Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Today's Topics

- DFA to Regular Expression
- GFNA
- DFA→GNFA
- GNFA → RE
- DFA → RE
- Examples

	GNFA	
Definition		
A <i>ge</i> auto are l uniq uniq	eneralized nondeterministic finite omaton (GNFA) is a graph whose edge labeled by regular expressions, with a jue start state with in-degree 0, and a jue final state with out-degree 0.	S
A str it is a the r conc the p	ring <i>u</i> is said to <i>label</i> a path in a GNFA, an element of the language generated b regular expression which is gotten by catenating all labels of edges traversed ir path.	if Y 1
The of al	language accepted by a GNFA consist II the accepted strings of the GNFA.	S 4

Example 3	DFA→RE	
The resulti Is the uniq Iabel (AUD (BU (ng REX ue(AUD (BU (CD*A)*B))* CD*A)*B))*	cept
		36

	DFA→RE
Algorithm	
	Next we study the DFA→RF Algorithm

Add q_{start} and q_{final} to create G Run CONVERT(G): If #states = 2 return the expression on the arrow going from q_{start} to q_{final} If #states > 2 select $q_{rip} \in Q$ different from q_{start} and q_{final} define Q' = Q - { q_{rip} } define R' as: R'(q_{i}, q_{j}) = R(q_{i}, q_{rip})R(q_{rip}, q_{rip})*R(q_{rip}, q_{j}) \cup R(q_{i}, q_{j}) return CONVERT(G')

Algorithm

CONVERT(G) is equivalent to G Proof by induction on k (number of states in G)

Base Case: ✓ k = 2

Inductive Step:

Assume claim is true for k-1 states

We first note that G and G' are equivalent

But, by the induction hypothesis, G' is equivalent to CONVERT(G')

