4/15/16

Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Regular Expressions (RE)

Empty set ') A RE denotes the empty set
Empty string |A A RE denotes the set {A}
Symbol a A RE denotes the set {a}
Alternation | M + N | L am i SRt v

3 If M is a RE for the set M and N is a RE for the
Concatenation M e N | N, then M.N is a RE for the set M. N

If M is a RE for the set M, then M* is a RE for
Kleene-* M* e '

Regular Expressions (RE)

Alternation L(n)UL(r,) rln

Concatenation rer L(r)L(rn)] (n)r)

Kleene-* r* L(ry* (r)x

Kleene-+ r+ L(r)* (r)+

Exponentiation rn L(ry (r){m}

Regular Expressions (RE)

Example

[For the alphabet £={0, 1} |

‘ 0+1 is a RE denote the set {0} U {1} ‘
0% is a RE denote the set {0}"={A,0,00,...} |

0.1* is a RE denote the set {0}.{A,1,11,...}
={0, 01,011, ...}

4/15/16

Regular Expressions (RE)

Notes

Fora REr, ri=rr....ri-times

Operations precedence: *>.>+

So we can omit many parentheses, for example: the
RE ((0(1%))+0) can be written as 01*+0

We may abbreviate rr* to r*

The corresponding set (language) denoted by a RE r
will be expressed as L(r)

Nondeterministic Finite Automata

(NFA)

Definition

A nondeterministic finite automaton (NFA) M is
defined by a 5-tuple M=(Q,Z,9,q,,F), with

Qa Q: finite set of states

Q Z: finite input alphabet

Qa &: transition function 8:Qx=—P(Q)
Q q,€Q: start state

Q FCQ: set of final states

Definition

A string wis accepted by an NFA M if and
only if there exists a path starting at g,
which is labeled by w and ends in a final
state.

The language accepted by an NFA M is the set of all
strings which are accepted by M and is denoted by L (M).

L(M)={w: 8(g,,w) NF = ®}

Nondeterministic Finite Automata

(NFA)

Definition

A nondeterministic finite automaton
has transition rules like:

@
/
@@

Nondeterministic transition

4/15/16

Nondeterministic Finite Automata

(NFA)

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be
in a subset C Q of several possible states.

If the final set contains a final state,
then the automaton accepts the string.

“The automaton processes the input in a parallel fashion;
its computational path is no longer a line, but more
like a tree”.

Deterministic
Computation

l

— — — —

|

accept or reject

Non-Deterministic
Computation

N
NI
Ll /N

| reject
7N\
|

accept

Nondeterministic Finite Automata (NFA)

We can write the NFA in two ways }

1. State digraph

|
al)b
@@

2. Table \ T 3 5
q0 {q0} | {q0,q1}
ql f {a2}
q2 f f

Nondeterministic Finite Automata (NFA)

Example 1

Write an NFA for the |

0 ={q0,91,42}
S ={a,b}
F =192}

[Check the input abb?

4/15/16

Quiz o

[Check the input abb? |

g2 is a final state hence

Input: alblb the input abb is accepted

Nondeterministic Finite Automata

(NFA)
Example 2 o -
Write an NFA for the language, over £={a,b
L=(a U b)* bb(a U b)*
a b

Nondeterministic Finite Automata (NFA)

Example 3 —

Write an NFA for the language, over £={a,b]
L=(a U b)* (aau bb) (a U b)*

Nondeterministic Finite Automata

(NFA)

Example 4 o

a
start . a . b . b .

b

[What language is accepted by this NFA?]

4/15/16

Nondeterministic Finite Automata (NFA)

Example 5

For example, consider the following NFA
which reads the input 11000.
0

(1lafofofof |

Accepted!

NFA > DFA

Theorem: For every language L that is accepted by a
nondeterministic finite automaton, there is a
(deterministic) finite automaton that accepts L as well.
DFA and NFA are equivalent computational models.

Proof idea: When keeping track of a nondeterministic
computation of an NFA N we use many ‘fingers’ to point
at the subset C Q of states of N that can be reached on a
given input string.

We can simulate this computation with a deterministic

automaton M with state space P(Q).

NFA > DFA
Proof

Let L be the language recognized by the NFA N =
EQ,Z,é,qO,F). Define'the DFA M = (Q’,Z,0',9" o,F’)
Y

1. Q' =P(Q)

2. &' (R,a) ={qeQ | qed(r,a) for an reR }

3. d'o={do}

4. F" ={ReQ’ | R contains a ‘final state’ of N}

It is easy to see that the previously
described deterministic finite automaton M
accepts the same language as N.

NFA > DFA
Example 1 y
Convert the NFA: '&0::'6 into a DFA?

Given NFA Constructed DFA
Q={qp, q;} == Q' =P(Q)=®, {qo}, {91}, {do, A1}}
) —> q'(={q}
F={q.} =—> F'={{a;}, {30, a:}}

For & see the next
slide

4/15/16

NFA = DFA
Example 1 1
Convert the NFA: H into a DFA?

0,1

Given NFA 6YConst;ucted I?FA
5(90,0)={q0,91} =P & ({qo}, o)) o)
3(ap={a = BTy=(q,} {ar |{gpar} |{a;}
5(q,,0)=0 = 3 ({a4),0)=0 {a:}] {9091}
(a1, 1)={00,a1} > 5 (q.) {9001 } [{900} [{d0as}

1)={a0.a1}

&' ({90,91},0)=3(q,,0) U 8(1,0) ={q0,a1}

8’ ({d0,94},1)=8(d0,1) U 8(a4,1) ={ao,a1}

NFA = DFA
Example 2

Start with the NFA:

a,b

a a,b a,b

Q1: What’s the accepted language?

Q2: How many states does the subset
construction create in this case?

NFA > DFA

Al: L= {x{a,b}* | 31 bit of x from right is a}

Example 2

A2: 16 = 24states.

That’s a lot of states. Would be nice if only had to
construct useful states, I.e. those that can be
reached from start state.

NFA - DFA

Example 2

Start with {1}:

rc

4/15/16

NFA > DFA

Branch out. Notice that 6(1,a) = {1,2}.

b
(@)

Example 2

—()

NFA > DFA

Branch out. Notice that 8’ ({1,2},a) = {1,2,3}.

Example 2

NFA > DFA

Example 2

Branch out. Note that &’ ({1,2,3},a) =
{1,2,3,4}

Example 2

4/15/16

NFA > DFA

Example 2

Example 2

NFA > DFA

NFA - DFA

Example 2

Example 2

NFA > DFA

4/15/16

NFA > DFA

Example 2 —

Summarizing:

Therefore, we saved 50% effort by not
constructing all possible states unthinkingly.

NFA > DFA

Exercise

Convert the following NFA into an equivalent DFA?

