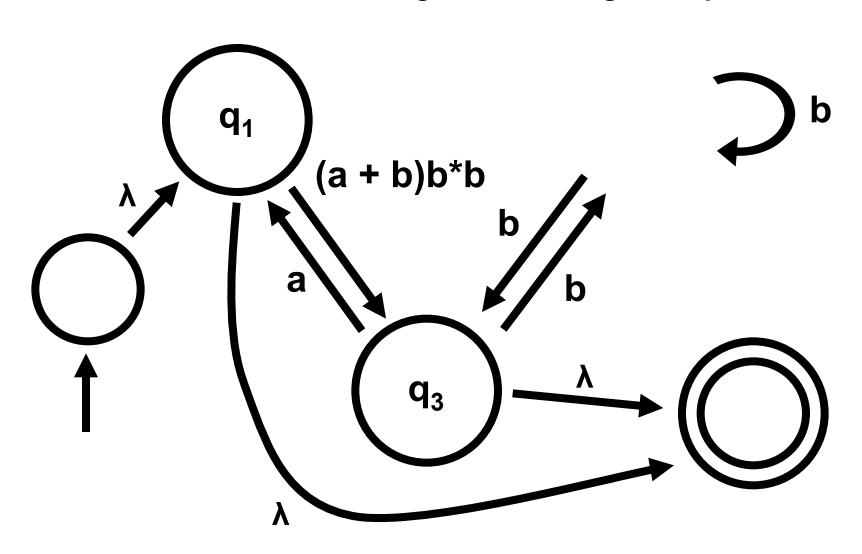
(AUD (BU (CD*A)*B))*

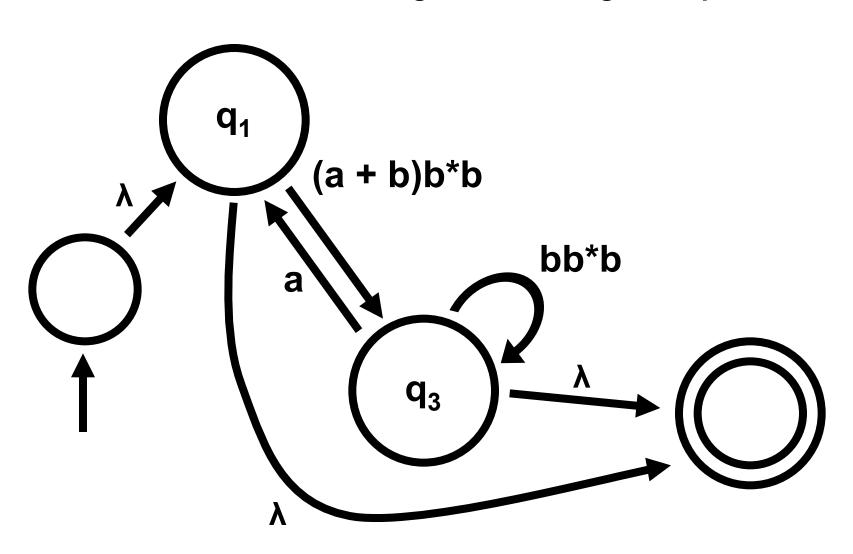


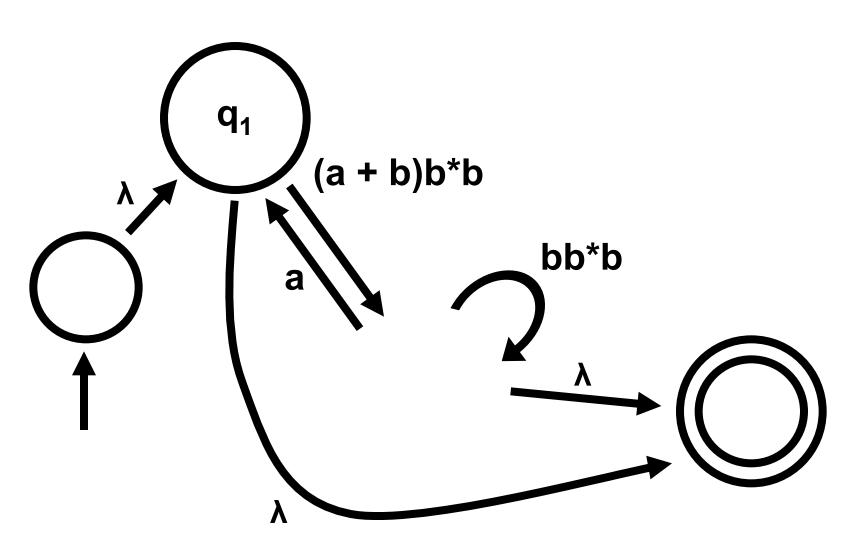


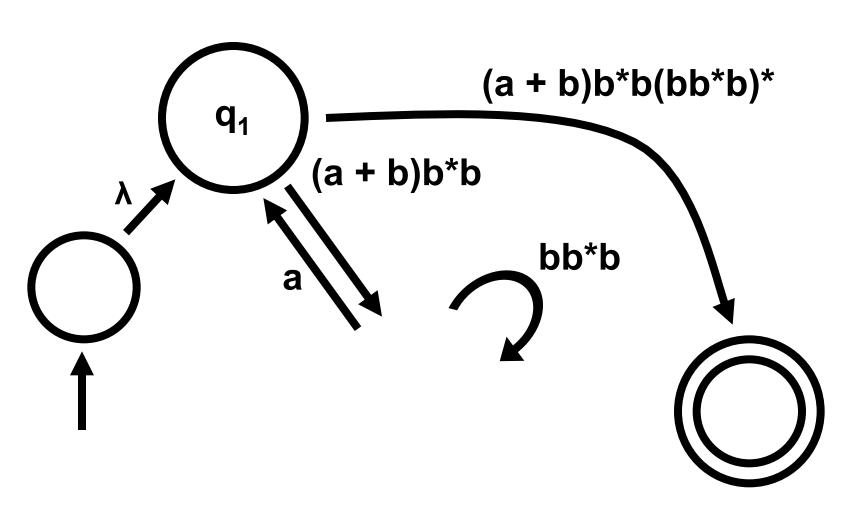


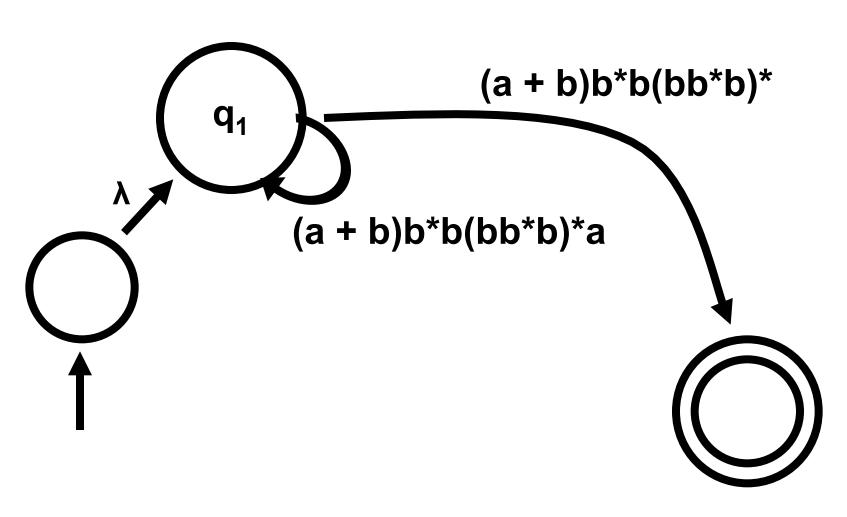


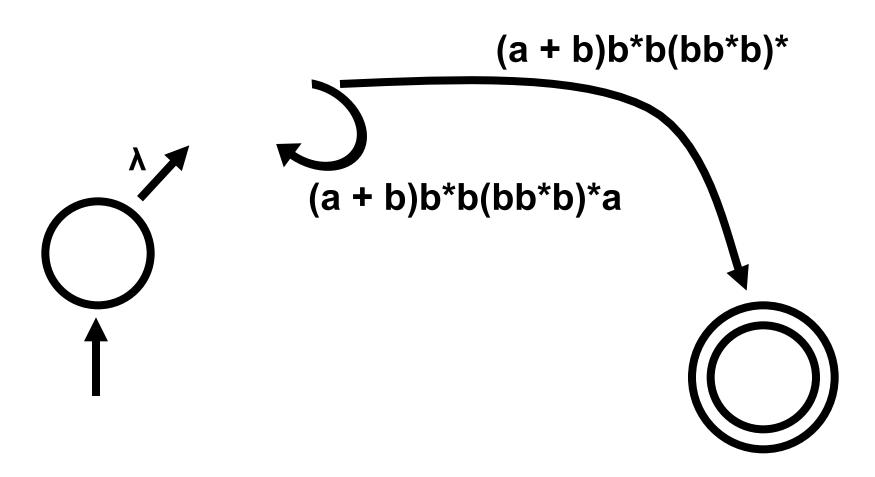


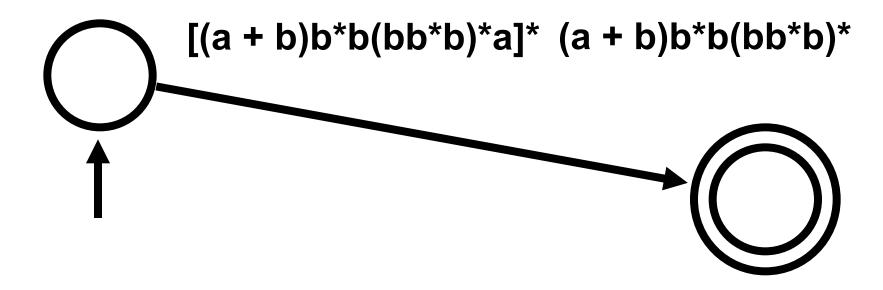












Algorithm

Next we study the DFA→RE Algorithm

Add q_{start} and q_{final} to create G

Run CONVERT(G):

```
If \#states = 2
```

return the expression on the arrow going from q_{start} to q_{final}

If #states > 2

select q_{rip}∈Q different from q_{start} and q_{final}

define $Q' = Q - \{q_{rip}\}$

define R' as:

$$R'(q_i,q_j) = R(q_i,q_{rip})R(q_{rip},q_{rip})*R(q_{rip},q_j) \cup R(q_i,q_j)$$

49

CONVERT(G) is equivalent to G

Proof by induction on k (number of states in G)

Base Case:

$$\checkmark$$
 k = 2

Inductive Step:

Assume claim is true for k-1 states

We first note that G and G' are equivalent

But, by the induction hypothesis, G' is equivalent to CONVERT(G')

DFA→RE

