Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (λ -NFA)

A nondeterministic finite automaton with empty moves (λ -NFA) M is defined by a 5-tuple M=(Q, Σ , δ ,q₀,F), with

Q: finite set of states

S: finite input alphabet δ : transition function δ :Q×(Σ U { λ }) \rightarrow P(Q) q_0 =Q: start state

F⊆Q: set of final states

Nondeterministic Finite Automata with empty moves (λ -NFA)

Definition

A string w is **accepted** by a λ -NFA M if and only if *there exists* a path starting at q_0 which is labeled by w and ends in a final state.

The *language accepted by* a λ -NFA M is the set of all strings which are accepted by M and is denoted by L (M).

 $L(M)=\{w\colon \delta(q_0,w)\ \cap F\neq \Phi\}$

Nondeterministic Finite Automata with empty moves $(\lambda\text{-NFA})$

Note

$\delta: Q \times (\Sigma \cup \{\lambda\}) \to P(Q)$

A λ -transition causes the machine to change its state non-deterministically, without consuming any input.

Nondeterministic Finite Automata with empty moves (λ-NFA)

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be in a subset ⊆ Q of several possible states.

If the final set contains a final state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion; its computational path is no longer a line, but more like a tree".

Nondeterministic Finite Automata with empty moves (A-NFA)

Definition: Extension of δ $\delta: \mathcal{Q} \times (\sum \bigcup \{\lambda\}) \to P(\mathcal{Q}) \longrightarrow \hat{\delta}: \mathcal{Q} \times \sum^* \to P(\mathcal{Q})$ $\hat{\delta}$ is defined as follows:

1. $\hat{\delta}(\mathbf{q}, \lambda) = \lambda$ -closure(\mathbf{q})

2. $\hat{\delta}(\mathbf{q}, wa) = \lambda$ -closure(\mathbf{T}) where $\mathbf{T} = \{\mathbf{p}: \mathbf{p} \in \delta(\mathbf{r}, \mathbf{a}) \text{ and } \mathbf{r} \in \hat{\delta}(\mathbf{q}, \mathbf{w})\}, \mathbf{a} \in \mathbf{\Sigma}, \mathbf{w} \in \mathbf{\Sigma}^*$

λ-NFA → NFA

Theorem: For every language L that is accepted by a λ -NFA, there is an NFA that accepts L as well.

LA-NFA and NFA are equivalent computational models.

λ-NFA → NFA

Proof:

Let $M\!=\!(Q,\pmb{\Sigma},\!\delta,q_0,\!F)$ be a $\lambda\text{-NFA}$, an equivalent NFA, $M'=\!(Q,\pmb{\Sigma},\!\delta',q_0,\!F')$ can be constructed as follows:

1.
$$F' = \begin{cases} F \cup \{q_0\} & \text{ If λ-closure}(\mathbf{q_0}) \cap \mathbf{F} \neq \Phi \\ F & \text{ Otherwise} \end{cases}$$

2.
$$\delta'(q,a) = \hat{\delta}(q,a)$$

RE \rightarrow λ -NFA Example 3 Q: Find an NFA for the regular expression $(0 \cup 1)*(0000000 \cup 111(0 \cup 1)*111)(0 \cup 1)*$

	Exercise	RE → λ-NFA
Construct a λ-NFA for the regular expression:		
010*1+(1+0)*+101*		