Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Regular Expressions (RE)

Empty set	Φ	A RE denotes the empty set	
Empty string	λ A RE denotes the set {λ}		
Symbol	а	A RE denotes the set {a}	
Alternation	M + N If M is a RE for the set M and N is a RE for th set N, then M+N is a RE for the set M U N		
Concatenation	M • N	If M is a RE for the set M and N is a RE for the set N, then M.N is a RE for the set M. N	
Kleene-*	M*	If M is a RE for the set M, then M* is a RE for the set M*	

Regular Expressions (RE)

Operation	Notation	Language	UNIX
Alternation	$r_1 + r_2$	$L(r_1) \cup L(r_2)$	$r_1 r_2$
Concatenation	$r_1 \cdot r_2$	$L(r_1) \cdot L(r_2)$	$(r_1)(r_2)$
Kleene-*	r*	<i>L</i> (<i>r</i>)*	(<i>r</i>)*
Kleene-+	r+	L(r)+	(r)+
Exponentiation	rn	L(r) ⁿ	(r){n}

Regular Expressions (RE)

Example

For the alphabet Σ={0, 1}

0+1 is a RE denote the set {0} U {1}

0* is a RE denote the set {0}*={λ,0,00,...}

0.1* is a RE denote the set $\{0\}.\{\lambda,1,11,...\}$ = $\{0, 01, 011, ...\}$

Regular Expressions (RE) Notes For a RE r, ri = r.r....r i-times Operations precedence: * > . > + So we can omit many parentheses, for example: the RE ((0(1*))+0) can be written as 01*+0 We may abbreviate rr* to r* The corresponding set (language) denoted by a RE r will be expressed as L(r)

Nondeterministic Finite Automata (NFA) Definition A string w is accepted by an NFA M if and only if there exists a path starting at q_0 which is labeled by w and ends in a final state. The language accepted by an NFA M is the set of all strings which are accepted by M and is denoted by L(M). $L(M) = \{w : \delta(q_0, w) \cap F \neq \Phi\}$

Nondeterministic Finite Automata (NFA)

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be in a subset $\subseteq Q$ of several possible states.

If the final set contains a final state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion; its computational path is no longer a line, but more like a tree".

Theorem: For every language L that is accepted by a nondeterministic finite automaton, there is a (deterministic) finite automaton that accepts L as well. DFA and NFA are equivalent computational models. Proof idea: When keeping track of a nondeterministic computation of an NFA N we use many 'fingers' to point at the subset ⊆ Q of states of N that can be reached on a given input string. We can simulate this computation with a deterministic automaton M with state space P(Q).

